Department of Chemistry

Your Name
Friend's Email Address
Comments
 

 



September 27, 2005

Meteorites offer glimpse of the early Earth, say Purdue scientists

WEST LAFAYETTE, Ind. – Important clues to the environment in which the early Earth formed may be emerging from Purdue University scientists' recent study of a particular class of meteorites.

meteorite
Download photo
caption below

By examining the chemistry of 29 chunks of rock that formed billions of years ago, probably in close proximity to our planet, two Purdue researchers, Michael E. Lipschutz and Ming-Sheng Wang, have clarified our understanding of the conditions present in the vicinity of the ancient Earth's orbit. Because direct evidence for these conditions is lacking in terrestrial samples, the scientists believe that the composition of these so-called enstatite chondrite (EC) meteorites could offer a window into the planet's distant past.

"What happened to these rocks most likely happened to the Earth in its early stages – with one great exception," said Lipschutz, a professor of chemistry in Purdue's College of Science. "Shortly after the early Earth formed, an object the size of Mars smashed into it, and the heat from the cataclysm irrevocably altered the geochemical makeup of our entire planet. These EC meteorites, however, are likely formed of matter similar to that which formed the early Earth, but they were not involved in this great collision and so were not chemically altered. They might be the last remaining pristine bits of the material that became the planet beneath our feet."

The research appears in today's (Sept. 27) edition of a new journal, Environmental Chemistry, which solicited the paper. Lipschutz said the journal's editorial board includes F. Sherwood Rowland and Mario Molina, who received the Nobel prize for their discovery that Earth's protective ozone layer was threatened by human activity.

Lipschutz and Wang initially set out to increase our knowledge of EC meteorites, one of many different meteorite classes. Meteorites come from many different parts of the solar system, and a scientist can link one with its parent object by determining the different isotopes of oxygen in a meteorite's minerals. Chunks of the moon, the Earth and EC meteorites, for example, have very similar isotopic "signatures," quite different from those of Mars and other objects formed in the asteroid belt. The variations occurred because different materials condensed in different regions of the disk of gas and dust that formed the sun and planets.

Bits of these materials orbit the sun, occasionally falling to earth as meteorites. But there is one place on our planet that meteorites accumulate and are preserved in a pr

Paul Shepson, Head
Feedback | E-mail Webmaster

Purdue University, 560 Oval Drive, West Lafayette, IN 47907
(765) 494-5200
© 2010 Purdue University | An equal access/equal opportunity university | Copyright Complaints
If you have trouble accessing this page because of a disability, please contact the Webmaster at webmaster@chem.purdue.edu.