
Quick Links
![]() | ||
| August 2, 2006
Research leads to first treatment for drug-resistant HIV
"There are many treatments for AIDS on the market, but none are able to combat drug resistance," said Arun Ghosh (pronounced A-rune GO-sh), a professor with a dual appointment in the departments of chemistry and medicinal chemistry and molecular pharmacology. "This is the first treatment that is effective against the growing number of drug-resistant strains of HIV, the virus that causes AIDS. The problem is widespread." The FDA recently approved the pill-based therapy of Ghosh's molecule, TMC-114, for medical use. The molecule, also known as Darunavir (pronounced DA-rune-a-veer), is the forerunner in a series of molecules under development by Ghosh. Earlier research shows that almost half of patients with the human immunodeficiency virus (HIV) who initially respond to treatment develop drug-resistant strains and stop responding to treatment within eight to 10 months, he said. An additional 20 percent to 40 percent of patients have drug-resistant strains when they are first diagnosed, suggesting these strains can be transmitted from one person to the next. This year marks the 25th anniversary of the first reported U.S. cases of AIDS, a disease that claims the lives of more than 15,000 Americans each year, according to the Centers for Disease Control and Prevention. World Health Organization figures estimate more than 40 million people worldwide are infected with HIV. For years the virus has frustrated drug developers through its ability to "outsmart" therapies. The virus rapidly mutates and, as parts of its structure change, it becomes resistant to treatment. Previously, patients with drug-resistant strains were out of options and had greatly reduced life expectancies. "My only wish was that my design would help people and alleviate suffering," Ghosh said. "I'm so grateful it has turned into a drug and been approved by the FDA so quickly." The molecule Ghosh created is expected to be available to physicians this year, he said. "I think that this drug will have a sizeable impact on the current therapy for AIDS and HIV infection," said Hiroaki Mitsuya (pronounced HE-row-ah-key MIT-sue-ya), chief and principal investigator of the Experimental Retrovirology Section at the National Cancer Institute who collaborated with Ghosh in this research. Molecules are made up of groups of atoms bonded together. These bonded groups form an o Paul Shepson, Head Purdue University, 560 Oval Drive, West Lafayette, IN 47907 | ||



