
Quick Links
Images develop clinical applications for new DESI technology
WEST LAFAYETTE, Ind. - Purdue University researchers have created the first two-dimensional images of biological samples using a new mass spectrometry technique that furthers the technology's potential applications for the detection of diseases such as cancer.
|
This tool has a wide range of applications and could be used in the future to address many medical issues, said Graham Cooks, Purdue's Henry B. Hass Distinguished Professor of Analytical Chemistry in whose lab DESI was developed.
"This technology could be used to aid surgeons in precisely and completely removing cancerous tissue," he said. "With these images, we can see the exact location of tumor masses and can detect cancerous sites that are indistinguishable to the naked eye."
Current surgical methods rely on the trained eye of a pathologist who views stained tissue slices under a microscope to assess what tissue must be removed.
This study was the first to take the graphical data presented by DESI mass spectrometry and turn it into a two-dimensional image of the tissue, said Demian Ifa, a member of Cooks' research team.
"The ability to produce an image is a great advance," he said. "It is much more practical to have an image that can quickly and easily be interpreted. It brings the technology much closer to being ready for the clinical setting."
A paper detailing the study has been selected as a "very important paper" by the journal Angewandte Chemie and is currently posted online. Cooks, Ifa, Justin Wiseman, and Qingyu Song, all from Purdue's Department of Chemistry, authored the paper, which will be featured on the cover of the print publication. Less than 5 percent of the journal's manuscripts earn the very important paper designation, according to the journal.
Several technical papers have been published about DESI experiments since the method was announced two years ago as an alternative to traditional mass spectrometry techniques.
Conventional mass spectrometry requires chemical separations, manipulations of samples and containment in a vacuum chamber for assessment. DESI researchers modified a mass spectrometer, which is commonly used in biological sciences, to speed and simplify the time-consuming and labor-intensive analytical process, Ifa said.
Mass spectrometry works by first turning molecules into ions, or electrically charged versions of themselves, so they have mass and can be detected and analyzed. The DESI procedure does this by


