	Chemistry 11100	
Section	EXAM II	Total Points = 150
TA	Monday, 6:30 PM	
	October 15, 2012	

Chamister 11100

Directions:

NT

- 1. Each student is responsible for following directions. Read this page carefully.
- 2. Write your name and other requested information on this page and on the separate answer sheet.
- 3. <u>CODE</u> your name on the answer sheet using an ordinary (#2) pencil.
- 4. <u>CODE</u> your correct *10-digit* identification number (PUID) on the answer sheet. THIS IS VERY IMPORTANT!
- 5. <u>CODE</u> your section number on the answer sheet. Please use all <u>four</u> digits, 0034, 0035, 0036, etc. This is also very important!
- 6. <u>CODE</u> the test number shown in the upper right-hand corner on the answer sheet in the block labeled "Test/Quiz Number". This is Test 55.
- 7. Put all calculations on the examination pages. DO NOT PUT ANY EXTRA MARKS ON THE COMPUTER ANSWER SHEET!
- 8. This exam consists of 24 multiple-choice questions worth 6.25 points each. Choose the <u>one</u> best or correct answer for each question and write it both on your exam paper <u>and</u> on the computer answer sheet. The computer answer sheet is the only one that will be graded!
- 9. This exam consists of 7 pages plus a page of Useful Information, a Periodic Table and a sheet of scratch paper. Please check to be sure that you have them all!

END OF EXAM

- 1) Please make sure that you have entered 24 answers on your scan sheet.
- 2) Make sure that you have entered your name, ID number, and lab section number (4 digits).
- 3) You MUST turn the scan sheet in to your TA before leaving the exam!

KEEP YOUR ANSWERS AND WORK COVERED TO PROTECT THE INTEGRITY OF YOUR WORK!!

- 1. What is the formula for phosphoric acid?
 - (a) H₂PO₄
 - (b) H_2PO_3
 - (c) H_3PO_4
 - (d) H_3PO_3
 - (e) H₄PO₄
- 2. Calculate the molar mass of $C_9H_{13}NO_2$ (phenylephrine), a decongestant in Sudafed PETM.
 - (a) 157.17 g/mol
 - (b) 167.26 g/mol
 - (c) 176.18 g/mol
 - (d) 181.27 g/mol
 - (e) 302.41 g/mol
- 3. Household sugar, sucrose, has the molecular formula C₁₂H₂₂O₁₁. What is the percent of carbon in sucrose, by mass?
 - (a) 26.7%
 - (b) 33.3%
 - (c) 41.4%
 - (d) 42.1%
 - (e) 52.8%
- 4. Choose the correct formula/name pair.
 - (a) $MgCO_3$ manganese carbonate
 - (b) $Ca(NO_3)_2$ calcium nitrite
 - (c) NaNO₃ sodium nitrate
 - (d) NO₂ nitrogen oxide
 - (e) HBr hydrogen monobromide
- 5. The name for FeSO₄ is _____ and the charge on the iron ion in this compound is _____.
 - (a) iron sulfate; +4
 - (b) iron sulfate; +2
 - (c) iron(II) sulfate; +2
 - (d) iron(I) sulfate; +1
 - (e) iron(III) sulfate; +3

- 6. What is the mass in grams of 0.250 mol calcium carbonate, CaCO₃? (Molar mass = 100.09 g/mol.)
 - (a) 4.00×10^2 g (b) 25.0 g (c) 17.0 g (d) 4.00×10^{-2} g (e) 2.50×10^{-3} g
- 7. Calculate the number of oxygen atoms in 29.34 g of sodium sulfate, Na_2SO_4 . (Molar mass = 142.04 g/mol).
 - (a) 1.244×10^{23} O atoms (b) 4.976×10^{23} O atoms (c) 2.409×10^{24} O atoms (d) 2.915×10^{24} O atoms (e) 1.166×10^{25} O atoms
 - 8. What is the formula for diphosphorous pentaoxide?
 - (a) PO_5
 - (b) K_2O_5
 - (c) P_2O_6
 - (d) P_2O_4
 - (e) P_2O_5
- 9. _____ ion is an example of a polyatomic <u>cation</u>.
 - (a) Hydroxide
 - (b) Calcium
 - (c) Hydrogen carbonate (bicarbonate)
 - (d) Ammonium
 - (e) Potassium

- 10. Calculate the number of moles in 17.8 g of magnesium hydroxide, $Mg(OH)_2$. (Molar mass = 58.34 g/mol)
 - (a) 3.28 mol
 - (b) 2.32 mol
 - (c) 0.431 mol
 - (d) 0.305 mol
 - (e) 0.200 mol
- 11. What is the mass in grams of 1.12×10^{16} molecules of the pain reliever ibuprofen $(C_{13}H_{18}O_2, \text{ molar mass} = 206.3 \text{ g/mol})?$
 - (a) 9.02×10^{-11} g (b) 1.86×10^{-8} g (c) 3.84×10^{-6} g (d) 5.43×10^{13} g (e) 2.31×10^{18} g
- 12. A compound has the empirical formula NO₂. If its molar mass is approximately 92 g/mol, then what is its molecular formula?
 - (a) NO₂
 - (b) N_2O_4
 - (c) N_2O_5
 - (d) NO₃
 - (e) N₃O₆
- Which of the following compounds of nitrogen and oxygen have identical empirical formulas: N₂O, NO, NO₂, N₂O₃, N₂O₄, N₂O₅
 - (a) All of them have identical empirical formulas
 - (b) None of them have identical empirical formulas
 - (c) N_2O and NO_2
 - (d) NO_2 and N_2O_4
 - (e) N_2O_3 , N_2O_4 , and N_2O_5

- 14. Molarity is defined as
 - (a) moles of solute per liter of solution.
 - (b) moles of solute per liter of solvent.
 - (c) moles of solvent per liter of solute.
 - (d) moles of solvent per liter of solvent.
 - (e) grams of solute per liter of solution.
- ____ 15. What is the molarity of a solution containing 8.0 g of NaOH in 400. mL of NaOH solution? (NaOH = 40.00 g/mol)
 - (a) 20.0 M
 - (b) 4.6 M
 - (c) 4.55 M
 - (d) 0.500 M
 - (e) 0.020 M
 - 16. Calculate the concentration of a solution prepared by diluting 4.50 mL of an 8.50 M KOH solution to 75.0 mL.
 - (a) 0.0600 M
 - (b) 0.481 M
 - (c) 0.510 M
 - (d) 39.7 M
 - (e) 142 M
 - 17. In the isolation of fat from chips and oreo cookie lab, how was the solution containing the fat separated from the food (potato chip or oreo cookie)?
 - (a) By filtering it.
 - (b) By heating it.
 - (c) By allowing it to sit on the bench top and the fat floated to the top.
 - (d) By adding water.
 - (e) By mashing it.
 - 18. The maximum safe level of glyphosate (a pesticide) is 700 μ g/kg. Convert this value to ppm.
 - (a) 7.00×10^{-7} ppm
 - (b) 0.700 ppm
 - (c) 700 ppm
 - (d) 7.00×10^{6} ppm
 - (e) 7.00×10^8 ppm

- 19. How many grams of NaOH are required to prepare 500.0 mL of a 0.200 M NaOH solution? (NaOH = 40.00 g/mol)
 - (a) 1.00 g (b) 4.00 g (c) 16.0 g (d) 1.00×10^2 g
 - (e) 2.00×10^2 g
- 20. Balance the following chemical equation. What is the coefficient in front of NaNO₃?

 $\underline{Pb(NO_3)_2 (aq)} + \underline{NaCl (aq)} \rightarrow \underline{PbCl_2 (s)} + \underline{NaNO_3(aq)}$ (a) 1
(b) 2
(c) 3
(d) 4
(e) 5

- 21. In the density lab you weighed substances and found their volumes then used this data to determine their densities. Imagine you are in lab and have a sample that has a mass of 23.52 g. You place it in a graduated cylinder and the water level rises from 37.5 mL to 42.2 mL. What is the density of the solid?
 - (a) 0.200 g/mL
 - (b) 0.557 g/mL
 - (c) 0.627 g/mL
 - (d) 5.00 g/mL
 - (e) 111 g/mL
- 22. Based upon the laboratory data you collected and analyzed in the Electrolytes and Non-Electrolytes lab, which 0.02M solution below is a *weak electrolyte*?
 - (a) HNO₃
 - (b) KOH
 - (c) Acetic acid, CH₃COOH
 - (d) HCl
 - (e) NaOH

23. In the chemical equation shown below, what do the coefficients mean?

$$N_2 + 3 H_2 \rightarrow 2 NH_3$$

- (a) 1 atom of nitrogen reacts with 3 atoms of hydrogen to give 2 molecules of ammonia.
- (b) 1 g of nitrogen reacts with 3 g of hydrogen to give 2 g of ammonia.
- (c) 1 molecule of nitrogen reacts with 3 molecules of hydrogen to give 2 molecules of ammonia.
- (d) 1 mole of nitrogen reacts with 3 moles of hydrogen to give 2 moles of ammonia.
- (e) Both C and D are correct.
- 24. How many oxygen atoms are on the product side of this chemical reaction?

$$2 C_8 H_{18} + 25 O_2 \rightarrow 16 CO_2 + 18 H_2 O$$

- (a) 2
 (b) 3
 (c) 18
 (d) 32
- (e) 50

Useful Information

% Error = $\frac{|Actual - Theoretical|}{Theoretical} \times 100\%$

% Recovery = $\frac{\text{mass of material recovered}}{\text{mass of material started with}} \times 100\%$

 $T_{\kappa} = T_{o_c} + 273.15$

$$T_{o_F} = 1.8(T_{o_C}) + 32$$

 $M_i V_i = M_f V_f$

Avogadro's number 1 mole = 6.022×10^{23} formula units

1 ppm = 1 g/ 1 x 10^6 g = 1 mg/1 L

Key

- 1.) C
- 2.) В
- 3.) D
- 4.) С 5.)
- С 6.) В
- 7.) В
- 8.) Е
- 9.) D
- 10.) D
- 11.) C
- 12.) B
- 13.) D
- 14.) A
- 15.) D
- 16.) C
- 17.) A
- 18.) B 19.) B
- 20.) B
- 21.) D
- 22.) C
- 23.) E
- 24.) E