Solubility product constants are used to describe saturated solutions of ionic compounds of relatively low solubility. A saturated solution is in a state of dynamic equilibrium between the dissolved, dissociated, ionic compound and the undissolved solid.
The general equilibrium constant for such processes can be written as:
Kc = [My+]x[Ax-]y
Since the equilibrium constant refers to the product of the concentration of the ions that are present in a saturated solution of an ionic compound, it is given the name solubility product constant, and given the symbol Ksp. Solubility product constants can be calculated, and used in a variety of applications.
In order to calculate the Ksp for an ionic compound you need the equation for the dissolving process so the equilibrium expression can be written. You also need the concentrations of each ion expressed in terms of molarity, or moles per liter, or the means to obtain these values.
Example: Calculate the solubility product constant for lead(II) chloride, if 50.0 mL of a saturated solution of lead(II) chloride was found to contain 0.2207 g of lead(II) chloride dissolved in it.
Ksp = [Pb2+][Cl-]2
|
|
|
|
Initial Concentration |
|
|
|
Change in Concentration |
|
|
|
Equilibrium Concentration |
|
|
|
Calculating the Solubility of an Ionic Compound in Pure Water from its Ksp
Example: Estimate the solubility of Ag2CrO4 in pure water if the solubility product constant for silver chromate is 1.1 x 10-12.
Ksp = [Ag+]2[CrO42-]
|
|
|
|
Initial Concentration |
|
|
|
Change in Concentration |
|
|
|
Equilibrium Concentraion |
|
|
|
Calculating the Solubility of an Ionic Compound in a Solution that Contains a Common Ion
The solubility of an ionic compound decreases in the presence of a common ion. A common ion is any ion in the solution that is common to the ionic compound being dissolved. For example, the chloride ion in a sodium chloride solution is common to the chloride in lead(II) chloride. The presence of a common ion must be taken into account when determining the solubility of an ionic compound. To do this, simply use the concentration of the common ion as the initial concentration.
Example: Estimate the solubility of barium sulfate in a 0.020 M sodium sulfate solution. The solubility product constant for barium sulfate is 1.1 x 10-10.
Ksp = [Ba2+][SO42-]
|
|
|
|
Initial Concentration |
|
|
|
Change in Concentration |
|
|
|
Equilibrium Concentration |
|
|
|
Determining Whether a Precipitate will, or will not Form When Two Solutions are Combined
When two electrolytic solutions are combined, a precipitate may, or may not form. In order to determine whether or not a precipitate will form or not, one must examine two factors. First, determine the possible combinations of ions that could result when the two solutions are combined to see if any of them are deemed "insoluble" base on solubility tables (Ksp tables will also do). Second, determine if the concentrations of the ions are great enough so that the reaction quotient Q exceeds the Ksp value. One important factor to remember is there is a dilution of all species present and must be taken into account.
Example: 25.0 mL of 0.0020 M potassium chromate are mixed with 75.0 mL of 0.000125 M lead(II) nitrate. Will a precipitate of lead(II) chromate form. Ksp of lead(II) chromate is 1.8 x 10-14.
Ksp = [Pb2+][CrO42-]