- Co_aS_bO_c X H₂O is the general formula of a certain hydrate. When 43.0 g of the compound is heated to drive off the water, 26.1 g of anhydrous compound is left (Co_aS_bO_c). Further analysis shows that the percentage composition of the anhydride is 42.4% Co, 23.0 % S, and 34.6% O. The empirical formula of the hydrate is
 - (a) $CoSO_4 \cdot 5 H_2O$ (b) $Co_2SO_4 \cdot 2 H_2O$ (c) $CoSO_3 \cdot 5 H_2O$ (d) $Co_2SO_3 \cdot 2 H_2O$ (e) $CoSO_3 \cdot 4 H_2O$
- 2. The explosion of nitroglycerin is described by the unbalanced equation

$$C_3H_5(NO_3)_3 \rightarrow CO_2 + H_2O + N_2 + O_2$$

How many moles of carbon dioxide are produced by the explosion of 9.25×10^{-2} moles of nitroglycerin?

- (a) 9.25×10^{-2} mol (b) 2.78×10^{-1} mol (c) 3.08×10^{-2} mol (d) 5.55×10^{-1} mol (e) None of the above
- 3. Which set of values is possible?

	Mass Number	Atomic Number	Number of Protons	Number of Neutrons
(a)	19	42	19	23
(b)	235	92	92	143
(c)	53	131	131	79
(d)	32	15	15	15
(e)	14	7	7	8

- 4. When solutions of AgNO₃ and Na₂CO₃ are mixed, solid Ag₂CO₃ is formed and NaNO₃ remains in solution. A solution containing 12.43 g Na₂CO₃ is mixed with a solution containing 8.37 g AgNO₃. Which of the following statements is/are **not** true for this reaction?
 - I. $AgNO_3$ is the limiting reactant.
- IV. This is an exchange reaction.
- V. No carbonate ion remains in solution.
- II. Na_2CO_3 is the limiting reactant.
- III. 0.0246 mol Ag_2CO_3 is produced.

For questions 5 & 6 identify the following reactions as either:

a. acid-base

c. redox

d. none of these

5. $NH_4Cl(aq) + KOH(aq) \rightarrow NH_3(g) + KCl(aq) + H_2O(\ell)$

b. precipitation

- 6. $\operatorname{NaNO}_{3(s)} \rightarrow \operatorname{Na}^{+}(\operatorname{aq}) + \operatorname{NO}_{3}^{-}(\operatorname{aq})$
- 7. In the reaction below, 8.0 g of H_2 react with 9.0 g of O_2 . Which of the following statements is true?

$$2 H_2 + O_2 \rightarrow 2 H_2O$$

Exam 1

(a) The equation is not balanced.

(b) The H_2 is the limiting reactant.

(c) The O_2 is the limiting reactant.

- (d) 2.0 moles of H_2O would be produced.
- (e) 36 grams of H_2O would be produced.
- 8. The molar mass of lithium atom in a natural sample is 6.941 g/mol. The sample is known to consist of ⁶Li (molar mass 6.015 g/mol) and ⁷Li (molar mass 7.016 g/mol). What is true about the relative amounts of ⁶Li and ⁷Li in the natural sample?
 - (a) Roughly equal (a bit more ${}^{6}Li$)
 - (b) Exactly equal
 - (c) The majority of the sample is ${}^{6}Li$

(d) The majority of the sample is 7 Li

- (e) Roughly equal (a bit more 7 Li)
- 9. Identify the isotope that has atoms with 39 neutrons, 31 protons, and 31 electrons.

(a)	⁷⁰ Ga
(b)	³¹ Ga
(c)	⁷⁰ Y
(d)	⁸⁹ Y

(e) None of the above

10. When NaCl and KNO₃ are mixed together _____ occurs.

(a) no reaction

- (b) a combination reaction
- (c) a displacement reaction
- (d) an exchange reaction
- (e) a decomposition reaction

Exam 1

11. Suppose you have a solution that might contain any or all of the following cations: Ni^{2+} , Ag^+ , Sr^{2+} and Ca^{2+} . Addition of KCl solution causes a precipitate to form. After filtering off the precipitate, Na_2SO_4 solution is added to the resulting solution and another precipitate forms. This is filtered off and a solution of NaOH is added to the resulting solution. No precipitate is observed. Which of the 4 ions listed above *must* be absent from the original solution?

12. Based on the activity series, which of the following reactions will occur?

I.	Fe (s) + H ₂ SO ₄ (aq) \rightarrow
II.	Pb (s) + MgCl ₂ (aq) \rightarrow
III	$Mn(s) + HCl(aq) \rightarrow$

IV. Al (s) + Cr_2O_3 (s) \rightarrow V. Au (s) + AgNO₃ (aq) \rightarrow

- (a) I, III & V
 (b) I & III
 (c) II & V
 (d) I, III & IV
 (e) all will occur
- 13. What is the oxidation number of Cr in $K_2Cr_2O_7$?
 - (a) +2(b) +3(c) +4(d) +5(e) +6

14. In the following reaction, ______ is oxidized and ______ is reduced.

$$I_2O_5 + CO \rightarrow I_2 + CO_2$$

(a) I, C (b) O, I (c) I, O (d) C, O (e) C, I For the remaining questions determine the best answer from the following list.

- K PbCl₂
- L HCl
- M HNO₃ N NaOH
- **O** $CaSO_4$
- P NaNO₂
- $\mathbf{Q} \quad \mathrm{Sr}_3(\mathrm{PO}_4)_2$
- **R** KNO₃

W AgCl X NaNO₃

Y salt + water

T CaClO

V Mg(OH)₂

U HF

Z salt + water + hydrogen gas

15. _____ is/are ionic compounds that cannot exist.

- (a) O & P(b) Q(c) O(c) O(d) T (e) O & T(e) O & T
- 16. These compounds will not dissolve in water in large amounts.

(a)	V & X	(d)	K, Q, V & W
(b)	K & X	(e)	Q, V & X
(c)	L		

- 17. The products of the reaction between an acid and a metal carbonate.
 - (a) Y (b) Z (c) None of these
- 18. Strong acid(s).

(a)	L, M & U
(b)	L & M
(c)	L & U
(d)	M & U
(e)	U

19. Strong base(s).

(a)	Ν
(b)	N & V
(c)	V
(d)	None of these

20. A product of the reaction between sodium hydroxide and dinitrogen pentoxide.

(a) M (b) N (c) P (d) X