Chemical Compounds

Chapter 3

Molecular Compounds Molecular Formulas

exact number of atoms of each type in compound example - H₂O inorganic compounds contain no carbon examples - NH₃, H₂SO₄, P₂O₅ many are ionic organic compounds contain carbon examples - C₂H₆, C₂H₆O, C₃H₈ generally molecular

Molecular Compounds Molecular Formulas

methods for writing formulas

- molecular formula C₂H₆ (ethane) C₂H₆O (ethanol)
- structural formula

Functional group (hydroxide)

condensed formula

CH₃CH₃ CH₃CH₂OH

Naming Binary Inorganic Compounds

sulfur dioxide

- molecules containing atoms of only two elements
- element farthest left first
 HCI (<u>hydrogen</u> chloride)
- if same group lowest first
 SO₂
- second element ends in -ide
- Greek prefixes for numbers exception - binary hydrogen compounds example: H₂S - hydrogen sulfide

Naming Binary Inorganic Compounds

TABLE 3.2	Prefixes Used in Naming Chemical Compounds
Prefix	Number
Mono-	1
Di-	2
Tri-	3
Tetra-	4
Penta-	5
Hexa-	6
Hepta-	7
Octa-	8
Nona-	9
Deca-	10

Naming Binary Inorganic Compounds

compounds with common, nonsystematic names:

(text p. 82)

H₂O water
NH₃ ammonia
N₂H₄ hydrazine
NO nitric oxide
N₂O nitrous oxide
PH₃ phosphine

Hydrocarbons

- contain only C and H
- simplest type is alkanes
 - general formula $C_n H_{2n+2}$ (n = integer)
 - first 4 have common names remaining systematic

Hydrocarbons

TABLE 3.4	The First Ten Alkane Hydrocarbons, $C_n H_{2n+2}$		
Molecular Formula	Name	Boiling Point (°C)	Physical State at Room Temperature
CH_4	Methane	-161.6	Gas
C_2H_6	Ethane	-88.6	Gas
C_3H_8	Propane	-42.1	Gas
C_4H_{10}	Butane	-0.5	Gas
C_5H_{12}	Pentane	36.1	Liquid
C_6H_{14}	Hexane	68.7	Liquid
C_7H_{16}	Heptane	98.4	Liquid
C_8H_{18}	Octane	125.7	Liquid
C_9H_{20}	Nonane	150.8	Liquid
$\mathrm{C_{10}H_{22}}$	Decane	174.0	Liquid

© 2005 Brooks/Cole - Thomson

Ions and Ionic Compounds

ionic compound - composed of positive and negative ions

- typically metal with non-metal
 - metal loses electrons to form cation
 - non-metal gains electrons to form anion example - NaCl (formed from Na⁺ and Cl⁻)

Ionic Charges

determine charges of monatomic ions from Periodic Table

Ionic Compounds

formed from a cation(s) and an anion(s)

 overall charge on formula is neutral examples: Na⁺ & Cl⁻ NaCl

- "empirical" formulas only
- write formula: cation then anion

Naming Ionic Compounds Cations

- Cations from metals
 - same name as metal

Na⁺ sodium ion

Ca²⁺ calcium ion

Same metal, differing charges

 use Roman numeral to distinguish
 usually transition metals
 Fe²⁺ iron(II) ion
 Fe³⁺ iron(III) ion

 Cations from non-metals

 names end in *-ium* NH_a ammonia
 NH_a⁺ ammonium

Naming Ionic Compounds Anions

- Monatomic
 - drop ending, add -ide
 - H⁻ hydride ion O²⁻ oxide ion
- Polyatomic
 - oxoanions (if only 2 possible e.g. N, S, P)
 - larger # of O atoms suffix -ate NO₃⁻ nitrate ion SO₄²⁻ sulfate ion
 smaller # of O atoms - suffix -ite
 - NO_2^- nitrite ion SO_3^{2-} sulfite ion

Naming Ionic Compounds Anions (cont'd)

- Polyatomic (cont'd)
 - Oxoanions (if more than two possible e.g. Cl, Br, I)
 - Iargest # of O atoms prefix *per-* + suffix *-ate* ClO_4^- perchlorate ion IO_4^- periodate ion
 - next largest # of O atoms suffix -ate
 ClO_3^- chlorate ion
 IO_3^- iodate ion
 - third largest # of O atoms suffix -ite
 ClO₂⁻ chlorite ion
 lO₂⁻ iodite ion
 - smallest # of O atoms prefix hypo- + suffix -ite
 CIO⁻ hypochlorite ion
 IO⁻ hypoiodite ion

Naming Ionic Compounds Anions (cont'd)

Polyatomic (cont'd)
 oxoanions with hydrogen

 name oxoanion portion according to rules
 place "hydrogen" in front of oxoanion name
 notice that the charge on the anion has increased (become more positive) by the same amount as the number of H⁺ ions added

Naming Ionic Compounds Anions (cont'd)

Polyatomic anions with nonstandard names

 $CH_{3}COO^{-}$ CN^{-} $C_{2}O_{4}^{2-}$ OH^{-} O_{2}^{2-} O_{2}^{-} MnO_{4}^{-} CrO_{4}^{2-} $Cr_{2}O_{7}^{2-}$ acetate ion cyanide ion oxalate ion hydroxide ion peroxide ion superoxide ion permanganate ion chromate ion dichromate ion

Naming Ionic Compounds

- Cation then anion examples:
 - CaCl₂ calcium chloride
 - MgSO₄ magnesum sulfate
 - $(NH_4)_2CO_3$ ammonium carbonate

Properties of Ionic Compounds

- metal + nonmetal
- crystalline
- hard, brittle
- high melting points
- high boiling points

© 2005 Brooks/Cole - Thomson

electrolytes

Percent Composition

composition of any compound expressed by

- # atoms of each type per molecule or formula unit
- mass of each element in a mole of compound
 % by mass of each element in compound (*part/whole*) x 100%
 example: C₁₂H₂₂O₁₁ 342.299 g/mol

%C = $\frac{12(12.011 \text{ g/mol})}{342.299 \text{ g/mol}} \times 100\% = 42.107\%$

$$\%H = \frac{22(1.0079 \text{ g/mol})}{342.299 \text{ g/mol}} \times 100\% = 6.4779\%$$

$$\%O = \frac{11(15.9994 \text{ g/mol})}{342.299 \text{ g/mol}} \times 100\% = 51.4151\%$$

Empirical Formulas

Molecular Formula

need:

- empirical formula
- molar mass of molecular formula

