Molecular Compounds

Molecular Formulas

exact number of atoms of each type in compound

- example - \(\text{H}_2\text{O} \)

- **inorganic compounds**
 - contain no carbon
 - examples - \(\text{NH}_3 \), \(\text{H}_2\text{SO}_4 \), \(\text{P}_2\text{O}_5 \)
 - many are ionic

- **organic compounds**
 - contain carbon
 - examples - \(\text{C}_2\text{H}_6 \), \(\text{C}_2\text{H}_6\text{O} \), \(\text{C}_3\text{H}_8 \)
 - generally molecular
Molecular Compounds

Molecular Formulas

- **methods for writing formulas**
 - **molecular formula**
 - \(\text{C}_2\text{H}_6 \) (ethane) \(\text{C}_2\text{H}_6\text{O} \) (ethanol)
 - **structural formula**
 - \(\text{CH}_3\text{CH}_3 \)
 - \(\text{CH}_3\text{CH}_2\text{OH} \)
 - **condensed formula**
 - \(\text{CH}_3\text{CH}_3 \)
 - \(\text{CH}_3\text{CH}_2\text{OH} \)

- **Functional group**
 - (hydroxide)
Naming Binary Inorganic Compounds

molecules containing atoms of only two elements

- element farthest left first
 - HCl \((\text{hydrogen chloride})\)
- if same group - lowest first
 - \(\text{SO}_2\)
- second element ends in \(-\text{ide}\)

- Greek prefixes for numbers
 - exception - binary hydrogen compounds
 - example: \(\text{H}_2\text{S}\) - hydrogen sulfide
Naming Binary Inorganic Compounds

TABLE 3.2 Prefixes Used in Naming Chemical Compounds

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mono-</td>
<td>1</td>
</tr>
<tr>
<td>Di-</td>
<td>2</td>
</tr>
<tr>
<td>Tri-</td>
<td>3</td>
</tr>
<tr>
<td>Tetra-</td>
<td>4</td>
</tr>
<tr>
<td>Penta-</td>
<td>5</td>
</tr>
<tr>
<td>Hexa-</td>
<td>6</td>
</tr>
<tr>
<td>Hepta-</td>
<td>7</td>
</tr>
<tr>
<td>Octa-</td>
<td>8</td>
</tr>
<tr>
<td>Nona-</td>
<td>9</td>
</tr>
<tr>
<td>Deca-</td>
<td>10</td>
</tr>
</tbody>
</table>

© 2005 Brooks/Cole - Thomson
Naming Binary Inorganic Compounds

compounds with common, nonsystematic names:

- H_2O water
- NH_3 ammonia
- N_2H_4 hydrazine
- NO nitric oxide
- N_2O nitrous oxide
- PH_3 phosphine

(text p. 82)
Hydrocarbons

- contain only C and H
- simplest type is alkanes
 - general formula - C_nH_{2n+2} (n = integer)
 - first 4 have common names - remaining systematic
Hydrocarbons

Table 3.4 The First Ten Alkane Hydrocarbons, C_nH_{2n+2}

<table>
<thead>
<tr>
<th>Molecular Formula</th>
<th>Name</th>
<th>Boiling Point (°C)</th>
<th>Physical State at Room Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_4$</td>
<td>Methane</td>
<td>-161.6</td>
<td>Gas</td>
</tr>
<tr>
<td>C$_2$H$_6$</td>
<td>Ethane</td>
<td>-88.6</td>
<td>Gas</td>
</tr>
<tr>
<td>C$_3$H$_8$</td>
<td>Propane</td>
<td>-42.1</td>
<td>Gas</td>
</tr>
<tr>
<td>C4H${10}$</td>
<td>Butane</td>
<td>-0.5</td>
<td>Gas</td>
</tr>
<tr>
<td>C5H${12}$</td>
<td>Pentane</td>
<td>36.1</td>
<td>Liquid</td>
</tr>
<tr>
<td>C6H${14}$</td>
<td>Hexane</td>
<td>68.7</td>
<td>Liquid</td>
</tr>
<tr>
<td>C7H${16}$</td>
<td>Heptane</td>
<td>98.4</td>
<td>Liquid</td>
</tr>
<tr>
<td>C8H${18}$</td>
<td>Octane</td>
<td>125.7</td>
<td>Liquid</td>
</tr>
<tr>
<td>C9H${20}$</td>
<td>Nonane</td>
<td>150.8</td>
<td>Liquid</td>
</tr>
<tr>
<td>C${10}$H${22}$</td>
<td>Decane</td>
<td>174.0</td>
<td>Liquid</td>
</tr>
</tbody>
</table>
Ions and Ionic Compounds

Ionic compound - composed of positive and negative ions

- typically metal with non-metal
 - metal loses electrons to form cation
 - non-metal gains electrons to form anion

Example - NaCl (formed from Na\(^+\) and Cl\(^-\))
Ionic Charges

determine charges of monatomic ions from Periodic Table

- Hydrogen appears twice because it can gain or lose an electron.

- Transition metals can lose varying numbers of electrons, forming cations with different charges.
Ionic Compounds

formed from a cation(s) and an anion(s)

- overall charge on formula is neutral
 - examples:
 - $\text{Na}^+ & \text{Cl}^-$ \rightarrow NaCl
 - $\text{Ca}^{2+} & \text{Cl}^-$ \rightarrow CaCl_2
 - $\text{Mg}^{2+} & \text{N}^{3-}$ \rightarrow Mg_3N_2

- “empirical” formulas only

- write formula: cation then anion
Naming Ionic Compounds

Cations

- Cations from metals
 - same name as metal
 - Na^+ sodium ion
 - Ca^{2+} calcium ion

- Same metal, differing charges
 - use Roman numeral to distinguish
 - usually transition metals
 - Fe^{2+} iron(II) ion
 - Fe^{3+} iron(III) ion

- Cations from non-metals
 - names end in $-\text{ium}$
 - NH_3 ammonia
 - NH_4^+ ammonium
Naming Ionic Compounds

Anions

- **Monatomic**
 - drop ending, add *-ide*
 - H^- hydride ion
 - O^{2-} oxide ion

- **Polyatomic**
 - oxoanions (if only 2 possible - *e.g.* N, S, P)
 - larger # of O atoms - suffix *-ate*
 - NO_3^- nitrate ion
 - SO_4^{2-} sulfate ion
 - smaller # of O atoms - suffix *-ite*
 - NO_2^- nitrite ion
 - SO_3^{2-} sulfite ion
Naming Ionic Compounds

Anions (cont’d)

- Polyatomic (cont’d)
 - o xoanions (if more than two possible - e.g. Cl, Br, I)
 - largest # of O atoms - prefix *per-* + suffix *-ate*
 - ClO$_4^-$ perchlorate ion
 - IO$_4^-$ periodate ion
 - next largest # of O atoms - suffix *-ate*
 - ClO$_3^-$ chlorate ion
 - IO$_3^-$ iodate ion
 - third largest # of O atoms - suffix *-ite*
 - ClO$_2^-$ chlorite ion
 - IO$_2^-$ iodite ion
 - smallest # of O atoms - prefix *hypo-* + suffix *-ite*
 - ClO$^-$ hypochlorite ion
 - IO$^-$ hypoiiodite ion
Naming Ionic Compounds

Anions (cont’d)

- Polyatomic (cont’d)
 - Oxoanions with hydrogen
 - Name oxoanion portion according to rules
 - Place “hydrogen” in front of oxoanion name
 - Notice that the charge on the anion has increased (become more positive) by the same amount as the number of \(H^+ \) ions added
Naming Ionic Compounds

Anions (cont'd)

- Polyatomic anions with nonstandard names

<table>
<thead>
<tr>
<th>AnionSymbol</th>
<th>ChemicalName</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$COO$^-$</td>
<td>acetate ion</td>
</tr>
<tr>
<td>CN$^-$</td>
<td>cyanide ion</td>
</tr>
<tr>
<td>C$_2$O$_4^{2-}$</td>
<td>oxalate ion</td>
</tr>
<tr>
<td>OH$^-$</td>
<td>hydroxide ion</td>
</tr>
<tr>
<td>O$_2^{2-}$</td>
<td>peroxide ion</td>
</tr>
<tr>
<td>O$_2^-$</td>
<td>superoxide ion</td>
</tr>
<tr>
<td>MnO$_4^-$</td>
<td>permanganate ion</td>
</tr>
<tr>
<td>CrO$_4^{2-}$</td>
<td>chromate ion</td>
</tr>
<tr>
<td>Cr$_2$O$_7^{2-}$</td>
<td>dichromate ion</td>
</tr>
</tbody>
</table>
Naming Ionic Compounds

- Cation then anion

examples:

CaCl$_2$ calcium chloride
MgSO$_4$ magnesium sulfate
(NH$_4$)$_2$CO$_3$ ammonium carbonate
Properties of Ionic Compounds

- metal + nonmetal
- crystalline
- hard, brittle
- high melting points
- high boiling points
- electrolytes
Percent Composition

composition of any compound expressed by

- # atoms of each type per molecule or formula unit
- mass of each element in a mole of compound

% by mass of each element in compound \(\text{(part/whole)} \times 100\% \)

example: \(\text{C}_{12}\text{H}_{22}\text{O}_{11} \)

\[
\begin{align*}
\% \text{C} &= \frac{12(12.011 \text{ g/mol})}{342.299 \text{ g/mol}} \times 100\% = 42.107\% \\
\% \text{H} &= \frac{22(1.0079 \text{ g/mol})}{342.299 \text{ g/mol}} \times 100\% = 6.4779\% \\
\% \text{O} &= \frac{11(15.9994 \text{ g/mol})}{342.299 \text{ g/mol}} \times 100\% = 51.4151\%
\end{align*}
\]
Empirical Formulas

ratio of mol of each element gives subscripts

H_2O - empirical formula for water

2 atoms H + 1 atom O OR 2 mol H + 1 mol O

Mass % of element

assume 100 g sample

Grams of each element

use atomic mass

Empirical Formula

calc. mol ratio
(divide each by smallest # mol)

Moles of each element
Molecular Formula

need:
- empirical formula
- molar mass of molecular formula

Empirical Formula

Molecular Formula

Molar mass of empirical formula

to multiply empirical formula by

multiply
calculate
molar mass of molecular
molar mass of empirical