Aqueous Reactions & Sol'n Stoichiometry

Chapter 5

Properties of Aqueous Solutions

- Electrolytic Properties
 - ionic conduct electricity (electrolytes)
 non-ionic do not conduct electricity (non-electrolytes)
- Ionic Compounds in Water

 electrolytes
- dissociate when dissolved in water
- Molecular Compounds in Water
 - non-electrolytes
 do not dissociate when dissolved in water
 - exceptions: those that react with water (e.g. NH3, HCI)
- · Strong and Weak Electrolytes
 - strong dissociate completely
 weak dissociate only partly

Precipitation Reactions

occur when the mixed solutions contain a combination of ions which form a sparingly soluble (or insoluble) compound

Solubility Guidelines for Ionic Compounds

- solubility - amount of substance that can be dissolved in 1 L of water at 25°C

 substances with solubility < 0.01 mol/L considered insoluble

Predicting Precipitation Reactions

when two ionic compounds are mixed in aqueous solution - check the solubilities of the compounds formed when the ions "switch partners"

- if either of the new compounds is insoluble (or slightly soluble) precipitation occurs
- if both new compounds are insoluble two precipitation reactions occur
- if both new compounds are soluble no precipitation occurs

Solubility Rules

 TABLE 5.1
 Solubility Rules for Ionic Compounds

Group 1A, ammonium NH ₄ ⁺ , Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , NH ₄ ⁺	All Group 1A (alkali metal) and ammonium salts are soluble
Nitrates, NO ₃	All nitrates are soluble.
Chlorides, bromides, iodides, Cl ⁻ , Br ⁻ , I ⁻	All common chlorides, bromides, and iodides are soluble except AgCl, Hg ₂ Cl ₂ , PbCl ₂ ; AgBr, Hg ₂ Br ₂ , PbBr ₂ ; AgI, Hg ₂ I ₂ ; PbI ₂ .
Sulfates, SO_4^{2-}	Most sulfates are soluble; exceptions include CaSO ₄ , SrSO ₄ , BaSO ₄ , and PbSO ₄ .
Chlorates, ClO ₃	All chlorates are soluble.
Perchlorates, ClO ₄ ⁻	All perchlorates are soluble.
Acetates, CH ₂ COO ⁻	All acetates are soluble.

Predict whether or not a precipitate will form when the following two solutions are mixed:

- (a) AgNO₃ (aq) + NaCl (aq)
- (b) $Pb(NO_3)_2$ (aq) + KI (aq)
- (c) $Ba(CIO_3)_2$ (aq) + Li_2SO_4 (aq)
- (d) $BaCl_2$ (aq) + NaOH (aq)

Ionic Equations

molecular equation: $\label{eq:polestimate} \begin{array}{lll} \mbox{Pb}(\mbox{NO}_3)_2 \ (\mbox{aq}) \ + \ 2 \ \mbox{KI} \ (\mbox{aq}) \rightarrow \mbox{PbI}_2 \ (\mbox{s}) \ + \ 2 \ \mbox{KNO}_3 \ (\mbox{aq}) \end{array}$

 $\begin{array}{l} \text{complete ionic equation:} \\ \text{Pb}^{2*}(\text{aq}) + 2 \; \text{NO}_{3}^{-}(\text{aq}) + 2 \; \text{K}^{+}(\text{aq}) + 2 \; \text{I}^{-}(\text{aq}) \rightarrow \text{PbI}_{2}(s) + 2 \; \text{K}^{+}(\text{aq}) + 2 \; \text{NO}_{3}^{-}(\text{aq}) \end{array}$

 $\mathsf{Pb^{2+}(aq)} + 2 \ \mathsf{NO_3^{-}(aq)} + 2 \ \mathsf{K^+(aq)} + 2 \ \mathsf{I^-(aq)} \rightarrow \mathsf{PbI}_2(s) + 2 \ \mathsf{K^+(aq)} + 2 \ \mathsf{NO_3^{-}(aq)}$

net ionic equation: $\mathsf{Pb^{2+}(aq) + 2} \ l^{-}(aq) \to \mathsf{Pbl}_2(s)$

net ionic equation shows only ions and molecules directly involved in reaction

Example 2

An aqueous solution of sodium carbonate is mixed with an aqueous solution of calcium chloride. A white precipitate immediately forms. Write a net ionic equation to account for this. What are the spectator ions?

Acid and Base **Reactions**

Acids

- substances that ionize or react in water to increase concentration of H⁺ ions (protons)
 - · HCI and HNO3 monoprotic acids
 - H₂SO₄ diprotic acid
 - $H_2SO_4~(\text{aq})~\rightarrow~H^+~(\text{aq})~\text{+}~HSO_4^-~(\text{aq})$
 - HSO_4^- (aq) $\leftrightarrow H^+$ (aq) + SO_4^{2-} (aq)
- strong acids
- HNO3, H2SO4, HCIO3, HCIO4, HCI, HBr, HI
- weak acids
- all others including (but not limited to) HF, CH₃COOH, HCOOH, H₂C₂O₄, H₃PO₄

Acid and Base Reactions (cont'd)

Bases

- H⁺ ion acceptors
- react with H⁺ ions to form water $H^{\scriptscriptstyle +} \; (aq) \; + \; OH^{\scriptscriptstyle -} \; (aq) \; \rightarrow \; \; H_2 O \; (\ell)$
- increase [OH-] when dissolved in water
- NaOH (aq) \rightarrow Na⁺ (aq) + OH⁻ (aq)
- $NH_3 \; (\text{aq}) \; + \; H_2O \; (\ell) \; \leftrightarrow \; NH_4{}^+ \; (\text{aq}) \; + \; OH^- \; (\text{aq})$
- strong bases

 include Ba(OH)₂ and hydroxides of the alkali metals (NaOH, KOH, etc.), the soluble ionic hydroxides
 weak bases

 - all slightly soluble or insoluble hydroxides and other compounds like NH₃, etc.

Reactions of Acids

- neutralization reaction (acid + base \rightarrow salt + water) •
- acid + carbonate (or HCO_3) \rightarrow salt + water + CO_2 gas
- acid + metal oxide \rightarrow salt + water
- acid + metal \rightarrow salt + H₂ gas •

Reactions of Bases

- base + ammonium salt \rightarrow salt + water + $\text{NH}_3\,\text{gas}$
- base + non-metal oxide \rightarrow salt + water

Oxidation-Reduction Reactions

- characterized by transfer of electrons
- oxidation loss of electrons during reaction
 oxidation number increases (becomes more positive)

reduction

gain of electrons during reaction
 oxidation number decreases (becomes more negative)

Oxidation-Reduction Reactions

 $Fe\;(s)\;\;\text{+}\;\;2\;H^{\text{+}}\;(\text{aq})\;\rightarrow\;\;Fe^{2\text{+}}\;(\text{aq})\;\text{+}\;\;H_{2}\;(\text{g})$

Oxidation Numbers

determined by following a simple set of rules

- oxidation number of atoms in neutral molecule must add up to zero; those in an ion must add up to charge on the ion 1.
- Group I elements --> +1 2. Group II elements --> +2
- Group II elements --> +3 3. fluorine always -1 in compounds
- other halogens -1, except in compounds with oxygen or other
- halogens hydrogen is +1 except in metal hydrides (e.g. LiH) - rule 2 takes 4. precedence here
- oxygen is -2 in compounds; exceptions: compounds with F (#3) and compounds with O–O bonds (#2 and #4) 5.
- 6. elemental form --> 0

Redox Reactions (cont'd)

Revisit reaction between metal and acid (or metal salt)

 $A \ + \ BX \rightarrow \ AX \ + \ B$

 $\begin{array}{l} Zn\left(s\right)\ +\ 2\ HBr\left(aq\right)\rightarrow\ ZnBr_{2}\left(aq\right)\ +\ H_{2}\left(g\right)\\ Mn\left(s\right)\ +\ Pb(NO_{3})_{2}\left(aq\right)\ +\ Pb\left(s\right) \end{array}$

These are displacement reactions

 $Mg\left(s\right) \ + \ 2 \ HCl\left(aq\right) \rightarrow \ MgCl_2\left(aq\right) \ + \ H_2\left(g\right)$

Fe (s) + Ni(NO₃)₂ (aq) \rightarrow Fe(NO₃)₂ (aq) + Ni (s)

Net ionic equation:

 $\label{eq:Fe} \mathsf{Fe}\ (s)\ +\ \mathsf{Ni}^{2+}\ (aq) \to \mathsf{Fe}^{2+}\ (aq)\ +\ \mathsf{Ni}\ (s)$

Remember: Whenever one substance is oxidized another must be reduced

All metals <u>will not</u> be oxidized by acids or metal salt. How do we determine which will??

Calculate the molarity of a solution prepared by dissolving 10.0 g of $AgNO_3$ in enough water to make 250.0 mL of solution.

Dilution

Sometimes you want to take a concentrated solution and make a more dilute solution of it. When you do this, the moles of solute remain constant throughout the process.

 $\mathsf{M}_{\mathsf{i}} \; \mathsf{V}_{\mathsf{i}} = \mathsf{M}_{\mathsf{f}} \; \mathsf{V}_{\mathsf{f}}$

A flask contains 625 mL of 3.05 M calcium nitrate solution. What volume of 15.8 M $Ca(NO_3)_2$ contains the same number of moles of $Ca(NO_3)_2$ as this solution?

Example 7

What is the molar concentration of nitrate ions in 3.05 M calcium nitrate?

Example 8

How many milliliters of 4.5 M HCl are required to prepare 200 mL of 0.75 M HCl?

(a) Describe how to prepare 0.500 L of 0.0250 M aqueous solution of potassium dichromate

Example 9 (cont'd)

(b) Describe how to dilute the solution from part (a) to obtain a solution with a final concentration of 0.0140 M.

Example 10

When the orange salt potassium dichromate is added to a solution of concentrated hydrochloric acid, it reacts according to the following net ionic equation:

 $K_2Cr_2O_7$ + 14 HCl \rightarrow 2 K* + 2 Cr^3+ + 8 Cl* + 7 H_2O + 3 Cl₂ Suppose that 6.20 g of $K_2Cr_2O_7$ reacts with 100.0 ml of concentrated HCl (13.0 M). Calculate the final concentration of Cr^{3+} ion that results and the number of moles of chlorine gas produced.

 $\mathrm{K_2Cr_2O_7}~+~14~\mathrm{HCl}~\rightarrow~2~\mathrm{K^+}~+~2~\mathrm{Cr^{3+}}~+~8~\mathrm{Cl^-}~+~7~\mathrm{H_2O}~+~3~\mathrm{Cl_2}$

Titrations

 chemical reactions of solution of known concentration with solution of unknown concentration

HCl + NaOH \rightarrow NaCl + H₂O

- point at which stoichiometrically equivalent amounts of HCl and NaOH are brought together is called the equivalence point (endpoint)
- typically use an indicator that changes color at the equivalence point

Example 11

What is the molarity of a solution of sodium hydroxide if it requires 23.97 mL of that solution to reach the phenolphthalein endpoint when adding it to a solution containing 0.5333 g of $KHC_8H_4O_4$?

 $\label{eq:KHC_8H_4O_4} \mathsf{KHC_8H_4O_4} \ \mathsf{H} \ \mathsf{NaOH} \ \rightarrow \ \mathsf{NaKC_8H_4O_4} \ \mathsf{H} \ \mathsf{H_2O}$

The indicator methyl red turns from yellow to red when the solution in which it is dissolved changes from basic to acidic. A 25.00 mL volume of a sodium hydroxide solution is titrated with 0.8367 M HCI. It takes 22.48 mL of this acid to reach a methyl red endpoint. Find the molarity of the sodium hydroxide solution.

HCl + NaOH \rightarrow NaCl + H₂O