Chemical Compounds Chapter 3 **Molecular Compounds** Molecular Formulas exact number of atoms of each type in compound ■ inorganic compounds ■ organic compounds **Molecular Compounds** Molecular Formulas methods for writing formulas ■ molecular formula structural formula condensed formula

Naming Binary Inorganic Compounds

molecules containing atoms of only two elements

- element farthest left first
- if same group lowest first
- second element ends in -ide
- Greek prefixes for numbers

Naming Binary Inorganic Compounds

TABLE 3.2	Prefixes Used in Naming Chemical Compounds	
Prefix	Number	
Mono-	1	
Di-	2	
Tri-	3	
Tetra-	4	
Penta-	5	
Hexa-	6	
Hepta-	7	
Octa-	8	
Nona-	9	
Deca-	10	

Naming Binary Inorganic Compounds

compounds with common, nonsystematic names:

■ H ₂ O	water	
■ NH ₃	ammonia	
$\blacksquare N_2H_4$	hydrazine	(text p. 82)
■ NO	nitric oxide	
■ N ₂ O	nitrous oxide	
■ PH ₃	phosphine	

Hydrocarbons

- contain only C and H
- simplest type is alkanes

Hydrocarbons

Molecular Formula	Name	Boiling Point (°C)	Physical State at Room Temperature
CH ₄	Methane	-161.6	Gas
C_2H_6	Ethane	-88.6	Gas
C_3H_8	Propane	-42.1	Gas
C_4H_{10}	Butane	-0.5	Gas
C_5H_{12}	Pentane	36.1	Liquid
C_6H_{14}	Hexane	68.7	Liquid
C_7H_{16}	Heptane	98.4	Liquid
C_8H_{18}	Octane	125.7	Liquid
C_9H_{20}	Nonane	150.8	Liquid
$C_{10}H_{22}$	Decane	174.0	Liquid

lons and Ionic Compounds

ionic compound - composed of positive and negative ions

typically metal with non-metal

| Cate | Transition metals | Cate | C

Ionic Compounds

formed from a cation(s) and an anion(s)

- overall charge on formula is neutral
- "empirical" formulas only
- write formula: cation then anion

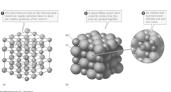
Naming Ionic Compounds Cations

- Cations from metals
- Same metal, differing charges
- Cations from non-metals

Naming Ionic Compounds Anions ■ Monatomic ■ Polyatomic ■ oxoanions **Naming Ionic Compounds** Anions (cont'd) ■ Polyatomic (cont'd) ■ oxoanions - if more than two possible **Naming Ionic Compounds** Anions (cont'd) ■ Polyatomic (cont'd) oxoanions with hydrogen

Naming Ionic Compounds Anions (cont'd)

■ Polyatomic anions with nonstandard names


CH ₃ COO⁻	acetate ion
CN-	cyanide ion
C ₂ O ₄ ²⁻	oxalate ion
OH-	hydroxide ion
O ₂ ²⁻	peroxide ion
O ₂ -	superoxide ion
MnO ₄ -	permanganate ion
CrO ₄ ²⁻	chromate ion
Cr ₂ O ₇ ²⁻	dichromate ion

Naming Ionic Compounds

■ Cation then anion

Properties of Ionic Compounds

- metal + nonmetal
- \blacksquare crystalline
- hard, brittle
- high melting points
- high boiling points
- electrolytes

Percent Composition ■ composition of any compound expressed by ■ # atoms of each type per molecule or formula unit ■ mass of each element in a mole of compound **Empirical Formulas** ratio of mol of each element gives subscripts **Molecular Formula** need: empirical formula ■ molar mass of molecular formula