

	FIGCTR	on Co	nfi	an	raí	in	ne		
				gu	iu		15		
ТАЕ	BLE 7.5 Elect	tron Configuration	s of the	e First	Ten Ele	ements			
	Electron Configurations			Orbital Box Diagrams					
	Condensed	Expanded	15	25		2p			
Н	$1s^1$		1						
He	$1s^{2}$		↑⊥						
Li	$1s^2 2s^1$		↑↓	1					
Be	$1s^2 2s^2$		↑L	↑.L					
в	$1s^2 2s^2 2p^1$		↑L	↑J.	1				
С	$1s^2 2s^2 2p^2$	$1s^2 2s^2 2p^1 2p^1$	↑↓	↑J.	Ŷ	1			
Ν	$1s^2 2s^2 2p^3$	$1s^2 2s^2 2p^1 2p^1 2p^1 2p^1$	î↓	î↓	Ŷ	1	↑		
0	$1s^2 2s^2 2p^4$	$1s^2 2s^2 2p_x^2 2p^1 2p^1$	↑↓	↑↓	↑↓	1	1		
F	$1s^2 2s^2 2p^5$	$1s^2 2s^2 2p^2 2p^2 2p^2 2p^1$	^↓	↑↓	↑↓	↑↓	î		
Nc	$1s^2 2s^2 2p^6$	$1s^2 2s^2 2b^2 2b^2 2b^2$	€↓	↑↓	↑↓	↑↓	↑↓		

Valence Electrons

Chemically similar behavior occurs among elements within a group in the periodic table.

Valence electrons – electrons held in outer shell Core electrons – electrons held in filled inner shells

Cr:

Magnetic Properties of Compounds

- Diamagnetic atoms and ions with all electrons paired (will be repelled by magnetic field)
- Paramagnetic atoms and ions with unpaired electrons (will be attracted to magnetic field)

Periodic Trends: Atomic Radii

- move down periodic table increasing n
- as *n* gets larger that shell's radius increases
- atomic size (radius) increases as you move down the periodic table
- atomic size (radius) decreases as you move right in the periodic table

Predict which will be greater, the P—Br bond length in PBr₃ or the As—Br bond length in AsBr₃?

> As—Br atomic radius of As > P

Arrange the following atoms in order of increasing atomic radius: K, Mg, Ca

Mg < Ca < K

Periodic Trends: Ionic Radii

- radii of ions of elements in same group increase in size going down the group
- radius of cation always smaller than that of neutral atom from which derived
- radius of anion always larger than that of neutral atom from which derived

Periodic Trends: Ionization Energies

- ionization energy energy needed to remove one electron from atom
- s- and p-block elements first ionization energies decrease down a group and across a period

Predict which of the following atoms – C, Si, N or P – has the lowest first ionization energy.

Si

Periodic Trends: Electron Affinities

- electron affinity (EA) energy change when an electron is added to a gaseous atom to form 1- ion
- measure of attraction an atom has for an additional electron
- large negative value indicates a ready acceptance of an electron

 $F(g) + e \rightarrow F(g)$

Periodic Trends: Electron Affinities

- electron affinity (EA) energy change when an electron is added to a gaseous atom to form 1- ion
- measure of attraction an atom has for an additional electron
- large negative value indicates a ready acceptance of an electron

 $\begin{array}{ll} \mathsf{F}(\mathsf{g}) \ + \ \mathsf{e}_{\text{-}} \ \rightarrow \ \mathsf{F}^{\text{-}}(\mathsf{g}) & \Delta\mathsf{E} = \mathsf{E}\mathsf{A} = -328 \ \mathsf{kJ/mol} \\ \mathsf{N}\mathsf{e} \ + \ \mathsf{e}_{\text{-}} \ \rightarrow \ \mathsf{N}\mathsf{e}_{\text{-}} & \mathsf{E}\mathsf{A} > 0 \ \mathsf{kJ/mol} \end{array}$

Periodic Trends: Electron Affinities										
TABLE 7.10		Electron Affinities (kJ/mol)								
1A	2A	3A	4A	5A	6A	7A	8A			
(1)	(2)	(13)	(14)	(15)	(16)	(17)	(18)			
н -73							Не >0			
Li	Be	B	C	N	O	F	Ne			
- 60	> 0	-27	-122	>0	-141	-328	>0			
Na	Mg	Al	Si	Р	S	Cl	Ar			
- 53	> 0	-43	-134	-72	-200	-349	>0			
K	Ca	Ga	Ge	As	Se	Br	Kr			
- 48	-2	- 30	-119	-78	195	-325	>0			
Rb	Sr	In	Sn	Sb	Te	I	Xe			
- 47	-5	-30		-103	190	-295	>0			

