

Electromagnetic Radiation

visible light, ultraviolet, infrared, X-rays, etc.

- oscillating perpendicular electric and magnetic fields
- travel through space at 2.998 x 10⁸ m/s
- described in terms of frequency and wavelength

νλ = c

Wavelength Units

Symbol	Length (m)	Type of Radiation
Å	10^{-10}	X ray
nm	10^{-9}	Ultraviolet, visible
m m	10^{-6}	Infrared
mm	10^{-3}	Infrared
cm	10^{-2}	Microwave
	1	TTX /
	Å nm m m mm cm	Symbol Length (m) Å 10 ⁻¹⁰ nm 10 ⁻⁹ mm 10 ⁻⁶ mm 10 ⁻²

Planck's Quantum Theory

Observation: heat a solid - emits light with a wavelength distribution that depends on the temperature

 vibrating atoms in hot wire caused light emission whose color changed with T

classical physics could not explain this the wavelength should be independent of T

Planck's Quantum Theory

Max Planck (1900)

- assume energy can be released or absorbed by atoms in resolute any packets only
- these packets have a minimum size
- packet of energy = quantum
 energy of a quantum is proportional to the frequency of radiation •
- $(E = h_V)$
- h = Planck's constant = 6.626 x 10⁻³⁴ Js
- energy is emitted or absorbed in whole # multiples (1 hv, 2 hv, etc.)

 $\mathbf{E} = \frac{hc}{\lambda}$

Example 1

What is the energy (in kilojoules per mole) of photons of radar waves with $v = 3.35 \times 10^8$ Hz? E = hv $E = (3.35 \times 10^8/s)(6.626 \times 10^{-34} \text{ J s}) = 2.22 \times 10^{-25} \text{ J}$

E = $(2.22 \times 10^{-28} \text{ kJ})(6.022 \times 10^{23} \text{ photons/mol})$ E = $1.34 \times 10^{-4} \text{ kJ/mol}$

The Photoelectric Effect

- Einstein assumed light striking metal was stream of tiny energy packets
- Each energy packet behaves like tiny particle of light (photon)
- E = hv radiant energy is quantized
- Dilemma is light a wave or a particle???

Bohr Model (cont'd)

- each orbit different n value
- radius increases as n increases ($r \propto n^2$)
- 1st allowed orbit n = 1, radius = 0.529 Å
- Energies of electrons negative for all values of n.
 n → ∞:

 $E_n = \left(2.18 \times 10^{-18} \text{ J}\left(\frac{1}{\infty^2}\right)\right) = 0$

