GASESCharacteristics of Gases	Ex 1 Some nitrogen gas is in a 2.00-L tank at a pressure of 3.00 atm. The tank is connected to a 5.00-L tank that is completely empty (evacuated), and a valve connects the two tanks., If the valve is opened, determine the total pressure in this two-tank system after the nitrogen stops flowing. No temperature change occurs in the process.
Pressure Barometers and Atmospheric Pressure	Charles's Law
	Avogadro's Law
Gas Laws Boyle's Law V V V V V V V V V V	Ex 2 A certain mass of C ₃ H ₆ reacts completely with an excess of ammonia and oxygen to give 38.2 L of C ₃ H ₃ N at 75°C and P = 1.00 atm. If the same mass of C ₃ H ₆ reacts completely at 350°C and P = 1 atm, what volume of C ₃ H ₃ N can be collected at the higher temperature? 2 C ₃ H ₆ (g) + 2 NH ₃ (g) + 3 O ₂ (g) → 2 C ₃ H ₃ N(g) + 6 H ₂ O(g)
1	2
The Ideal-Gas Equation	Applications of the Ideal-Gas Equation Gas Density and Molar Mass
Ex 3 A gas is in a container with a movable piston under a pressure of 6.4 atm. The volume of the container is increased by a factor of 4.5 by moving the piston. The absolute temperature is simultaneously doubled. Calculate the pressure of the gas after these changes.	Ex 5 Calculate the density of gaseous SF6 at a temperature of 27°C and a pressure of 0.873 atm.
Ex 4 At what temperature (in K) does 29.8 g of O ₂ gas have a pressure of 2.00 atm in a 10.0-liter tank?	
3	4

Ex 6 The empirical formula of a gaseous fluorocarbon is CF ₂ . If 1.55 g of this compound occupies 0.174 L at STP determine the molecular formula of this compound.	Gas Mixtures and Partial Pressures Partial Pressure
Ex 7 An important process for the production of acrylonitrile (C ₃ H ₃ N) is given by the reaction: $2 C_3H_6(g) + 2 NH_3(g) + 3 O_2(g) \rightarrow 2 C_3H_3N(g) + 6 H_2O(g)$ A 150.0-L reactor is charged to the following partial pressures at 25°C: P _{C3H6} = 4.93 atm, P _{NH3} = 7.90 atm, P _{O2} = 14.8 atm	Mole Fraction
What mass of acrylonitrile can be produced from this mixture?	Ex 9 The partial pressure of O _{2(g)} in a mixture of O _{2(g)} and H _{2(g)} is 2.54 atm. The total pressure of the mixture is 3.92 atm. Determine the partial pressure of H ₂ (g), and the mole fraction of each gas in the mixture.
Ex 8 A 0.326-g sample of XH ₂ reacts with water according to the equation $XH_{2(s)} + 2H_2O_{(s)} \rightarrow X(OH)_{2(s)} + 2H_{2(g)}$ The hydrogen evolved is found to have a volume when dry of 375 cm ³ at 21°C and 1.00 atm. What is the atomic mass of X?	Ex 10 A gas mixture at room temperature contains 4.3 mol of H ₂ and 8.2 mol of N ₂ . (a) Compute the mole fraction of N ₂ in the mixture.
	(b) The mixture is then heated, and the N ₂ starts to react with the H ₂ to give NH ₃ : $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$ The reaction is stopped when 2.8 mol of NH ₃ is present. Determine the mole fraction of N ₂ in this new mixture.
5	6
Collecting Gases over Water	Molecular Motion The Kinetic Theory of Gases
	Temperature and Molecular Motion
Ex 11 Acetylene (C_2H_2) can be made by allowing calcium carbide to react with water. $CaC_{2(s)} + 2 H_2O_{(i)} \rightarrow C_2H_{2(g)} + Ca(OH)_{2(aq)}$ You place 2.65 g of CaC_2 in excess water and collect the acetylene over water. (a) Calculate the theoretical yield of acetylene (in grams).	
(b) After reaction, the volume of the acetylene and water vapor is 795 mL at 25.0°C and a pressure of 0.967 atm. Calculate the percent yield of acetylene. The vapor pressure of water at 25.0°C is 0.0313 atm.	Distribution and Molecular Speeds

Mean Free Path and Diffusion	Real Gases
	Real gases obey the ideal gas law at low pressures only.
Gascous Effusion	Van der Waals Equation of State
Ex 12 Methane (CH ₄) effuses through a small opening at the rate of 1.30×10^{-8} mol/s. An unknown gas effuses through the same opening at the rate of 5.42×10^{-9} mol/s (at the same T & P as the methane). Determine the molar mass of the unknown gas.	
	Ex 13 Oxygen is supplied to hospitals and chemical laboratories under pressure in large steel cylinders. Typically, such a cylinder has an internal volume of 28.0 L and contains 6.80 kg of oxygen. Use the van der Waals equation to estimate the pressure inside such a cylinder at 20°C.
9	10