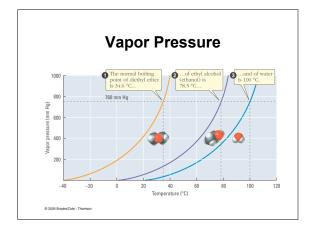

Liquids, Solids & Materials Chapter 11

Vapor Pressure

- · Liquid in open container will evaporate.
- Liquid volatility increases with increasing temperature.



Vapor Pressure

 Liquid in closed, evacuated container will evaporate until a dynamic equilibrium is reached.

(rate of vaporization = # rate of condensation)

• Pressure of gas above the liquid is known as the vapor pressure.

Vapor Pressure

Vapor pressure differences between different liquids arise from differences in the strengths of intermolecular forces.

Stronger intermolecular forces result in lower vapor pressures.

Vapor Pressure & Boiling Point

In an open container:

Temperature at which liquid's vapor pressure equals atmospheric pressure — boiling point

When atmospheric pressure equals 1 atm — normal boiling point

Clausius-Clapeyron Equation

Describes relationship between vapor pressure and temperature.

$$\ln P = \frac{-\Delta H_{\text{vap}}}{RT}$$

$$In\left(\frac{P_1}{P_2}\right) = \frac{\Delta H_{vap}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

Phase Changes

• Vaporization and Condensation

$$\Delta H_{vaporization} = -\Delta H_{condensation}$$

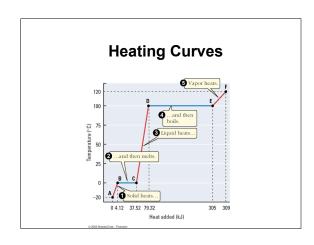
Phase Changes

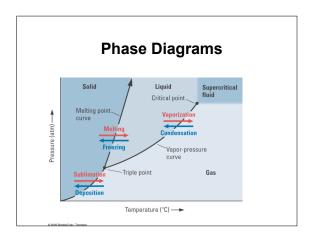
Substance	Number of Electrons	$\begin{array}{c} \Delta H_{\rm tap}^* \\ ({\rm kJ/mol})^0 \end{array}$	Boiling Point (*C)
Polar molecules			
BF.	10	25.2	19.7
HCI	18	17.5	-84.8
NH,	10	25.1	-33.4
H ₂ O	10	40.7	100.0
so ₂	3.2	26.8	-10.0
HBr	36	19.3	-66.5
HI	51	21.2	-35.1
Noble gases			
He	2	0.08	-269.0
Ne	10	1.8	-246.0
Ar	18	6.5	-185.9
Xe	51	12.6	-107.1
Nonpolar molecules			
II,	2	0.90	-252.8
O ₂	16	6.8	-183.0
F ₂	18	6.51	-188.1
G ₂	34	20.39	-34.6
Br,	70	29.51	59.6
CH ₄ (methane)	10	8.9	-161.5
CH ₃ -CH ₃ (ethane)	18	15.7	-88.6
CH ₃ -CH ₂ -CH ₃ (propune)	26	19.0	-42.1
CH ₃ -CH ₃ -CH ₃ -CH ₄ (butane)	34	24.3	-0.5

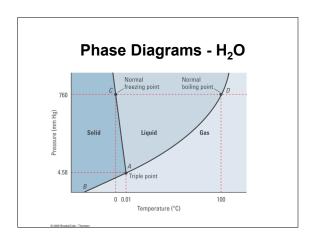
Phase Changes

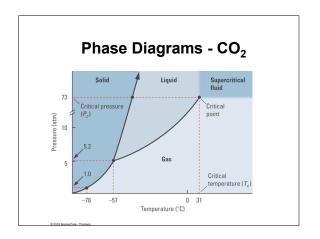
Melting and Freezing

$$\Delta H_{\text{fusion}} = -\Delta H_{\text{crystallization}}$$


Phase Changes


Solid	Melting Point (°C)	Enthalpy of Fusion (kJ/mol)	Type of Intermolecular Forces
Molect	ılar solids: No	npolar molect	iles
O ₂	-248	0.445	These molecules have only
F ₂	-220	1.020	London forces (which
Cl_2	-103	6.406	increase with the number
Br_2	-7.2	10.794	of electrons).
Molect	ılar solids: Pol	ar molecules	
HCl	-114	1.990	All of these molecules have
HBr	-87	2.406	London forces enhanced
HI	-51	2.870	significantly by dipole-dipole
H ₂ O	0	6.020	forces. H2O also has signifi
H_2S	-86	2.395	cant hydrogen bonding.
Ionic s	olids		
NaCl	800	30.21	All ionic solids have strong


Phase Changes


• Sublimation and Deposition

$$\Delta H_{\text{sublimation}} = -\Delta H_{\text{deposition}}$$

