KEY

Quiz 1A

- 1. If you burn 1.959 g of $Fe_x(CO)_v$ and find 0.799 g of Fe_2O_3 and 2.200 g of CO_2 , what is the empirical formula of $Fe_x(CO)_v$? (3 pts)
 - $\text{mol Fe} = \left(0.799 \text{ g Fe}_2 \text{O}_3\right) \left(\frac{1 \text{ mol Fe}_2 \text{O}_3}{159.6922 \text{ g}}\right) \left(\frac{2 \text{ mol Fe}}{1 \text{ mol Fe}_2 \text{O}_3}\right) \left(\frac{55.8477 \text{ g}}{1 \text{ mol Fe}}\right) \left(\frac{1 \text{ mol Fe}}{55.847 \text{ g}}\right) = 0.010008 \text{ mol Fe} \\ \Rightarrow 1 \text{ mol Fe} = \left(\frac{1 \text{ mol Fe}}{1 \text{ mol Fe}}\right) \left(\frac{1 \text{ mol Fe}}{1 \text{ mol Fe}}\right) \left(\frac{1 \text{ mol Fe}}{1 \text{ mol Fe}}\right) = 0.010008 \text{ mol Fe} \\ \Rightarrow 1 \text{ mol Fe} = \left(\frac{1 \text{ mol Fe}}{1 \text{ mol Fe}}\right) \left(\frac{1 \text{ mol Fe}}{1 \text{ mol Fe}}\right) \left(\frac{1 \text{ mol Fe}}{1 \text{ mol Fe}}\right) = 0.010008 \text{ mol Fe} \\ \Rightarrow 1 \text{ mol Fe} = \left(\frac{1 \text{ mol Fe}}{1 \text{ mol Fe}}\right) \left(\frac{1 \text{ mol Fe}}{1 \text{ mol Fe}}\right) \left(\frac{1 \text{ mol Fe}}{1 \text{ mol Fe}}\right) = 0.010008 \text{ mol Fe}$ (a) $Fe(CO)_4$
 - (b) $Fe_2(CO)_9$
 - $\mathsf{mol}\ C = \Big(2.200\ g\ \mathsf{CO}_2\Big) \bigg(\frac{1\ \mathsf{mol}\ \mathsf{CO}_2}{44.0098\ g}\bigg) \bigg(\frac{1\ \mathsf{mol}\ \mathsf{C}}{1\ \mathsf{mol}\ \mathsf{CO}_2}\bigg) \bigg(\frac{12.011\ g}{1\ \mathsf{mol}\ \mathsf{C}}\bigg) \bigg(\frac{1\ \mathsf{mol}\ \mathsf{C}}{12.011\ g}\bigg) = 0.04999\ \mathsf{mol}\ \mathsf{C}\ \Rightarrow\ 5$ (c) Fe(CO)₅
 - mol O = [1.959 g (0.5589 g + 0.6004 g)] $\left(\frac{1 \text{ mol O}}{15.9994 \text{ g}}\right) = 0.04998 \text{ mol O} \implies 5$ (d) Fe(CO)₆
- 2. In an experiment, 1.056 g of a metal carbonate containing an unknown metal M was heated to give the metal oxide and 0.376 g CO_2 . What is the identity of the metal M? (2 pts)
 - (a) M = Ni
- $\text{mol CO}_2 = \left(0.376 \text{ g CO}_2\right) \left(\frac{1 \text{ mol CO}_2}{44.0098 \text{ g}}\right) = 0.008544 \text{ mol CO}_2$
- (b) M = Cu(c) M = Zn
- $\text{mol MCO}_{3} = \left(0.008544 \text{ g CO}_{2}\right) \left(\frac{1 \text{ mol MCO}_{3}}{1 \text{ mol CO}_{2}}\right) = 0.008544 \text{ mol MCO}_{3}$
- (d) M = Ba
- molar mass $MCO_3 = \frac{1.056 \text{ g}}{0.008544 \text{ mol}} = 123.602 \text{ g/mol}$ atomic mass of M = $123.602 \text{ g/mol} - [12.011 + (3 \times 15.994)] = 63.59 \text{ g/mol}$
- 3. A new element, lubine (Lb), has been discovered. It forms four oxoanions: LbO₂⁻, LbO₃⁻, LbO₄⁻, LbO_5^{-} . Name the following compounds: (2 pts)
 - (a) NaLbO₃
- sodium lubite
- (b) NaLbO₅
- sodium perlubate
- 4. Identify the type of chemical reaction represented by the following equations. (3 pts)
 - (a) $3 H_2(g) + N_2(g) \rightarrow 2 NH_3(g)$

combination

(b) $AgNO_3$ (aq) + NaCl (aq) $\rightarrow NaNO_3$ (aq) + AgCl (s)

exchange

(c) $CaCO_3$ (s) \rightarrow CaO (s) + CO_2 (g)

decomposition

Quiz 1B

- 1. Same as 1A
- 2. Same as 1A
- 3. A new element, lubine (Lb), has been discovered. It forms four oxoanions: LbO₂-, LbO₃-, LbO₄-, LbO_5 . Name the following compounds: (2 pts)
 - (a) NaLbO₂
- sodium hypolubite
- (b) NaLbO₄
- sodium lubate
- 4. Identify the type of chemical reaction represented by the following equations.
- (3 pts)

(a) P_4O_{10} (s) + $6 H_2O$ (ℓ) $\rightarrow 4 H_3PO_4$ (ℓ)

- combination
- (b) 2 Al (s) + 3 H₂SO₄ (aq) \rightarrow Al₂(SO₄)₃ (s) + 3 H₂ (g)
- displacement

(c) $2 \text{ Na (s)} + 2 \text{ H}_2\text{O} (\ell) \rightarrow 2 \text{ NaOH (aq)} + \text{H}_2 (g)$

displacement

Quiz 1C

- 1. The complete reaction of 3.84 g of vanadium with 8.16 g of chlorine (Cl_2) produces a compound with the formula V_xCl_v . What is the empirical formula of the compound? (3 pts)
 - (a) VCI

mol V =
$$(3.84 \text{ g V}) \left(\frac{1 \text{ mol V}}{50.9415 \text{ g}} \right) = 0.07538 \text{ mol V} \Rightarrow 1$$

- (b) VCl₂
- (c) VCI_3 mol $CI = (8.16 \text{ g } CI_2) \left(\frac{1 \text{ mol } CI_2}{70.906 \text{ g}}\right) \left(\frac{2 \text{ mol } CI}{1 \text{ mol } CI_2}\right) = 0.2302 \text{ mol } CI \Rightarrow 3$
- (d) VCI₄
- (e) VCI₅
- 2. In an experiment, 1.056 g of a metal carbonate containing an unknown metal M was heated to give the metal oxide and 0.391 g CO_2 . What is the identity of the metal M? (2 pts)
 - (a) *M* = Ni

$$\text{mol CO}_2 = (0.391 \text{ g CO}_2) \left(\frac{1 \text{ mol CO}_2}{44.0098 \text{ g}} \right) = 0.008884 \text{ mol CO}_2$$

- (b) M = Cu
- (c) M = Zn mol MCO₃ = $(0.008884 \text{ g CO}_2) \left(\frac{1 \text{ mol MCO}_3}{1 \text{ mol CO}_2} \right) = 0.008884 \text{ mol MCO}_3$
- (d) M = Ba molar mass $MCO_3 = \frac{1.056 \text{ g}}{0.008884 \text{ mol}} = 118.860 \text{ g/mol}$

atomic mass of $M = 118.860 \text{ g/mol} - [12.011 + (3 \times 15.9994)] = 58.85 \text{ g/mol}$

- 3. A new element, lubine (Lb), has been discovered. It forms four oxoanions: LbO_2^- , LbO_3^- , LbO_4^- , LbO_5^- . Name the following compounds: (2 pts)
 - (a) Ca(LbO₂)₂ calcium hypolubite
- (b) Ca(LbO₄)₂ calcium lubate

(3 pts)

(3 pts)

- 4. Identify the type of chemical reaction represented by the following equations.
 - (a) $3 \text{ Fe (s)} + 4 \text{ H}_2\text{O (g)} \rightarrow \text{Fe}_3\text{O}_4\text{ (s)} + 4 \text{ H}_2\text{ (g)}$ displacement
 - (b) $2 \text{ AgNO}_3 \text{ (aq)} + \text{ BaCl}_2 \text{ (aq)} \rightarrow \text{ Ba(NO}_3)_2 \text{ (aq)} + 2 \text{ AgCl (s)}$ exchange
 - (c) 2 KCIO_3 (s) $\rightarrow 2 \text{ KCI}$ (s) $+ 3 \text{ O}_2$ (g) decomposition

Quiz 1D

- 1. Same as 1C
- 2. Same as 1C
- A new element, lubine (Lb), has been discovered. It forms four oxoanions: LbO₂⁻, LbO₃⁻, LbO₄⁻, LbO₅⁻. Name the following compounds: (2 pts)
 - (a) Ca(LbO₂)₂ calcium lubite

- (b) Ca(LbO₅)₂ calcium perlubate
- 4. Identify the type of chemical reaction represented by the following equations.
 - (a) 2 Al (s) + 3 CuSO₄ (aq) \rightarrow Al₂(SO₄)₃ (aq) + 3 Cu (s)

displacement

(b) $MgSO_3$ (s) $\rightarrow MgO$ (s) $+ SO_2$ (g)

decomposition

(c) $2 H_2O(\ell) \rightarrow 2 H_2(g) + O_2(g)$

decomposition