Department of Chemistry

Your Name
Friend's Email Address
Comments
 

Jonathan Wilker

Professor Jonathan  WilkerProfessor—Inorganic Chemistry
Email: wilker@purdue.edu
Phone: 765-496-3382
Office: BRWN 4131C

For Professor Wilker's individual Home Page click here.

Marine Biological Materials: Characterization, Synthetic Mimics, and Applications

The oceans abound with a fascinating array of materials produced by nature. Barnacles cement themselves to rocks. Starfish use adhesives for locomotion. Oysters create aggregate reef structures. Mussels generate an impressive adhesive that can bond to nearly any surface, including Teflon (polytetrafluoroethylene, PTFE). Our laboratory is working to understand how such biological materials function, design synthetic mimics, and develop applications for these new materials.

Characterization of Marine Biological Materials: Discovering How Nature Makes Materials

Ongoing studies include characterizing the composition, bonding, and performance of these biomaterials produced by mussels, barnacles, oysters, and other species. Here the chemistry, biochemistry, and biology of adhesion are all being examined. In order to obtain chemical insights on specific bonding motifs in the materials, we are using synthetic peptide models to obtain atom-by-atom level detail of the cross-links present in mussel adhesive. At a biochemical level we are extracting adhesive proteins, characterizing proteins, and exploring how such macromolecules can bring about bulk adhesion. Several methods including spectroscopy, reactivity, and microscopy are being used to provide direct observation of the bonding. More biological work with live animals includes changes made to the water chemistry and then quantifying the influences upon adhesion. With all of these studies we keep in mind mechanical performance of the materials. For example, we are uncovering links between protein cross-linking and adhesion strengths of the animals.

Figure 1. Left to right: An oyster reef, a mussel sticking to glass, barnacles, and a kelp forest.Figure 1. Left to right: An oyster reef, a mussel sticking to glass, barnacles, and a kelp forest.

Synthetic Polymer Mimics: New Materials Inspired By Nature

As we learn how sea creatures stick we can use this information to create new classes of synthetic materials. Bioinspired synthetic materials can have advantages over the natural versions such as the ability to tailor the material for a given property (e.g., adhesion, modulus, porosity, etc.) as well as provide access to large quantities of material. We have found that complex adhesive proteins can be mimicked with simple polymer backbones into which we incorporate biological cross-linking chemistry. Figure 2. A DOPA-containing adhesive protein is simplified to a polymer backbone with pendant catechol groups. Copolymers of styrene and 3,4-dihydroxystyrene are prepared and found to exhibit strong adhesion.

Applications: Developing Biomedical Materials, High Performance Adhesives, and Coatings

Two pieces of wet pig skin adhered with our biomimetic polymers.The underwater adhesion and high bonding strengths of marine biological materials bring to mind many applications ranging from wet-setting biomedical adhesives to new materials with tailored moduli. Current materials engineering efforts rely on our abilities to alter the polymer compositions and carry out the syntheses on large scales. As we incorporate more advanced functionalities into the polymers we are tailoring the materials for specific uses. Perhaps most in demand are new adhesive materials for biomedical procedures and devices. At the moment there are no adhesives available that are simultaneously wet setting, strong bonding, and non-toxic. Marine biology may have already solved this problem, hence our exploration of these materials for bi

Education

B.S. 1991, University of Massachusetts, Amherst; Ph.D., 1996, Massachusetts Institute of Technology; Postdoctoral Scholar, 1996-1999, California Institute of Technology.

Recognitions

  • One of the Ten Best Teachers in the College of Science, Purdue University, 2005
  • One of the Ten Best Teachers in the School of Science, Purdue University, 2004
  • Alfred P. Sloan Research Fellow , 2002
  • Arnold and Mabel Beckman Foundation Young Investigator Award, 2001
  • National Science Foundation Faculty Early Career Development Award (CAREER), 2001

Selected Publications

  • Matos-Perez, C. R.;White, J. D.;Wilker, J. J., Polymer Composition and Substrate Influences on the Adhesive Bonding of a Biomimetic, Cross-Linking Polymer . Journal of the American Chemical Society 2012 , 134 , 9498-9505.
  • Matos-Perez, C. R.;Wilker, J. J., Ambivalent Adhesives: Combining Biomimetic Cross-Linking with Antiadhesive Oligo(ethylene glycol) . Macromolecules 2012 , 45 , 6634-6639.
  • Doraiswamy A.;Dunaway, T. M.;Wilker, J. J.;Narayan, R. J., Inkjet Printing of Bioadhesives . Journal of Biomedical Materials Research 2009 , 89B , 28-35.
More Publications

Paul Shepson, Head
Feedback | E-mail Webmaster

Purdue University, 560 Oval Drive, West Lafayette, IN 47907
(765) 494-5200
© 2010 Purdue University | An equal access/equal opportunity university | Copyright Complaints
If you have trouble accessing this page because of a disability, please contact the Webmaster at webmaster@chem.purdue.edu.