Effect of Electrolyte on the Selectivity and Stability of n-type WO₃ Photoelectrodes for Solar Water Oxidation Reaction

<u>James Hill</u> and Kyoung-Shin Choi Department of Chemistry Purdue University West Lafayette, Indiana 47907

Tungsten oxide is an n-type semiconductor with an indirect band gap of 2.7 eV. It is inexpensive, environmentally benign, and resistant to photo-corrosion in acidic conditions. Therefore, it is an excellent candidate for use as a photoanode to evolve O_2 for photoelectrochemical water splitting.

However, depending on the pH and composition of the electrolyte, other photooxidation reactions that compete with O_2 evolution can occur at the WO_3 /electrolyte interface, lowering the efficiency of solar oxygen production and affecting the photostability of the WO_3 electrode. To address this issue, we evaluated the photocurrent to oxygen conversion efficiency of WO_3 electrodes in various electrolytes. In this poster, photo-oxidation reactions occurring in electrolytes containing the anions acetate, chloride, perchlorate, phosphate, or sulfate at various pHs will be discussed in a quantitative manner. Additionally, the effect of cations (Li^+ , Na^+ , and K^+) on the O_2 evolution reaction will be discussed.