Publications
42. M.S. Gordon, Q.A. Smith, P. Xu, L.V. Slipchenko,
Accurate First Principles Model Potentials for Intermolecular Interactions
Annu. Rev. Phys. Chem. 64 553-78 (2013) PDF DOI:10.1146/annurev-physchem-040412-110031
41. D. Ghosh, D. Kosenkov, V. Vanovschi, J.C. Flick, I. Kaliman, Y. Shao, A.T.B. Gilbert, A.I. Krylov, and L.V. Slipchenko
Effective Fragment Potential method in Q-Chem: A guide for users and developers
J. Comp. Chem. 34 (12), 1060-1070 (2013) PDF DOI:10.1002/jcc.23223
40. M.C. Green, D.G. Fedorov, K. Kitaura, J.S. Francisco, and L.V. Slipchenko
Open-Shell Pair Interaction Energy Decomposition Analysis (PIEDA): Formulation and Application to the Hydrogen Abstraction in Tripeptides
J. Chem. Phys. 138, 074111 (2013) PDF DOI:10.1063/1.4790616
39. B. Nebgen, F.E. Emmert III, L.V. Slipchenko
Vibronic Coupling in Asymmetric Bichromophores: Theory and Application to Diphenylmethane
J. Chem. Phys. 137, 084112 (2012) PDF DOI:10.1063/1.4747336
38. B.M. Rankin, M. D. Hands, D. S. Wilcox, L.V. Slipchenko, and D. Ben-Amotz
Interactions Between Halide Anions and a Molecular Hydrophobic Interface
Faraday Disc., 160, 255-270 (2013) PDF DOI:10.1039/C2FD20082A
37. J.C. Flick, D. Kosenkov, E.G. Hohenstein, C.D. Sherrill, and L.V. Slipchenko
Accurate Prediction of Non-covalent Interaction Energies with the Effective Fragment Potential method: Comparison of Energy Components to Symmetry-Adapted Perturbation Theory for the S22 Test Set
J. Chem Theory Comp. 8 (8), 2835Ð2843 (2012) PDF DOI:10.1021/ct200673a
36. Q.A. Smith, K. Ruedenberg, M.S. Gordon, L.V. Slipchenko
The dispersion interaction between quantum mechanics and effective fragment potential molecules
J. Chem. Phys. 136, 244107 (2012) PDF DOI:10.1063/1.4729535
35. M.S. Baranov, K. A. Lukyanov, A.O. Borissova, J. Shamir, D. Kosenkov, L.V. Slipchenko, L.M. Tolbert, I.V. Yampolsky, and K.M. Solntsev
Conformationally Locked Chromophores as Models of Excited-State Proton Transfer in Fluorescent Proteins
J. Am. Chem. Soc., 134 (13), 6025-6032 (2012) PDF DOI:10.1021/ja3010144
34. S.J. Thompson, F.L. Emmert III, L.V. Slipchenko
Effects of Ethynyl Substituents on Electronic Structure of Cyclobutadiene
J. Phys. Chem. A, 116, 3194-3201 (2012) PDF DOI:10.1021/jp2099202
33. M. Hands and L.V. Slipchenko
Intermolecular Interactions in Complex Liquids: Effective Fragment Potential Investigation of Water-tert-Butanol Mixtures
J. Phys. Chem. B, 116, 2775-2786 (2012) PDF DOI:10.1021/jp2077566
32. K.P. Gierszal, J.G. Davis, M.D. Hands, D.S. Wilcox, L.V. Slipchenko, and D. Ben-Amotz
pi-Hydrogen Bonding in Liquid Water
J. Phys. Chem. Lett., 2 (22), 2930-2933 (2011) PDF DOI:10.1021/jz201373e
31. W. James, E. Buchanan, C. Mueller, J. Dean, D. Kosenkov, L.V. Slipchenko, L. Guo, A. Reidenbach, S. Gellman, T. Zwier
Evolution of Amide Stacking in Larger ?-Peptides: Triamide H-Bonded Cycles
J. Phys. Chem. A, 115, 13783-13798 (2011) PDF DOI:10.1021/jp205527e
30. Q.A. Smith, M.S. Gordon, and L.V. Slipchenko
Effective Fragment Potential Study of the Interaction of DNA Bases
J. Phys. Chem. A, 115, 11269-11276 (2011) PDF DOI:10.1021/jp2047954
29. A. DeFusco, N. Minezawa, L.V. Slipchenko, F. Zahariev, and M.S. Gordon
Modeling solvent effects on electronic excited states
J. Phys. Chem. Lett., 2 (17), 2184-2192 (2011) PDF DOI:10.1021/jz200947j
28. M.S. Gordon, S. Pruitt, D. Fedorov, L.V. Slipchenko
Fragmentation Methods: A Route to Accurate Calculations on Large Systems
Chem. Rev., 112 (1), 632-672 (2011) PDF DOI:10.1021/cr200093j
27. L.M. Haupert, G.J. Simpson, and L.V. Slipchenko
Computational Investigation of Amine-Oxygen Exciplex Formation
J. Phys. Chem. A, 115, 10159-10165 (2011) PDF DOI:10.1021/jp205866a
26. D. Ghosh, O. Isayev, L.V. Slipchenko, and A.I. Krylov
Effect of Solvation on Vertical Ionization Energy of Thymine: From Microhydration to Bulk
J. Phys. Chem. A, 115 (23), 6028-6038 (2011) PDF DOI:10.1021/jp110438c
25. Q.A. Smith, M.S. Gordon, and L.V. Slipchenko
Benzene-Pyridine Interactions Predicted by the Effective Fragment Potential Method
J. Phys. Chem. A, 115 (18), 4598-4609 (2011) PDF DOI:10.1021/jp201039b
24. D. Kosenkov and L.V. Slipchenko
Solvent Effects on the Electronic Transitions of p-Nitroaniline: A QM/EFP Study
J. Phys. Chem. A, 115 (4), 392-401 (2011) PDF DOI:10.1021/jp110026c
23. D. Ghosh, D. Kosenkov, V. Vanovschi, C.F. Williams, J.M. Herbert, M.S. Gordon, M.W. Schmidt, L.V. Slipchenko, and A.I. Krylov
Non-covalent interactions in extended systems described by the Effective Fragment Potential method: Theory and application to nucleobase oligomers
J. Phys. Chem. A, 114 (48), 12739-12754 (2010) PDF
DOI:10.1021/jp107557p
22. L.V. Slipchenko
Solvation of the excited states of chromophores in polarizable environment: orbital relaxation versus polarization
J. Phys. Chem. A, 114 (33), 8824-8830 (2010) PDF
DOI:10.1021/jp101797a
21. D.G. Fedorov, L.V. Slipchenko, K. Kitaura
Systematic study of the embedding potential description in the Fragment Molecular Orbital method
J. Phys. Chem. A, 114 (33), 8742-8753 (2010) PDF DOI:10.1021/jp101724p
20. P. Arora, L.V. Slipchenko, S.P. Webb, A. Defusco, M.S. Gordon
Solvent Induced frequency shifts: Configuration Interaction Singles combined with the Effective Fragment Potential Method
J. Phys. Chem. A, 114 (25), 6742-6750 (2010) PDF
DOI:10.1021/jp101780r
19. W.H. James III, C.W. Mueller, E.G. Buchanan, M.G.D. Nix, L. Guo, L. Roskop, M.S. Gordon, L.V. Slipchenko, S.H. Gellman and T.S. Zwier
Intramolecular Amide Stacking and Its Competition with Hydrogen Bonding in a Small Foldamer
J. Am. Chem. Soc., 131(40), 14243 (2009) PDF
DOI:10.1021/ja9054965
18. D. Casanova, L.V. Slipchenko, A.I. Krylov, M. Head-Gordon
Double spin-flip approach within equation-of-motion coupled cluster and configuration interaction formalisms: Theory, implementation and examples
J. Chem. Phys. 130, 044103 (2009) PDF
DOI:10.1063/1.3066652
17. M.S. Gordon, J.M. Mullin, S.R. Pruitt, L.B. Roskop, L.V. Slipchenko, and J. A. Boatz
Accurate methods for large molecular systems
J. Phys. Chem. B, 113(29), 9646-9663 (2009) PDF
DOI:10.1021/jp811519x
16. L.V. Slipchenko and M.S. Gordon
Damping functions in the effective fragment potential method
Mol. Phys., 107(8-12), 999-1016 (2009) PDF
DOI:10.1080/00268970802712449
15. L.V. Slipchenko and M.S. Gordon
Water-Benzene Interactions: An Effective Fragment Potential and Correlated Quantum Chemistry Study
J. Phys. Chem. A 113 (10), 2092-2102 (2009) PDF
DOI:10.1021/jp808845b
14. N.J. Barnett, L.V. Slipchenko, and M.S. Gordon
The binding of Ag+ and Au+ to ethane
J. Phys. Chem. A, 113(26), 7474-7481(2009) PDF
DOI:10.1021/jp900372d
13. G. Pranami, L.V. Slipchenko, M.H. Lamm, and M.S. Gordon
Coarse-grained intermolecular potentials derived from the effective fragment potential: application to water, benzene, and carbon tetrachloride
in Book "Multi-scale Quantum Models for Biocatalysis: Modern Techniques and Applications" edited by T.-S. Lee and D. M. York, Springer Verlag (2009) PDF
DOI:10.1007/978-1-4020-9956-4_8
DOI: 10.1007/978-1-4020-9956-4 8
12. T. Smith, L.V. Slipchenko, and M.S. Gordon
Modeling - interactions by the effective fragment potential method: the benzene dimer and substituents
J. Phys. Chem. A, 112 (23), 5286-5294 (2008) PDF
DOI:10.1021/jp800107z
11. M.S. Gordon, L.V. Slipchenko, H. Li, and J.H. Jensen
The effective fragment potential: a general method for predicting intermolecular forces
Ann. Rep. Comp. Chem., 3, 177-193 (2007) PDF
DOI:10.1016/S1574-1400(07)03010-1
10. L.V. Slipchenko and M.S. Gordon
Electrostatic energy in the effective fragment potential (EFP) method: theory and application to benzene dimer
J. Comp. Chem., 28, 276-292 (2006) PDF
DOI:10.1002/jcc.20520
9. Y. Shao, L. F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O'Neil, R. A. Distasio Jr., R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. Van Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Bird, H. Daschel, R. J. Doerksen, A. Drew, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu, G. S. Kedziora, R. Z. Khalliulin, P. Klunziger, A. M. Lee, W. Z. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock III, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil, A. Warshel, W. J. Herhe, H. F. Schaefer III, J. Kong, A. I. Krylov, P. M. W. Gill, M. Head-Gordon
Advances in methods and algorithms in a modern quantum chemistry program package
Phys. Chem. Chem. Phys., 8, 3172-3191 (2006) PDF
DOI:10.1039/B517914A
8. L.V. Slipchenko and A.I. Krylov
Efficient strategies for accurate calculations of electronic excitation and ionization energies: theory and application to the dehydro-meta-xylylene anion
J. Phys. Chem. A, 110, 291 - 298 (2006) PDF
DOI:10.1021/jp0542827
7. L.V. Slipchenko and A.I. Krylov
Spin-conserving and spin-flipping equation-of-motion coupled-cluster method with triple excitations
J. Chem. Phys. 123, 84107-84120 (2005) PDF
DOI:10.1063/1.2006091
6. T.E. Munsch, L.V. Slipchenko, A.I. Krylov, and P.G. Wenthold
Reactivity and structure of the 5-dehydro-m-xylylene anion
J. Org. Chem. 69, 5735-5741 (2004) PDF
DOI:10.1021/jo049555t
5. L.V. Slipchenko, T.E. Munsch, P.G. Wenthold, and A.I. Krylov
5-dehydro-1,3-quinodimethane: a hydrocarbon with an open-shell doublet ground state
Angew. Chem. Int. Ed. 43, 742 (2004) PDF
DOI:10.1002/anie.200352990
highlighted in Chemical & Engineering News and Science Daily, 2004
4. L.V. Slipchenko and A.I. Krylov
Electronic structure of the 1,3,5-tridehydrobenzene triradical in its ground and excited states
J. Chem. Phys. 118, 9614-9622 (2003) PDF
DOI:10.1063/1.1569845
3. L.V. Slipchenko and A.I. Krylov
Electronic structure of the trimethylenemethane diradical in its ground and electronically excited states: bonding, equilibrium structures and vibrational frequencies
J. Chem. Phys. 118, 6874-6883 (2003) PDF
DOI:10.1063/1.1561052
2. A.I. Krylov, L.V. Slipchenko, and S.V. Levchenko
Breaking the curse of the non-dynamical correlation problem: the Spin-Flip method
ACS Symposium Series, 958, 89-102 (2007) PDF
DOI:10.1021/bk-2007-0958.ch006
1. L.V. Slipchenko and A.I. Krylov
Singlet-triplet gaps in diradicals by the Spin-Flip approach: a benchmark study
J. Chem. Phys. 117, 4694-4708 (2002) PDF
DOI:10.1063/1.1498819