Knowledge for Teaching and Teaching for Knowledge: How Much Is ‘What to do in the Classroom?’ Discipline-Specific?

Karen Marrongelle
Fariborz Maseeh Department of Mathematics & Statistics
“...the field of research on teaching still lacks powerful ways of parsing teaching that provide us with the analytical tools to describe, analyze, and improve teaching” (Grossman & McDonald, 2008).
Teaching is specific with respect to task, time, place, participants, content and the like and different subjects vary in those specifics

(Leinhardt, 2001)
Reflection on your own teaching practices
Instructional Explanation

-Designed to communicate some portion of the subject matter to the learner

-Commonplace of teaching

-Emphasis is on what is talked about and how, not on who is talking
Students use carefully designed materials that guide them to constructing new knowledge and develop higher-order thinking skills.

Provides shell for which discipline-specific details can be filled in.
Common language?

- inquiry
- argumentation
- problem solving
- mathematical/scientific practice
Common Questions

How to support students in guided discovery?

How best to support groupwork?

How to teach for understanding in a large lecture?

How to orchestrate whole-class discussions?

How to teach English Language Learners?
How can teachers support their students’ learning in the classroom?
Valuing students’ ideas

Moving student thinking forward
Examples from Science

Discursive resources to introduce authentic science to students (Hsu & Roth, 2008)

Open ended questions to support scientific argumentation (McNeill & Pimentel, 2009)

Teacher questioning, in particular the *reflective toss*, as a strategy to teach students physics (vanZee & Minstrell, 1997)
An Example from Differential Equations

Problem: If we view mathematics learning as participating in symbolizing and constructing arguments,

then we need constructs that organize and illuminate features of teaching that promote symbolizing and argumentation.
Realistic Mathematics Education
Instructional Design Heuristics

Guided Reinvention
Outlines a route by which students develop mathematics for themselves

Emergent Models
Model of informal activity→ Model for more formal mathematical reasoning
Transformational Record

Teacher uses notations, diagrams, or other graphical representations initially to record student thinking. Students later use the teacher’s record to solve new problems.
Sketch a population vs. time graph for a:

- Single species
- Continuous reproduction
- Unlimited resources
Sketch a population vs. time graph for a:

- Single species
- Continuous reproduction
- Unlimited resources
Sketch a population vs. time graph for a:
- Single species
- Continuous reproduction
- Unlimited resources
Sketch a population vs. time graph for a:
- Single species
- Continuous reproduction
- Unlimited resources
Generative Alternative

The alternative representation(s) offered by the teacher to generate students’ explanations and justifications and allow for progress to be made through logical reasoning.
Spring-Mass Motion Investigation

\[x < 0 \quad x = 0 \quad x > 0 \]
Depending on the values for parameters like the stiffness of the spring, the weight of the object attached to the spring, and the amount of friction along the surface that the object travels, different motions of the mass may be possible. **Describe in words the different motions you might see or expect to see.** For each different type of motion provide a rough sketch of what you think the position versus velocity graph would look like.
Student Solutions
Do either of the RME-inspired pedagogical tools – transformational record or generative alternative – have a place in the teaching of other scientific subjects (chemistry, physics, engineering, etc.)?

Are there “RME-like” theories in scientific disciplines that might be useful for the development of other pedagogical content tools (that could transcend the discipline in which they are developed)?
If any of these subject-specific constructs are to be helpful across the disciplines, they need to be studied in the context of different disciplines!
Thank you!