7.9 Comb Basis Set Transform

- comb-to-comb transform
- comments about the amplitudes
- 1 kHz train of impulse functions
- 1 kHz train of Gaussian pulses
- truncated 1 kHz train of impulse functions
- truncated 1 kHz train of Gaussian pulses
A temporal comb function consists of an infinitely long train of evenly spaced impulses. The pulse train is an even function, with an impulse at $t = 0$. The characteristic pulse spacing is Δt.

A frequency comb function consists of an infinitely long train of evenly spaced impulses. The pulse train is an even function, with an impulse at $f = 0$. The characteristic pulse spacing is $\Delta f = 1/\Delta t$.

The Fourier transform of $\text{comb}(\Delta t)$ is $\text{comb}(\Delta f)$. Note that the amplitude in the spectrum is multiplied by Δf, not divided by Δf.
The amplitude relationship is different than most of the other transform pairs. It can be qualitatively understood by the following argument.

If Δt is halved, the total number of temporal impulses per unit time will increase by a factor of two. This increases the power in the signal by a factor of two - as long as the amplitude remains constant.

In the frequency domain the spacing between the comb function will increase by a factor of two, because Δf has increased by a factor of two. The increase in frequency spacing of the impulses will decrease the power in the frequency spectrum.

Multiplication of the frequency comb by Δf will keep the power constant between the two domains.
A 1kHz Train of Impulses

\[\Delta t = 0.001 \]

\[\Delta f = 10^3 \]
Gaussian Pulses: Time Domain

\[\Delta t = 0.001 \]
\[t^0 = 0.0001 \]
Gaussian Pulses: Frequency Domain

\[\Delta f = 1,000 \]
\[f^0 = 10,000 \]
\[\Delta t = 0.001 \]
\[T = 0.020 \]
Truncated Impulses: Frequency

\[\Delta f = 1,000 \]
\[F = 50 \]
Truncated Gaussian Pulse Train

\[
\text{rect}(0.02) \cdot \left[\text{gauss}(10^{-4}) \otimes \text{comb}(10^{-3}) \right] \leftrightarrow \\
0.02\text{sinc}(50) \otimes \left[10^{-4} \text{gauss}(10^{4}) \cdot 10^{3} \text{comb}(10^{3}) \right]
\]