Experimental and Theoretical Characterization of the 3,5-Didehydrobenzoate Anion: A Negatively Charged meta-Benzylne

Jason M. Price,† Katrina Emilia Nizzi,† J. Larry Campbell,† Hilkka I. Kentämäa,*† Mark Seierstad,†,‡ and Christopher J. Cramer*†‡

Contribution from the Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, and Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431

Received August 22, 2002

Abstract: A negatively charged analogue of meta-benzylne, 3,5-didehydrobenzoate, was synthesized in a Fourier transform ion cyclotron resonance mass spectrometer, and its reactivity was compared to that of the same ion generated previously in a flowing afterglow apparatus and to its positively charged cousin, N-(3,5-didehydrophenyl)-3-fluoropyridinium. 3,5-Didehydrobenzoate was found to react as a nucleophile with electrophilic reagents. In contrast, N-(3,5-didehydrophenyl)-3-fluoropyridinium does not react with the same electrophilic reagents but reacts instead with nucleophilic reagents. Neither ion is able to abstract hydrogen atoms from typical hydrogen atom donors. The absence of any radical reactivity for these meta-benzylnes is consistent with predictions that radical reactions of singlet biradicals should be hindered as compared to their monoradical counterparts. High-level calculations predict that the carboxylate moiety does not significantly perturb the singlet–triplet splitting of 3,5-didehydrobenzoate relative to the parent meta-benzylne.

Introduction

meta-Benzylne is perhaps the most fundamentally interesting yet least well-understood isomer of the benzylne family, especially regarding its reactivity.2 The large distance between the radical sites on the aromatic ring in meta-benzylne precludes the concerted electrocyclic reactivity observed for ortho-benzylne, an important and useful intermediate in synthetic organic chemistry. However, the orientation of the two formally nonbonding orbitals allows the back lobes of the orbitals to overlap (evident in the meta-benzylne HOMO, Figure 1). This through-space bonding interaction is substantial and results in meta-benzylne having a large preference for a singlet ground state (singlet–triplet splitting of −21 kcal/mol vs −38 kcal/mol for ortho-benzylne and −4 kcal/mol for para-benzylne, as measured by negative ion photoelectron spectroscopy)3 and having potentially a bicyclic (1, Figure 1) rather than a diradicaloid structure (2, Figure 1). Vibrational frequencies obtained from infrared absorption of matrix-isolated meta-benzylne4 and substituted meta-benzylnes5,6 and from negative ion photoelectron spectroscopy3 are consistent with frequencies calculated for the monocyclic structure. On the basis of high-level calculations, Sander and co-workers have concluded that the electronic structure of meta-benzylne is best described not by (1) or (2) but instead by a monocyclic, α-allylic structure (3, Figure 1).7

Regardless of whether meta-benzylne is formally bicyclic, the large singlet–triplet splitting should hinder radical reactions because a portion of this stabilization energy must be overcome for the biradical electron pair to uncouple during the course of a radical reaction. Experimental and computational work by Chen and co-workers shows that even the small 4 kcal/mol interaction between the biradical electron pair in para-benzylne and its analogues severely retards radical reactivity.8,9 For example, they found that 9,10-didehydroanthracene abstracts...
hydrogen atoms from alcohols 10—100 times slower than the analogous 9-dehydroanthracene monoradical. Ab initio calculations show that the hydrogen atom abstraction barrier from methanol is 1.5 kcal/mol larger for para-benzyne than for the phenyl radical. These observations led to the suggestion that meta-benzyne with its larger singlet—triplet splitting should be significantly less reactive than para-benzyne and, therefore, a potential substitute for the latter as a more selective warhead in DNA-cleaving antitumor drugs. Despite the therapeutic importance of these biradicals, very little is known about their reactivity because of the difficulties inherent in generating and studying them in condensed phases.

Mass spectrometry is a convenient tool that provides access to highly reactive intermediates in a solvent-free environment. Neutral species can be modeled by attaching a chemically inert substituent to highly reactive intermediates in a solvent-free environment. The three trapping sites are separated by a common wall (the conductance limit). Ion transfer between the reaction chambers occurs through a 2 mm hole located in the center of the conductance limit. The three trapping plates were kept at +2 V for positive ions and −2 V for negative ions unless otherwise specified. The normal base pressure in each side of the dual cell (<1 × 10⁻⁹ Torr) was maintained by two turbomolecular pumps (Balzers TPU 330 iL), each backed with an Alcatel 2012 mechanical pump. The pressure was measured with two ionization gauges, one located on each side of the dual cell. The samples were introduced into the cell at a nominal pressure of approximately 1 × 10⁻⁷ Torr by using a heated solids probe, a Varian leak valve, a pulsed valve system (consisting of two General Valve Corp. pulsed valves and a reservoir), or one of two batch inlet systems equipped with an Andonian variable leak valve. The pressure readings were corrected for the sensitivity of the ion gauges toward each neutral reactant and for the pressure differential between the cell and the ion gauge, as described previously. The latter correction factor was obtained by measuring the rate of electron transfer to argon cations, a reaction that occurs at collision rate.

All reagents were obtained commercially and used as received. The precursors to the ions (triallyl 1,3,5-benzotrioxocarboxylate for the negatively charged meta-benzyne derivative, 3,5-dinitrobenzoyl chloride and 1,3,5-tribromoiodobenzene for the positively charged meta-benzyne derivatives, allyl sulfonate for the negatively charged monoradical, and 1,3-diiodobenzene for the positively charged monoradical) were introduced into one side of the dual cell by using a heated solids probe or a variable leak valve and ionized by electron impact. The ionization conditions were optimized for the maximum ion signal for each experiment (typically 2—3 eV of electron energy for negative ions, 12—20 eV of electron energy for positive ions, 50—80 ms of beam time, and 5—10 μA of emission current). The 3,5-didehydrobenzoate

philic addition—elimination pathway if the incoming nucleophile can fragment homolytically after addition to the meta-benzyne moiety. Such a mechanism circumvents the requirement to uncouple the biradical electron pair and rationalizes the unexpectedly large reaction rates for some of the positively charged meta-benzyne analogues.

The 3,5-didehydrobenzoate ion should also react via similar two-electron mechanisms; however, it is likely that the negative charge site perturbs the meta-benzyne moiety such that the addition of nucleophilic species (such as dimethyl disulfide and allyl iodide used by Squires and co-workers) is disfavored. In a previous paper, we raised the possibility that 3,5-didehydrobenzoate could react as a nucleophile, possibly reacting with strong electrophiles by charge-site substitution in a manner analogous to the positively charged species. We report here a combined theoretical and FT-ICR experimental examination of the reactivity of 3,5-didehydrobenzoate, a negatively charged analogue of meta-benzyne.

Experimental Section

All of the experiments were performed in an Extrel model FTMS 2001 Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR) equipped with an Odyssey data station and a SWIFT (Stored Waveform Inverse Fourier transform) cell controller. The instrument contains a differentially pumped dual cell placed within the pole gap of a 3 T superconducting magnet operated at 2.4—2.9 T. The two sides of the dual cell are separated by a common wall (the conductance limit). Ion transfer between the reaction chambers occurs through a 2 mm hole located in the center of the conductance limit. The three trapping plates were kept at +2 V for positive ions and −2 V for negative ions unless otherwise specified. The normal base pressure in each side of the dual cell (<1 × 10⁻⁹ Torr) was maintained by two turbomolecular pumps (Balzers TPU 330 iL), each backed with an Alcatel 2012 mechanical pump. The pressure was measured with two ionization gauges, one located on each side of the dual cell. The samples were introduced into the cell at a nominal pressure of approximately 1 × 10⁻⁷ Torr by using a heated solids probe, a Varian leak valve, a pulsed valve system (consisting of two General Valve Corp. pulsed valves and a reservoir), or one of two batch inlet systems equipped with an Andonian variable leak valve. The pressure readings were corrected for the sensitivity of the ion gauges toward each neutral reactant and for the pressure differential between the cell and the ion gauge, as described previously. The latter correction factor was obtained by measuring the rate of electron transfer to argon cations, a reaction that occurs at collision rate. All reagents were obtained commercially and used as received. The precursors to the ions (triallyl 1,3,5-benzotrioxocarboxylate for the negatively charged meta-benzyne derivative, 3,5-dinitrobenzoyl chloride and 1,3,5-tribromoiodobenzene for the positively charged meta-benzyne derivatives, allyl sulfonate for the negatively charged monoradical, and 1,3-diiodobenzene for the positively charged monoradical) were introduced into one side of the dual cell by using a heated solids probe or a variable leak valve and ionized by electron impact. The ionization conditions were optimized for the maximum ion signal for each experiment (typically 2—3 eV of electron energy for negative ions, 12—20 eV of electron energy for positive ions, 50—80 ms of beam time, and 5—10 μA of emission current). The 3,5-didehydrobenzoate

![Scheme 1](image-url)
anion was generated by electron ionization of triallyl 1,3,5-benzene-
tricarboxylate followed by on-resonance collision-activated dissociation. The
N-(3,5-didehydrophenyl)pyridinium cation was generated by electron ionization of 3,5-didehydrobenzoyl chloride. Sequential col-
losion-activated dissociations yielded the 3,5-didehydrobenzoyl cation. The 3,5-didehydrobenzoyl cation was allowed to react with pyridine to form the N-(3,5-didehydrophenyl)pyridinium cation.20 1,3,5-Tribro-
mobenzene was subjected to electron ionization and allowed to react with 3-fluoropyridine to produce the N-(3,5-didehydrophenyl)-3-fluoro-
pyridinium ion.24 Similarly, 1,3-diodobenzene was subjected to electron ionization and allowed to react with pyridine to form the N-(3-dehydrophenyl)pyridinium ion.24

The above reactant ions were then transferred from the source cell into the analyzer cell by grounding the conductance limit plate (for 100–150 μs). The reactant ions were allowed to cool for about 1 s by emission of infrared light and collisions with the neutral reagent present in that cell. Before the transfer of ions into this cell, however, ions already present due to electron ionization were removed by applying a negative potential (~2 V) for positive ions and a positive potential (+2 V) for negative ions to the remote trapping plate of that cell (typically for 10 ms). The radical site(s), excluding that of 3,5-

Characterization of the 3,5-Didehydrobenzoate Anion

Table 1. C3–C5 Distance (Å) for 3,5-Didehydrobenzoate Optimized at Various Levels of Theory

<table>
<thead>
<tr>
<th>DFT method</th>
<th>triplet</th>
<th>restricted singlet</th>
<th>basis singlet</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLYP</td>
<td>2.357</td>
<td>2.051</td>
<td></td>
</tr>
<tr>
<td>BPW91</td>
<td>2.350</td>
<td>1.991</td>
<td></td>
</tr>
<tr>
<td>B3LYP</td>
<td>2.330</td>
<td>1.930</td>
<td>2.137</td>
</tr>
</tbody>
</table>

where \(\rho^{\sigma=\delta} \) is the BPW91/cc-pVDZ one-electron spin density matrix, and evaluation of the overlap between basis functions \(\phi_\alpha \) and \(\phi_\beta \) is only at the nuclear position, \(R_\alpha \).

The correlating equation appropriate for meta-diradicals is (\(S-T \) splitting, kcal/mol) = \(-1.39 \times (1\) hfs, G) = \(-9.48\) kcal/mol. To compare to experiment, as opposed to the CASPT2/cc-pVDZ level, a correction of \(-3.0 \) kcal/mol was applied to account for the difference between the CASPT2 calculated \(S-T \) splitting of meta-benzene (\(-18.0 \) kcal/mol) and the experimentally determined value (\(-21.0 \pm 0.3 \) kcal/mol).

All calculations were performed with Gaussian 98 (revision A.9) except for the CASPT2 calculations, which were performed with MOLCAS Version 5.

Results and Discussion

Computational Characterization of the 3,5-Didehydrobenzoate. It has been repeatedly shown that the potential energy surfaces of singlet didehydrobenzenes are very flat along the radical—radical separation coordinate when the two dehydro centers are related to one another in a meta fashion and is 3,5-didehydrobenzoate is no exception. Thus, as shown in Table 1, the singlet interdehydro distance varies over slightly more than 0.2 Å depending on which DFT functional and formalism is applied. This range is somewhat smaller than that found for meta-benzene itself, possibly because substitution of a carboxylate would be expected to destabilize the drierionic mesomer that contributes to the singlet valence bond description as the benzene geometry becomes more cyclic (Figure 2). The geometry of the triplet state is much less sensitive to the functional, as expected in the absence of any opportunity for \(\sigma \)-bond formation.

To better assess the quality of the different singlet geometries, highly correlated levels of molecular orbital theory were employed, including multireference second-order perturbation

\[
p(X) = \sum_{\mu \nu} \rho_{\mu \nu} \phi_\mu(R_\mu) \phi_\nu(R_\nu)
\]

\(\rho \) and \(\phi \) are the one-electron spin density matrix and the basis functions, respectively.

Table 2. Energies (kcal/mol) of Different Singlet 3,5-Didehydrobenzoate Geometries Relative to the UB3LYP Geometry at the CASPT2 and CCSD(T) Levels of Theory

<table>
<thead>
<tr>
<th>method</th>
<th>B3LYP</th>
<th>BPW91</th>
<th>BLYP</th>
<th>UB3LYP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASPT2/ang-cc-pVTZ</td>
<td>1.6</td>
<td>1.3</td>
<td>1.0</td>
<td>0.0*</td>
</tr>
<tr>
<td>CCSD(T)*</td>
<td>1.9</td>
<td>0.4</td>
<td>-0.4</td>
<td>0.0*</td>
</tr>
</tbody>
</table>

* Absolute energy (\(E_a \)) = -418.33952. From eq 1. Absolute energy (\(E_a \)) = -418.17779.

With respect to the singlet—triplet (\(S-T \)) splitting in 3,5-didehydrobenzoate, we do not expect DFT to be particularly accurate on the basis of prior studies of meta diradicals. However, those prior studies have also shown that even though the \(S-T \) splittings predicted from the density functional level are poor, the geometries are typically better than those available from, say, multiconfigurational SCF methods. As indicated by the results in Table 3, those same trends hold true here. The DFT methods predict \(S-T \) splittings considerably smaller than those from the highly correlated levels of molecular orbital theory. As a separate check on the better reliability of the CASPT2 and CCSD(T) predictions, the correlation established between \(^1 \) hyperfine splittings in ary radicals and corresponding \(S-T \) splittings in didehydroarenes predicts a splitting of \(-18.1 \) kcal/mol, in better agreement with the correlated MO methods as compared to the DFT methods.
The CASPT2 and CCSD(T) S–T splittings are not particularly sensitive to whether the BLYP or UB3LYP geometry is used. Furthermore, to within the expected error in the theoretical models, the S–T splittings predicted from these levels are identical to that measured for meta-benzylene. Thus, theory predicts substitution of a carboxylate moiety at the 1 position in 3,5-didehydrobenzene to have no effect that significantly differentiates between the singlet and triplet states. This observation is in keeping with predictions made in general for 1-substitution effects in 3,5-benzynes.39,46

Generation and Characterization of 3,5-Didehydrobenzoate. Generation of the meta-benzylene anion, 3,5-didehydrobenzoate, was afforded via a two-step ion synthesis within a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR). The neutral precursor, triallyl 1,3,5-benzenetricarboxylate, was subjected to 2.3 eV dissociative electron ionization to form an ion of m/z 289 (Scheme 2). This product was then subjected to on-resonance collision-activated dissociation (CAD) to form 3,5-didehydrobenzoate (m/z 119). This gas-phase synthesis is similar to that used by Reed and co-workers to generate 3- and 4-didehydrobenzoate (m/z 119). This gas-phase synthesis is similar that measured for meta-benzylene.3 Thus, theory predicts substitution of a carboxylate moiety at the 1 position in 3,5-didehydrobenzene to have no effect that significantly differentiates between the singlet and triplet states. This observation is in keeping with predictions made in general for 1-substitution effects in 3,5-benzynes.39,46

The corresponding positively and negatively charged monoradicals also undergo the above abstraction reactions, but only one atom/group is abstracted. In addition, these monoradicals react with hydrogen atom donors by hydrogen abstraction and with nitrooxides by oxygen abstraction. However, neither 3,5-didehydrobenzoate ion nor N-(3,5-didehydrophenyl)-3-fluoropyridinium react with hydrogen atom donors, while 3,5-didehydrobenzoate does not react with di-tert-butyl nitrooxide. This finding demonstrates that the radical sites in the 3,5-didehydrobenzoate must interact (i.e., the biradical must have a singlet electronic ground state).

In addition, 3,5-didehydrobenzoate reacts with boron trifluoride primarily by addition that is sometimes accompanied by loss of the CO₂ charge site. Subsequent reactions of this product indicate that it retains the meta-benzylene moiety (vide infra). This type of charge-site substitution reactivity with retention of the meta-benzylene moiety is characteristic of positively charged meta-benzene analogues and suggests that the m/z 119 ion contains an intact carboxylate group and a meta-benzylene moiety.

Reactivity — Radical or Ionic Mechanism? Just as in the case of positively charged meta-benzenes, high level calculations predict that the 3,5-didehydrobenzoate favors a singlet ground state by about 21 kcal/mol. The strong interaction between the odd spins in such singlet biradicals has several important implications on their reactivity. First, for the biradical electron pair to engage in radical reactions, a portion of the singlet stabilization energy must be overcome. The end result is expected to be significantly slower radical reactions due a larger reaction barrier than that for the monoradical. This effect has been demonstrated computationally9 and experimentally,8,17,49 for hydrogen abstraction reactions of para-benzylene, which has a relatively small singlet–triplet splitting (~3.8 kcal/mol).3 Second, the overall thermodynamic driving force for a radical abstraction reaction by a biradical is reduced relative to the corresponding monoradical by approximately the amount of bonding interaction between the radical sites.

Despite the evidence that a large singlet–triplet splitting should significantly inhibit radical reactions, positively charged distonic analogues of meta-benzene were found to yield net radical abstraction products at rates approaching those of the corresponding distonic monoradicals. A thorough examination of these reactions led to the conclusion that such radical abstraction products are not the result of a radical mechanism at all. Instead, the positively charged meta-benzenes (and likely meta-benzene itself) can act as electrophiles, producing net radical products via a nucleophilic addition–elimination mechanism (e.g., Scheme 3).

Table 3. Predicted 3,5-Didehydrobenzoate S–T Splittings (H₀, kcal/mol)

<table>
<thead>
<tr>
<th>method</th>
<th>BPW91</th>
<th>BLYP</th>
<th>UB3LYP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASPT2</td>
<td>−19.3</td>
<td>−20.0</td>
<td>−20.2</td>
</tr>
<tr>
<td>CCSD(T)</td>
<td>−19.6</td>
<td>−20.4</td>
<td>−20.6</td>
</tr>
<tr>
<td>hfs</td>
<td>−18.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Unless otherwise indicated, the aug-cc-pVTZ basis set was used. Absolute energy (E₀) = −418.33952. a From eq 1. b See Theoretical Methods section.

the 3,5-didehydrobenzoate often reacts by net radical abstractions at rates similar to those of its corresponding monoradical. For example, 3,5-didehydrobenzoate and 3-dehydrobenzoate abstract a bromine atom from carbon tetrabromide at nearly identical rates (see Table 4). Similar results were obtained with iodine (iodine atom abstraction) and bromotrichloromethane (bromine atom abstraction). In addition, 3,5-didehydrobenzoate does not react with hydrogen atom donors by hydrogen atom abstraction or with \(\text{di-tert-butyl nitroxide} \) by radical-recombination. These data are consistent with a nonradical mechanism.

Reaction with Nucleophiles

To determine whether the \(\text{meta-benzene} \) moiety in 3,5-didehydrobenzoate can react as an electrophile, the distonic ion was allowed to react with a variety of nucleophilic reagents (Table 5). In all cases, no reaction was observed. This is consistent with the work of Squires and coworkers who found that 3,5-didehydrobenzoate did not react with dimethyl disulfide, allyl iodide, or 1,4-cyclohexadiene in their flowing afterglow apparatus (FA). However, these results are in sharp contrast with previous studies on \(\text{N-(3,5-didehydrophenyl)-3-fluoropyridinium} \), a positively charged \(\text{meta-benzene} \) analogue, which does react with some nucleophilic reagents (Table 5).

The proposed mechanism for the reactions of positively charged \(\text{meta-benzene} \) distonic ions involves addition of a nucleophile to the \(\text{meta-benzene} \) moiety and fragmentation of the resulting drierionic intermediate. The intermediate can fragment in two ways which are both evident in the reaction of \(\text{N-(3,5-didehydrophenyl)-3-fluoropyridinium} \) with tert-butyl isocyanide (Scheme 3). Heterolytic cleavage of the \(\text{N}-\text{phenyl} \) pyridinium bond (Scheme 3, path a) results in substitution of the charge site and formation of a new distonic \(\text{meta-benzene} \). Homolytic cleavage of a bond in the incoming nucleophile (Scheme 3, path b) leads to a net cyano radical abstraction albeit via a nonradical mechanism.

The calculated potential energy surfaces for nucleophilic addition of pyridine to 3,5-didehydrobenzoate, \(\text{meta-benzene} \), and \(\text{N-(3,5-didehydrophenyl)pyridinium} \), are given in Table 5. The proposed mechanism for the reactions of positively charged \(\text{meta-benzene} \) distonic ions involves addition of a nucleophile to the \(\text{meta-benzene} \) moiety and fragmentation of the resulting drierionic intermediate. The intermediate can fragment in two ways which are both evident in the reaction of \(\text{N-(3,5-didehydrophenyl)-3-fluoropyridinium} \) with tert-butyl isocyanide (Scheme 3). Heterolytic cleavage of the \(\text{N}-\text{phenyl} \) pyridinium bond (Scheme 3, path a) results in substitution of the charge site and formation of a new distonic \(\text{meta-benzene} \). Homolytic cleavage of a bond in the incoming nucleophile (Scheme 3, path b) leads to a net cyano radical abstraction albeit via a nonradical mechanism.

The calculated potential energy surfaces for nucleophilic addition of pyridine to \(\text{N-(3,5-didehydrophenyl)pyridinium} \), are consistent with a nonradical mechanism.
meta-benzyne, and 3,5-didehydrobenzoate are shown in Figure 3. For all three systems, addition of pyridine to the meta-benzyne moiety is exothermic. However, the reaction barrier for addition to 3,5-didehydrobenzoate is 14 kcal/mol, which is almost 3 times larger than the addition barrier for the positively charged analogue or neutral meta-benzyne (5.0 and 4.4 kcal/mol, respectively). Calculations show that for the positively charged and neutral meta-benzyne, the addition barrier is controlled primarily by the amount of charge separation in the transition state. The degree to which charge is separated in a molecule may be estimated by the molecular dipole moment. The calculated dipole moments for the benzynes as well as for the pyridine addition transition states and intermediates are summarized in Table 6. The positively charged and neutral meta-benzyne have similar activation energies for pyridine addition and coincidentally have similar increases in dipole moment at their transition states (increases of 4.9 and 4.7 D, respectively). In contrast, the 3,5-didehydrobenzoate not only has a large increase in dipole moment at the transition state (increase of 10.6 D) but also a large absolute dipole moment in the transition state and in the addition product. This considerable charge separation renders nucleophilic addition to 3,5-didehydrobenzoate kinetically unfeasible.

Because addition of pyridine to the meta-benzyne moiety necessarily involves donation of electron density from the pyridine HOMO (containing the nitrogen lone pair) and the benzyne LUMO (the antisymmetric combination of the non-bonding orbitals containing the radical electrons), the relative energies of these orbitals should also give insight into the reactivity of these distonic meta-benzynes. The energies of the relevant orbitals are shown in Figure 4. Addition of a positively charged substituent to meta-benzyne lowers the energy of the symmetric (occupied) and antisymmetric (unoccupied) benzyne orbitals. In fact, the antisymmetric “benzyne” orbital of N-(3,5-didehydrophenyl)pyridinium is lowered so drastically that its energy is similar to that of the pyridine HOMO. In the case of 3,5-didehydrobenzoate, the carboxylate substituent raises the energy of the LUMO to a such an extent that the energy gap between the benzyne LUMO and pyridine HOMO is large enough to make nucleophilic addition to the benzyne unlikely.

Reaction with Electrophiles – Boron Trifluoride. The orbital picture in Figure 4 raises the interesting possibility that the symmetric orbital containing the “biradical” electron pair in 3,5-didehydrobenzoate is raised high enough in energy that it can interact with the LUMO of strongly electrophilic species. Boron trifluoride is a good probe for this type of reactivity because addition of the biradical pair to the empty p-orbital on boron would result in a dritterionic intermediate which could fragment by loss of carbon dioxide to yield a charge-site substitution product (Scheme 4, pathway b). This pathway is analogous to the charge-site substitution mechanism already described for the positively charged meta-benzyne analogues. However, both intuition and the calculated highest occupied orbitals of 3,5-didehydrobenzoate (Figure 4) lead one to the conclusion that addition of boron trifluoride to the carboxylate group (Scheme 4, pathway a) to form an “ate” complex should be the thermodynamically preferred pathway.

Reaction between 3,5-didehydrobenzoate and boron trifluoride (Table 4) does indeed produce a charge-site substitution product as well as an addition product (60 and 40% of the product distribution, respectively). The charge-site substitution (CSS) product (3,5-didehydrophenyl)trifluoroborane is still a distonic meta-benzyne, and, as such, it should react similarly to the parent.

Table 6. BLYP/6-31+G(d) Calculated Dipole Moments for N-(3,5-Didehydrophenyl)pyridinium, meta-Benzene, and 3,5-Didehydrobenzoate, and Their Respective Pyridine Addition Products and Transition States

<table>
<thead>
<tr>
<th></th>
<th>Dipole Moment (debye)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>benzene</td>
</tr>
<tr>
<td>N-(3,5-didehydrophenyl)pyridinium</td>
<td>4.9</td>
</tr>
<tr>
<td>meta-benzyne</td>
<td>0.9</td>
</tr>
<tr>
<td>3,5-didehydrobenzoate</td>
<td>7.5</td>
</tr>
</tbody>
</table>

(50) Dipole moments for charged molecules depend on the choice of origin. In this instance, we take as the origin the center of nuclear charge, so the magnitudes of the ionic dipole moments reflect relative electronic polarization in a meaningful way.
didehydrobenzoate. In fact, the isolated CSS product does react with carbon tetrabromide by the sequential abstraction of two bromine atoms, providing support that the benzyne moiety remains intact.

Experimental evidence also suggests that the (3,5-didehydrophenyl)trifluoroborane is the result of the dritterionic intermediate, despite the fact that the “ate” complex is also certainly formed in the reaction. The ipso-substitution mechanism required for the “ate” complex to produce the CSS product (Scheme 4, path a) is unlikely because the simple benzoate ion should be equally suited to react via this mechanism. Instead, only rapid adduct formation was observed in the reaction of benzoate with boron trifluoride. Off-resonance (i.e., low energy) collision-activated dissociation (SORI-CAD) of the benzoate-boron trifluoride adduct produces exclusively the original benzoate ion (via loss of boron trifluoride). In contrast, SORI-CAD of the 3,5-didehydrobenzoate-boron trifluoride adduct produces two fragmentation products due to loss of boron trifluoride and loss of carbon dioxide in a 3:1 ratio. The former fragmentation product can be rationalized as arising from the “ate” complex; however, the CO₂ loss product can only come easily from either the dritterion or the ipso-substitution intermediate.

Density functional theory calculations corroborate the experimental results (Figure 5). Not surprisingly, addition of boron trifluoride to one of the carboxylate oxygens in 3,5-didehydrobenzoate is a barrierless and a significantly exothermic process. More importantly, while boron trifluoride addition to one of the dehydro carbons is about 10 kcal/mol less exothermic than addition to the carboxylate, it is also calculated to proceed without a barrier. Decarboxylation of the dritterion to form the charge-site substitution product occurs with only a moderate energy barrier of about 6 kcal/mol. Both alternate mechanisms for charge-site substitution (direct decarboxylation of the “ate” complex and ipso-substitution) are calculated to have significant reaction barriers (>40 kcal/mol higher in energy than the separated reactants) and are therefore not viable pathways.

Theory also predicts that the dritterionic intermediate should possess some degree of phenyl cation character just as the Lewis structure implies. Electrophilic addition of boron trifluoride to both meta-benzyne and 3,5-didehydrobenzoate leads to an increase in the bond angle at the remaining dehydro carbon (Table 7), suggesting a reduction in electron density. In both cases, the bond angle is close to the corresponding bond angle in the phenyl cation. Electrostatic potential surfaces (Figure 6) of 3,5-didehydrobenzoate and its boron trifluoride and pyridine adducts tell a similar story. Unfortunately, attempts to trap the dritterionic intermediate via ion–molecule reactions with pyridine and several amines (Scheme 5) were not successful, presumably because such an addition leads to greater charge separation and is therefore associated with a significant barrier.

No reaction was observed between boron trifluoride and N-(3,5-didehydrophenyl)pyridinium. This is not surprising considering the electron deficiency of the meta-benzyne moiety.
in this distonic ion. In fact, calculations predict a monotonic increase in energy as the boron approaches one of the dehydro carbons. In contrast, boron trifluoride addition to neutral meta-benzyne is expected to be exothermic by 5 kcal/mol and to occur without a barrier. The dipole moment of the boron trifluoride adduct to meta-benzyne is similar to that of its adduct with pyridine (7.7 and 7.0 D, respectively); however, the latter reaction is almost 3 times more exothermic than the former. The greater thermodynamic stability of the pyridine addition product than the BF$_3$ addition product is largely the result of the sp2-hybridized dehydro carbon being more likely to accept negative rather than positive charge density.

Reaction with Electrophiles — Halogen Donors. In the case of the reaction between 3,5-didehydrobenzoate and boron trifluoride, the benzene moiety almost certainly is involved in a nucleophilic attack on the boron atom. However, the mechanism for halogen abstraction by the negatively charged benzene is less clear. Several ionic mechanisms are possible, including nucleophilic addition of the halogenated molecule to the benzene to form a “halonium” intermediate (Scheme 6, path a) and nucleophilic attack on the halogen atom on the benzyne either in a concerted “halophilic” substitution reaction53 (Scheme 6, path b) or in a stepwise fashion via a hypervalent 10-X-2 “ate” complex.52

The experimental data provide some circumstantial evidence that 3,5-didehydrobenzoate reacts as a nucleophile in net halogen atom abstraction reactions. For example, N-(3,5-didehydrophenyl)pyridinium is primed to react as an electrophile (Scheme 5) and would be expected to react faster than 3,5-didehydrobenzoate if both benzenes were reacting via this mechanism. However, it does not react with carbon tetrabromide, bromotrichloromethane, or bromoform, while 3,5-didehydrobenzoate sequentially abstracts two bromine atoms from these reagents at varying efficiencies (Table 4). In addition, iodine atom abstraction from iodine occurs at least 30 times more efficiently for 3,5-didehydrobenzoate than for N-(3,5-didehydrophenyl)pyridinium.

The reaction with iodine is interesting because this is the only reagent studied that reacts with both the positively and the negatively charged benzenes. Iodine is sufficiently polarizable that it can act as a weak nucleophile and form an iodonium intermediate in reactions with N-(3,5-didehydrophenyl)pyridinium. Iodine is also an electrophile that possesses an excellent iodide leaving group for concerted halophilic reactions. In fact, in the reaction of iodine with 3,5-didehydrobenzoate, iodide formation accounts for about one-half of the branching ratio, although this pathway should be about 9 kcal/mol less exothermic than iodine atom abstraction on the basis of the electron affinities of the iodine atom53 and benzoate radical54 (3.059 and 3.45 eV, respectively).

The quality of the leaving group should provide some insight into relative reaction rates if halophilic substitution reactions are indeed occurring (Scheme 6, path b). The exothermicity of bromine abstraction from carbon tetrabromide and bromotrichloromethane should be nearly identical on the basis of their literature C–Br bond dissociation energies55 (56.2 and 55.3 kcal/mol, respectively); however, 3,5-didehydrobenzoate abstracts a bromine atom from carbon tetrabromide 4 times faster than from bromotrichloromethane. Examination of the leaving group gas-phase proton affinity shows that tribromomethyl anion is less basic and therefore should be a better leaving group than chloromethyl anion (proton affinities of 349.756 and 357.6 kcal/mol57, respectively). Bromine abstraction from bromoform was also observed; however, the reaction occurs too slowly to measure a reaction efficiency accurately. The poor dibromo-methyl anion leaving group (proton affinity of 369.0 kcal/mol)56 may be at least partially responsible for this slow reaction, although the ~6 kcal/mol reduction in reaction exothermicity (C–Br bond dissociation energy of bromoform is ~62 kcal/mol58) is certainly a factor also.

Table 8. Efficiencies\(^4\) and Products\(^5\) of Reactions of 3-Dehydrobenzoate, 3,5-Didehydrobenzoate, N-(3-Dehydrophenyl)-3-fluoropyridinium, and N-(3,5-Didehydrophenyl)-3-fluoropyridinium with Hydrogen Atom Donors and Di-tert-butyl Nitroxide

<table>
<thead>
<tr>
<th>Donor</th>
<th>H Abs</th>
<th>Eff (%)</th>
<th>Reaction</th>
<th>H Abs</th>
<th>Eff (%)</th>
<th>Reaction</th>
<th>O Abs</th>
<th>Eff (%)</th>
<th>Reaction</th>
<th>O Abs</th>
<th>Eff (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>tetrahydrofuran</td>
<td>H abs</td>
<td>1.0</td>
<td>No reaction</td>
<td>H abs</td>
<td>1.0</td>
<td>No reaction</td>
<td>O abs Addition(^6)</td>
<td>0.58</td>
<td>0.42</td>
<td>O abs Addition(^6)</td>
<td>0.52</td>
</tr>
<tr>
<td>acetone</td>
<td>H abs</td>
<td>1.0</td>
<td>No reaction</td>
<td>H abs</td>
<td>1.0</td>
<td>No reaction</td>
<td>O abs Addition(^6)</td>
<td>0.72</td>
<td>0.26</td>
<td>O abs Addition(^6)</td>
<td>0.48</td>
</tr>
<tr>
<td>toluene</td>
<td>No reaction</td>
<td></td>
<td></td>
<td>No reaction</td>
<td></td>
<td></td>
<td>O abs Addition(^6)</td>
<td>0.58</td>
<td>0.42</td>
<td>O abs Addition(^6)</td>
<td>0.52</td>
</tr>
<tr>
<td>3-chlorophenol</td>
<td>No reaction</td>
<td></td>
</tr>
<tr>
<td>di-tert-butyl nitroxide</td>
<td>O abs Addition(^6)</td>
<td>0.58</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td>O abs Addition(^6)</td>
<td>0.72</td>
<td>0.26</td>
<td>O abs Addition(^6)</td>
<td>0.48</td>
</tr>
</tbody>
</table>

\(^4\) Reaction efficiencies reported as \(k_{exp}/k_{collision} \times 100\%\) (i.e., the percentage of collisions that lead to a reaction). \(^5\) Product branching ratios are given in parentheses. Secondary products (2\(^a\)), if any were observed, are given underneath the primary product that produced them. \(^6\) Branching ratio for addition to toluene includes products corresponding to addition followed by loss of hydrogen atom and addition followed by loss of methyl radical.

Conclusions

High level calculations at the CASPT2 and CCSD(T) levels predict that the carboxylate group does not perturb the singlet—triplet gap of 3,5-didehydrobenzoate relative to meta-benzyne. The large singlet—triplet splitting (~ ~21 kcal/mol) calculated for both the 3,5-didehydrobenzoate and the N-(3,5-didehydrophenyl)-3-fluoropyridinium has the effect of severely inhibiting the radical reactivity of these meta-benzynes as predicted by Chen and co-workers.\(^10\) As a result, neither ion abstracts a hydrogen atom from common hydrogen atom donors. However, the lack of radical reactivity does not mean that the benzynes are generally not reactive.

A positively charged substituent attached to the benzene (e.g., 3-fluoropyridinium) biases its reactivity toward nucleophilic reagents, while a negatively charged substituent (e.g., carboxylate) has the opposite effect. The 3,5-didehydrobenzoate was found to react as a nucleophile with electrophilic reagents, such as boron trifluoride and halogenated alkanes, while the N-(3,5-didehydrophenyl)-3-fluoropyridinium ion does not react at all with these species. In fact, the 3,5-didehydrobenzoate reacts with the strong electrophile boron trifluoride to form a new meta-benzyne, (3,5-didehydrophenyl)trifluoroborane, by a charge-site substitution mechanism analogous to that reported earlier for reaction of N-(3,5-didehydrophenyl)pyridinium with strong nucleophiles.

It is satisfying that the previous “discrepancy” between the inertness of 3,5-didehydrobenzoate in the FA and the often high reactivity of N-(3,5-didehydrophenyl)-3-fluoropyridinium ion in the FT-ICR is not the result of the ion generation method or the type of mass spectrometer used. In fact, the reactivity of 3,5-didehydrobenzoate was found to be similar in both the FT-ICR and the FA. Instead, the difference lies in the inherent nucleophilic/electrophilic reactivity of the benzene moiety itself. This work, in conjunction with previous studies, indicates that neutral meta-benzyne is likely to be ambiphilic, reacting rapidly with both strong nucleophiles and electrophiles.

Acknowledgment

We dedicate this paper to the late Professor Robert R. Squires and gratefully acknowledge the many contributions that he made to research on reactive intermediates in the gas phase. The National Science Foundation is acknowledged for financial support of this research at both Universities. J.M.P. thanks the Lubrizol Corp. for a fellowship.

Supporting Information Available: Optimized geometries, energies, and frequencies for the calculated species (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

J.A0211120