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Abstract: Evaluation of the electrostatic energy within the effective fragment potential (EFP) method is presented.

The performance of two variants of the distributed multipole analysis (DMA) together with two different models for

estimating the charge penetration energies was studied using six homonuclear dimers. The importance of damping the

higher order multipole terms, i.e. charge dipole, was also investigated. Damping corrections recover more than 70% of

the charge penetration energy in all dimers, whereas higher order damping introduces only minor improvement. Elec-

trostatic energies calculated by the numerical DMA are less accurate than those calculated by the analytic DMA. Anal-

ysis of bonding in the benzene dimer shows that EFP with inclusion of the electrostatic damping term performs very

well compared to the high-level coupled cluster singles, doubles, and perturbative triples method. The largest error of

0.4 kcal/mol occurs for the sandwich dimer configuration. This error is about half the size of the corresponding error

in second order perturbation theory. Thus, EFP in the current implementation is an accurate and computationally inex-

pensive method for calculating interaction energies in weakly bonded molecular complexes.

q 2006 Wiley Periodicals, Inc. J Comput Chem 28: 276–291, 2007

Key words: electrostatic screening; EFP; dispersion; benzene-benzene

Introduction

Modeling intermolecular interactions play an important role in

studying liquids, molecular clusters, surface catalysis, and bio-

systems: it is of interest in many fields of chemistry, physics, bio-

logical sciences, and materials. However, accurate calculation of

intermolecular interactions is a non-trivial task for quantum

chemistry. High-level ab initio calculations can accurately

describe weak intermolecular forces in systems of small size.

However, the accuracy of ab initio calculations markedly depends

on both the basis set size and dynamical correlation. As a result,

such calculations are very computationally demanding and fast

become impractical as the system size increases.

Alternatively, one can describe intermolecular interactions using

perturbation theory, starting from the non-interacting (unperturbed)

fragments. In the last decade, this idea has been developed within

the context of the effective fragment potential (EFP) method.1 In

terms of perturbation theory, intermolecular interactions can be pre-

sented as a series of short- and long-range terms. Long-range inter-

actions (interactions that are proportional to the distance according

to (1/R)n) include Coulomb, induction, and dispersion terms,

whereas short-range interactions, which decay exponentially, con-

sist of exchange-repulsion, charge-transfer, and screening terms.

Screening terms are used to damp induction, dispersion, and Cou-

lomb energies. All of the types of interactions described here,

including screening, are present in the current EFP implementation.

The Coulomb (sometimes called electrostatic) interaction is a

leading term in the bonding of many molecular complexes. To

avoid very time-consuming evaluation of the integral over molec-

ular charge distributions, in low-cost computational models it is

useful to use a distributed multipole approximation, as described

by Stone.2,3 In this approach, the Coulomb potential is expanded

in a series of terms in (1/R):

V ¼ Vcharge þ Vdipole þ Vquadrupole þ Voctopole þ � � � (1)

In the EFP method, the Coulomb potential is expanded up to

octopoles, with expansion centers at each atom center and each

bond midpoint.4

The Coulomb energy of two interacting molecules (A and B)

can be evaluated according to the classical multipolar interaction:

EES ¼ qAV
ch
B þ qAV

dip
B þ qBV

dip
A þ � � � ; (2)

where qA is the charge on center A, Vch
B is the potential due to

the charge on B, etc. There are several possible procedures for

distributing multipoles over molecular sites.2,3,5–10 In Stone’s dis-

tributed multipole analysis (DMA),2,3 partitioning of the molecu-
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lar density among atoms is carried out in basis-function space.

However, it has been noted10 that the DMA is unstable with

respect to increase of the basis set. Several methods that partition

the density in real space have also been introduced. Examples are

the atoms-in-molecule procedure of Bader5 and a similar method

for distributed multipoles by Popelier.9 Another interesting

approach suggested by Harrision6 uses the Hirschfeld partitioning

method, in which the molecular electron density is assigned to

atoms in proportion to the free atom densities at the same distan-

ces from the nuclei.7,8 Recently, Stone reported a DMA approach,

referred to here as the numerical Stone DMA, which combines

partitioning in both basis-function and real space.10

In the current EFP method, the Coulomb energy is evaluated

using Stone’s DMA. However, the instability of this method with

respect to increasing the basis set becomes especially problematic

when diffuse functions are added to the basis set, or in systems

with high orbital degeneracy, such as benzene. To potentially

overcome these difficulties, the numerical Stone DMA procedure

has been implemented into the EFP method. In the following sec-

tions the analytic and numerical DMA are discussed in detail, and

their performance compared for a series of molecular dimers.

Representing the molecular electron density by a set of multi-

pole expansions markedly decreases the computational cost of

evaluating the Coulomb energy. However, this classical approxi-

mation is valid only when the electron densities of interacting

molecules do not overlap, i.e. at large separations. As the inter-

molecular separation decreases and the molecular electron den-

sities begin to overlap, the nuclei of one molecule become less

shielded by their electron density and experience stronger attrac-

tion by the electron density of the other molecule. Thus, the real

electrostatic interaction is somewhat stronger than that calculated

by classical multipoles due to charge penetration. It appears that

at equilibrium geometries of many molecular clusters, charge

penetration plays a significant role. For example, as discussed in

more detail later, the charge penetration is about 15% of the total

electrostatic energy in the water dimer, and it is as large as 200%

in the sandwich structure of benzene dimer. Of course, the charge

penetration contribution to the total energy becomes even larger

at shorter intermolecular separations.

It has been shown4,11–13 that the charge penetration energy

can be estimated by adding a damping (charge penetration) term

to the classical multipolar potential. In the current implementation

of the damping term, only the charge–charge part of the penetra-

tion energy is included.

In this work, expressions are presented for the higher order

charge-penetration contributions; i.e., charge–dipole, dipole–dipole,

and charge–quadrupole. This facilitates an analysis of the impor-

tance of the high-order damping in the framework of both analytic

and numerical DMAs. This analysis provides insight regarding the

benefits and drawbacks of analytic and numerical methods. The nu-

merical results include analysis of the Coulomb (electrostatic) inter-

action in dimers of six solvent molecules and ethylene, as well as an

in-depth investigation of the benzene dimer.

The benzene dimer, a prototype for �-� interactions, has

attracted extensive theoretical and experimental attention.14–31 �-�
interactions are an important noncovalent interaction governing

structures of proteins and DNA, self-assembly of aromatic macro-

molecules, and drug-intercalation into DNA. In spite of the ubiq-

uity and importance of �-� interactions, many levels of theory

cannot provide an adequate description of this type of interaction.

In the present work, an in-depth study of �-� interactions pre-

dicted by the EFP method is compared with very accurate ab ini-
tio studies by Sherrill and coworkers.18,19

The structure of the paper is as follows: the next section presents

theoretical aspects of the analytic and numerical Stone DMA tech-

niques, and the evaluation of the formulas for the charge-penetration

corrections. Computational details are given in the next section, fol-

lowed by numerical results and discussion, and final remarks are

presented in the last section.

Theory

Analytic DMA

The distributed multipolar analysis was proposed by Stone in

1981.2,3 This DMA can be applied to any molecular density that

is expanded in primitive Gaussian products. A Gaussian function cen-

tered at A is comprised of a Gaussian function, expð��Aðr�AÞ2Þ,
and a polynomial of a degree that corresponds to the angular mo-

mentum of the function, i.e., 0 for s, 1 for p, and so on. A product of

two Gaussian functions centered at A and B is another Gaussian at a

different center, whose polynomial degree is the sum of the degrees

of the original polynomials, and the Gaussian part has the form

expð�ð�A þ �BÞðr� PÞ2Þ, where P is the overlap center

P ¼ ð�AAþ �BBÞ=ð�A þ �BÞ. Thus, the position of the product

Gaussian is on the line connecting points A and B. The weighted

sum of the products of the Gaussian functions is the total density,

with individual coefficients being determined from the density

matrix.

Any Gaussian product can be expressed as a sum of multipole

moments of ranks up to the degree of the associated polynomial.

Each product is shifted to the closest of the expansion centers. A

set of DMA expansion centers is user-defined; usually this set

consists of atoms and bond mid-points.

A main drawback of the analytic DMA is its instability with

respect to increases in the size of the basis set. In a large basis set,

and especially a basis set with diffuse functions, there are many

ways to express a given charge distribution, and the most optimal

one may be determined variationally. In another basis set, with a

different set of exponents, the same charge distribution may be opti-

mally represented by a different DMA expansion. This ambiguity

increases as the size of the basis set increases, and it can result in

very different and basis set-dependent distributed multipoles. How-

ever, as emphasized in Ref. 10, these different sets of multipoles

still produce almost identical electrostatic potentials at Van der

Waals distances. Therefore, the instability of multipole moments

with increase of basis set does not seem to be critical. However, the

divergence of the multipoles in a large basis set becomes much

more troublesome when a molecule of interest contains degenerate

orbitals. For example, for benzene the analytic DMA produces

huge values of quadrupole and octopole moments even when a sin-

gle diffuse function is added to the basis set. However, in the EFP

method, the basis set must contain diffuse functions to correctly

describe the exchange–repulsion interaction.32 Therefore, in the

EFP framework, the analytic DMA seems to be inappropriate for

calculations on benzene and possibly some benzene derivatives.
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Numerical DMA

As an alternative to the analytic DMA a numerical version of the

method recently suggested by Stone10 has been implemented.

This numerical method is a mixture of the original DMA that par-

titions the density in basis function space and a numerical integra-

tion scheme that does partitioning in real space. The original

method is used to partition the density of the most compact basis

functions. This avoids any difficulties with numerical integration

of strongly peaked functions. The numerical scheme is used for

diffuse functions, thereby eliminating the strong basis set depen-

dence of the original method.

The implementation of the numerical DMA described here

closely follows the original implementation by Stone.10 A grid of

integration points is constructed around each atom. This consists

of a 100-point radial grid and a 590-point angular Lebedev grid.33

An Euler–Maclaurin quadrature is used for radial integration.34

The radial grid is scaled by values of the Bragg–Slater covalent

radii.35 The softness of the boundary between atoms is controlled

by Becke’s cutoff parameter k.36 Larger values of k give a sharper
cutoff. Numerical results presented in this work were obtained

with k ¼ 2. The boundary between atoms can be set halfway

between them or scaled by the ratio of the Bragg–Slater radii of

each atom. The radii of the bond midpoints are determined as an

average of the corresponding atomic radii. In this work, the

Bragg–Slater radii were used to set the cutoffs between atoms. A

switch between the analytic and numerical algorithms works as

follows: if the sum of the exponents �A þ �B in a product of prim-

itives is larger than the specified switch value, then the product

function is considered to be compact and the original analytic

integration procedure is performed. If the sum of exponents is

smaller than the switch value, the numerical integration on the

grid is employed. Following Stone’s recommendation, a switch

value of 4 was used. This switch produces moments very similar

to those that are produced with the pure numerical algorithm.

Both the multipole moments and the resulting electrostatic

energies depend on the parameters of the numerical integration

scheme, that is, the position and sharpness of the cutoffs

between the expansion centers. It is found that for some mole-

cules, parameters used throughout this work (Bragg–Slater radii

on each center and k ¼ 2) perform best in terms of electrostatic

energies, while for other molecules, other values of these param-

eters (e.g., equal radii on centers and k ¼ 4) would give better

results. However, there is no obvious reason for this trend, and

so the same set of parameters has been used in all calculations

presented here.

Electrostatic Screening

Charge penetration causes a decrease in the classical electrostatic

energy of interacting multipoles due to the overlap of electronic

densities. Stone illustrated the origin of charge penetration by

considering the interaction of a hydrogen-like atom with nuclear

charge Z with a proton.2 The electrostatic potential of the electron

of a hydrogen-like atom has the form

VðrÞ ¼ � e

R
þ e expð�2ZRÞ Z þ 1

R

� �
: (3)

This expression can be rewritten as

VðrÞ ¼ � e

R
½1� expð�2ZRÞð1þ ZRÞ� ¼ � e

R
f dampð2ZRÞ: (4)

Thus, the potential of an electron in a hydrogen-like atom

differs from the classical charge potential by the damping func-

tion f damp (2ZR). This suggests that, in general, the multipole

expansion of the electrostatic potential can be corrected for

charge penetration by this damping function f damp, which has

exponential dependence on the separation R. Introducing a pa-

rameter � ¼ 2Z, one can rewrite the damping function for the

charge potential as

f damp
1 ¼ 1� expð��RÞ 1þ �R

2

� �
: (5)

The parameter � can be determined by minimizing the differ-

ence between the quantum mechanical electrostatic potential and

the damped multipolar expansion over a grid of points:

� ¼
X
grid

½Vab initio � Vdamped multipole�2: (6)

More details on the fitting procedure will be given in Computa-

tional Details.

In the previous work on the charge-penetration correction to

the electrostatic energy,12 a simpler form of the damping function

was used

f damp
2 ¼ 1� expð��RÞ: (7)

Comparison of two damping functions is given in Figure 1.

Both types of damping functions go to unity for large R and fall

off toward zero as R approaches zero. As seen from Figure 1a, f1
and f2 behave similarly at large R; however, they differ at short

and medium distances (0–2 au).

Consider the hydrogen-like atom. For the spherically sym-

metric hydrogen-like atom, a one-dimensional grid can be

employed to numerically determine parameter � for f1 and f2.
Since the f1 damping function gives the correct form for the

potential, the parameter � does not depend on characteristics of

the grid, such as the separation between grid points and the min-

imum and maximum distances from nucleus, rmin and rmax.

Thus, in a hydrogen-like atom, � for f1 will be determined

uniquely. The damping function shown in Figure 1a has � ¼
2.5. On the other hand, the optimal parameter for f2 will depend

on the properties of the grid. Figure 1a illustrates three different

f2 functions with � ¼ 1.2, 1.4, and 1.6. The corresponding errors

relative to f2 are given in Figure 1b. Note that a grid starting fur-

ther away from the nucleus, i.e., the grid with larger rmin, will

produce a larger value of �. For example, for a grid with rmin ¼
0.5 the optimal � would be 1.2, and for the grid with rmin ¼ 1.5

the optimal � ¼ 1.6.

Of course, the form of the potential around each expansion

center in a many-electron system differs from that in a hydrogen-

like atom. However, as will be discussed in Results and Discus-

sion, the general tendency shown in Figure 1 for damping func-

tions f1 and f2 holds for many molecules.
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The minimum distance from the nucleus is an important char-

acteristic of the grid from a practical point of view because in

any molecule, the potential in close proximity to a nucleus is not

uniform. This makes the fitting process cumbersome. Note also

that (see Fig. 1) f2 always overestimates damping at small R and

underestimates damping at large R. So, as rmin and, consequently

�, increase, the short-range overestimation of damping will

increase, and long-range underestimation will diminish. There-

fore, if f2 is used as a damping function, one must determine

which region of molecular separation is more important for accu-

rate damping. In general, it appears that molecules with strong

electrostatic interactions (and shorter intermolecular distances)

prefer damping parameters that average the error over all distan-

ces (i.e., smaller rmin), whereas weakly interacting molecules pre-

fer larger rmin in order to better describe damping at longer dis-

tances. However, in spite of the uncertainty in choosing the opti-

mal rmin, the simple exponential damping function has been

shown to give reasonable charge penetration corrections for many

molecular complexes.12 Therefore, both f1and f2 are considered

here as possible damping functions, referred to as model 1 and

model 2. Thus, the following two damped charge potentials will

be considered:

Vch
1 ¼ q

R
1� expð��RÞ 1þ �R

2

� �� �
; (8a)

Vch
2 ¼ q

R
½1� expð��RÞ�: (8b)

The damped potentials of dipole and higher multipoles can be

evaluated by expanding the damped charge potential as a Taylor

series, similar to the procedure for obtaining classical multipole

potentials. Consider the damped potential due to molecule A

located at position A with particles of this molecule (a) at posi-

tions a relative to A (see Fig. 2). The potential is calculated at

point B, separated from A by R ¼ B � A. The damped potential

in model 2 can be expressed as

VA
2 ðBÞ ¼

X
a

ea
4�"0jR� aj ð1� expð��jR� ajÞÞ ¼

X
a

ea
4�"0

�
1� expð��RÞ

R
þ a�

@

@a�

ð1� expð��jR� ajÞÞ
jR� aj

� �
a¼0

þ 1

2
a�a�

@2

@a�@a�

ð1� expð��jR� ajÞÞ
jR� aj

� �
a¼0

þ . . .

2
6664

3
7775

¼
X
a

ea
4�"0

�
1� expð��RÞ

R
� a�r�

1� expð��RÞ
R

þ 1

2
a�a�r�r�

1� expð��RÞ
R

� . . .

�

¼ 1

4�"0

�
q
1� expð��RÞ

R
� �̂�r�

ð1� expð��RÞÞ
R

þ 1

3
�̂��r�r�

ð1� expð��RÞÞ
R

� . . .

�
: ð9Þ

Subscripts � and � in the last equation ¼ x, y, or z, and "0 is

the permittivity of free space. In atomic units 4�"0 is unity.

Therefore, within model 2, the damped dipole potential is

Vdip
2 ¼ �̂�r�

1

R
½1� expð��RÞ�

� �

¼ ��̂�
R�

R3
½1� expð��RÞð1þ �RÞ�; ð10Þ

Figure 1. Electrostatic damping functions. (a) f1 damping function

with parameter � ¼ 2.5 and f2 with three different � ¼ 1.2, 1.4, 1.6

are shown. f1 and f2 behave similarly at long distances but are very

different at short distances. (b) Squared errors of f2 with different val-

ues of � with respect to f1 are shown.

Figure 2. Definition of position vectors in two interacting molecules.

(See text for explanations.)
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and the damped quadrupole potential is

Vquad
2 ¼ �̂��r�r�

1

R
½1� expð��RÞ�

� �

¼ �̂��

�
3R�R� � R2���

R5
½1� expð��RÞð1þ �RÞ�

� R�R�

R5
expð��RÞð�RÞ2
h i�

: ð11Þ

Note that the dipole potential has a single damping term,

exp(��R)(1 þ �R), which is applied to the whole classical dipole

potential. That is, the damping function for the dipole potential is

spherically symmetric, and the dipole potential is damped equally

in every direction. This is not the case for the quadrupole potential,

for which there is an additional term, exp(��R)(�R),2 that acts only
on a part of the quadrupole potential. Thus, the damping function

for the quadrupole potential is stronger in some directions than in

others. This is also true for the higher-order multipoles. Note also

that the angular dependence in quadrupole damping is produced by

the largest magnitude (leading) term of the damping function. It is

interesting that even though different order multipole potentials

have different power dependences on 1/R, the leading terms of the

corresponding damping functions (within model 2) are always pro-

portional to 1/R* exp(��R). Thus, the damping functions for differ-

ent order multipoles fall off similarly with increase in R.
Following the same procedure, one can obtain damped dipole

and quadrupole potentials within model 1:

Vdip
1 ¼ �̂�r�

1

R
½1� expð��RÞð1þ 1=2�RÞ�

� �

¼ ��̂�
R�

R3
1� expð��RÞð1þ �Rþ 1=2ð�RÞ2Þ
h i

; ð12Þ

Vquad
1 ¼ �̂��r�r�

1

R
½1� expð��RÞð1þ1=2�RÞ�

� �

¼ �̂��

�
3R�R��R2���

R5
½1� expð��RÞð1þ�Rþ1=2ð�RÞ2Þ�

�R�R�

R5

�
expð��RÞ1=2ð�RÞ3�

�
: ð13Þ

As expected, the dipole and quadrupole damping functions are

different for models 1 and 2. However, the general forms of the

dipole and quadrupole damped potentials in the two models have

some similarities. As in model 2, the dipole damping in model 1

is spherical, and the non-spherical term appears only in the quad-

rupole potential. Similar to model 2, the leading damping term in

all multipoles is proportional to exp(��R).
Adding a damping term to the classical electrostatic potential

assumes that the new potential is produced by a 3D electronic

density distribution, rather than by a series of classical point mul-

tipoles. However, to maintain an analogy with the classical

approach, one can expand the electron density in a series of den-

sities that correspond to the multipoles:

� ¼ �ch þ �dip þ �quad þ �oct þ � � � : (14)

Each term in this expansion can be determined from the corre-

sponding multipole potential through the Poisson equation:

r2Vmultipole ¼ � �multipole

"0
: (15)

For example, the charge densities in model 1 and 2 are,

respectively:

�ch1 ¼ q�3

8�
expð��RÞ; (16a)

�ch2 ¼ q�2

4�R
expð��RÞ: (16b)

Finding the density corresponding to a known potential is

straightforward, because there is no need to solve the differential

Poisson equation. One needs only to differentiate the known

potential.

To calculate the interaction energy between two centers, A

and B, one can use the Coulomb equation in the following form:

ECond ¼
Z

�A�B
RAB

dvAdvB ¼
Z

�AVBðAÞ dv

¼ 1

2

Z
�AVBðAÞ dvA þ

Z
�BVAðBÞ dvB

� �
A

: ð17Þ

Substituting in the last equation the different terms of the mul-
tipolar potential and density, one can obtain different components
of the electrostatic energy, e.g.

Ech�ch ¼ 1

2

Z
�chA Vch

B ðAÞ dvA þ
Z

�chB Vch
A ðBÞ dvB

� �
; (18a)

Ech�dip ¼ 1

2

Z
�chA Vdip

B ðAÞ dvAþ
Z

�dipB Vch
A ðBÞ dvB

� �
: (18b)

Integrals that appear in the expressions for the charge–charge
electrostatic energy are analytic in both models; their solutions
were given by Coulson in 1942.37 Thus, the charge–charge inter-
action energies for models 1 and 2 are, respectively:

Ech�ch
1 ¼qAqB

R

1�expð��RÞ �4

ð�2��2Þ2 1� 2�2

�2��2
þ�R

2

� �

�expð��RÞ �4

ð�2��2Þ2 1� 2�2

�2��2
þ�R

2

� �
2
6664

3
7775;
(19a)

Ech�ch
2 ¼qAqB

R
1�expð��RÞ �2

�2��2
�expð��RÞ �2

�2��2

� �
: (19b)

Here, � and � are damping parameters for centers A and B,

respectively. To calculate the electron–nuclear attraction, one has

to evaluate the interaction between the damped charge potential

and the classical charge potential. Alternatively, the electron–

nuclear attraction can be found by setting one of the screening

parameters, � or �, to infinity (because the nucleus is not

damped). The electron–nuclear attraction energies for models 1
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and 2 are

Ech�nucl
1 ¼ qAZB

R
1� expð��RÞ 1þ �R

2

� �� �

þ qBZA
R

1� expð��RÞ 1þ �R

2

� �� �
; ð20aÞ

Ech�nucl
2 ¼ qAZB

R
1� expð��RÞð ÞþqBZA

R
1� expð��RÞð Þ: (20b)

Therefore, the total charge–charge penetration energies in

models 1 and 2 are:

Ech�ch
pen1 ¼�qAqB

R

expð��RÞ �4

ð�2��2Þ2 1� 2�2

�2��2
þ�R

2

� �

þexpð��RÞ �4

ð�2��2Þ2 1� 2�2

�2��2
þ�R

2

� �
2
6664

3
7775;

�qAZB
R

expð��RÞ 1þ�R

2

� �
�qBZA

R
expð��RÞ 1þ�R

2

� �
:

(21a)

Ech�ch
pen2 ¼�qAqB

R
expð��RÞ �2

�2��2
þexpð��RÞ �2

�2��2

� �

�qAZB
R

expð��RÞ�qBZA
R

expð��RÞ: ð21bÞ

When the screening parameters � and � are equal, these equa-

tions have poles at � ¼ �. One can reevaluate the charge–charge

integrals by setting � ¼ �, or calculate the limit of � ? �. This
leads to

Ech�ch
1 ¼ qAqB

R
1� expð��RÞ 1þ 11

16
�R

��

þ 3

16
ð�RÞ2 þ 1

48
ð�RÞ3

��
ð22aÞ

Ech�ch
2 ¼ qAqB

R
1� expð��RÞ 1þ 1

2
�R

� �� �
: (22b)

The total charge-penetration energies will change accordingly.

Formulas for the charge–charge electrostatic and charge-penetra-

tion energies for model 2 were published previously in Ref. 12,

where it was also shown that damping of only the charge–charge

term gives reasonable results.

Damping of the higher-order terms was not included in the

previous implementation, because the integrals required to evalu-

ate the charge-penetration corrections to the higher terms of the

electrostatic energy, i.e., charge–dipole, dipole–dipole, etc. [see

eq. (18b)], do not have analytic solutions, and numerical analysis

of these integrals was considered to be too CPU-intensive.

Here, an alternative approach is suggested for calculating the

higher-order damping terms. Consider the interaction of a charge

Q with a dipole � (see Fig. 3). The charge corresponds to an elec-

tron density given by eqs. (16a) or (16b). If one assumes that the

dipole is a system of two charges qþ and q� separated by a finite

length d such that qþd ¼ �, and that each of the two charges that

Figure 3. Interaction of charge Q and dipole �.

produce the dipole corresponds to a density with the same form

as that corresponding to charge Q, one can calculate the charge–

dipole energy as the sum of two charge–charge energies in the

limit of d ? 0. For the configuration shown in Figure 3 this will

take the form:

Ech�dip ¼ EQq� þ EQqþ ¼ Qq� f R� d

2

� �
þ Qqþf Rþ d

2

� �

¼ Q�

d
�f R� d

2

� �
þ f Rþ d

2

� �� �

¼ Q�
f Rþ d

2

� �� f R� d
2

� �
d

¼ Q�
@f ðRÞ
@Rz

¼ Q�r� f ðRÞ; ð23Þ

where f(R) is the R-dependent part of the charge–charge electro-

static energy in models 1 or 2, see eqs. (19a), (19b), (22a), and

(22b). This result shows that the charge–dipole energy can be

obtained by differentiating the corresponding charge–charge

energy. This is general for any orientation of charge and dipole.

Using the same approach, one can show that the charge–quadru-

pole and dipole–dipole energies are second derivatives of the

charge–charge energy, the charge–octopole energy is the third de-

rivative, and so on. This can also be shown mathematically based

on the fact that the dipole potential is a derivative of the charge-

potential. The same is true for the densities, since they are con-

nected to the potentials by the Poisson equation. The charge–

dipole and dipole–dipole charge-penetration energies are

Ech�dip
pen1 ¼ qA�B

R�

R3

"
expð��RÞ �4

ð�2 � �2Þ2

� 1� 2�2

�2 � �2

� �
ð1þ �RÞ þ ð�RÞ2

2

 !
þ gð�RÞ

#

þ ZA�B

R�

R3
expð��RÞ 1þ �Rþ ð�RÞ2

2

 !
ð24Þ

Edip�dip
pen1 ¼� �A�B

31R�R� � R2���
R5

�
expð��RÞ �4

ð�2 � �2Þ2
1� 2�2

�2��2

	 

ð1þ �RÞ þ ð�RÞ2

2

	 

þ gð�RÞ

2
664

3
775

� �A�B

R�R�
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"
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� � 2�2

�2 � �2
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Ech�ch
pen2 ¼ qA�B

R�

R3
expð��RÞ �2

�2 � �2
ð1þ �RÞ þ gð�RÞ

� �

þ ZA�B

R�

R3
expð��RÞð1þ �RÞ ð26Þ

Edip�dip
pen2 ¼� �A�B

3R�R� � R2���
R5

� expð��RÞ �2

�2 � �2
ð1þ �RÞ þ gð�RÞ

� �

� �A�B

R�R�

R5
expð��RÞ �2

�2 � �2
ð�RÞ2 þ gð�RÞ

� �
: ð27Þ

The functions g(�R) in eqs. (24)–(27) are damping functions with

a parameter �; they can be obtained by interchanging � and � in the

corresponding �-damping functions. The R-dependent part of the

charge–quadrupole energy is the same as in the dipole–dipole

energy. Expressions for the charge penetration energies with equal

parameters � and � can be easily obtained by finding the �? � limit

in eqs. (24)–(27). It was noted earlier that the functional dependence

on R in the charge–charge energies is similar to that of the corre-

sponding potentials. This is also true for the higher-order energies.

Analytic gradients for all of the damping energy terms de-

scribed earlier have been implemented. These formulas are easily

obtained by differentiating the corresponding energy terms.

For consistency, if only the charge–charge energy term is

screened, only the first (charge) part of the potential should be

augmented by the damping function. If the charge–dipole damp-

ing term is added to the energy, the dipole potential also should

be screened. Damping of the quadrupole potential allows intro-

duction of the charge–quadrupole and dipole–dipole damping

terms. In the following, two models are considered: (i) only the

charge–charge part of the energy and the charge part of the

potential are screened, and (ii) the charge–charge, charge–dipole,

charge–quadrupole, and dipole–dipole terms of the energy, along

with the charge, dipole, and quadrupole potentials are screened.

Computational Details

All calculations were performed with the quantum chemistry pro-

gram GAMESS.38

Running EFP calculations is a two-step procedure. In the first

MAKEFP step, the polarization and dispersion points are gener-

ated, as is the wave function required for further calculation of the

exchange-repulsion term. The analytic or numerical Stone proce-

dure is used to generate the electrostatic multipolar potential. The

difference between the multipolar and ab initio potentials is mini-

mized by introducing the damping parameter �. One can choose

between damping models and levels of damping. The second step is

to combine the potential(s) generated by the MAKEFP run(s) for

each fragment and give a starting geometry of the molecular cluster

of interest.

Optimization [see eq. (6)] of the damping parameters is per-

formed on the grid of points using the Powell minimization algo-

rithm. The performance of three different grids was examined: a

cubic grid, geodesic grid,39 and Connolly grid.40,41 In the cubic

grid, the fragment is placed in a three-dimensional Cartesian grid

with user-defined spacing (usually, 0.5 bohr). Two concentric

spheres are placed around each atom and the bond mid-point, and

any grid points outside these spheres are discarded. The radii of

the two spheres determine the minimum and maximum radii of

grid. Previously,12 the recommended values of these parameters

for model 2 with charge–charge screening were 67 and 300% of

the Van der Waals (vdW) radii of the corresponding atom. In geo-

desic and Connolly grids, points are placed on a number of spheres

of increasing radii with centers at each atom and bond mid-point,

starting from the sphere with minimum radius.

Geodesic and Connolly grids have different algorithms for dis-

tributing points on the surface of each sphere. In the Connolly grid,

the points on each sphere are distributed to approximately preserve

the point density, i.e., a sphere of larger radius has more points. The

drawback of this approach is that the distribution of points on each

sphere is not very uniform. In the geodesic grid, each sphere has the

same number of points, distributed based on a tessellation scheme.

As a result, the point distribution on each sphere is very uniform,

but the angular point density is not preserved. The spacing between

the spheres and the total number of spheres in both Connolly and

geodesic grids can be varied. Of course, this determines the radial

grid density and the maximum radius of the grid.

When the spacing between the points in each grid is small

enough, the minimization procedure using any of the three grids

results in similar parameters. However, the convergence of these pa-

rameters as the number of grid points is increased depends on the

type of grid used. For example, water requires *16,000 points for

the cubic grid, *8000 points for the Connolly grid, and *3500

points for the geodesic grid. At smaller numbers of points, i.e., at

larger spacing, the Connolly and cubic grids produce large fluctua-

tions in the optimized parameters. The instability of cubic and Con-

nolly grids at small point densities occurs because the most impor-

tant fitting region is near the nuclei where the potential is very

strong; a large number of points is required in this region. Because

the cubic and Connolly grids have isotropic point distributions over

all space, a very large total number of points is required. On the

other hand, the geodesic grid has a higher point density at smaller

distances from the nuclei and, therefore, is more stable. The stability

of the optimized damping parameters with respect to the grid size

and density, combined with the smaller computational time, sug-

gests that the geodesic grid is the most appropriate for the present

purposes. The parameters of the geodesic grid used throughout this

work are 25 spheres with spacing 0.1 vdW between them, where

vdW refers to the Van der Waals radius; points on each sphere were

distributed by an icosahedral pattern of third order (92 points on a

sphere); the minimum radius of the grid (radius of the first sphere)

is model-dependent, and is discussed in detail in the next Section.

The geometries of dimers considered in this work were

obtained by the following procedure: first, second order perturba-

tion theory (MP2)42 and the 6-311G(d,p)43,44 basis set were used

to obtain equilibrium geometries of each monomer except ben-

zene. These internal monomer geometries were kept frozen dur-

ing MP2/6-311þþG(d,p)43–45 optimization of dimer geometries.

These dimer geometries are referred to in the following as equi-

librium geometries. Exceptions from the general procedure were

made for ethylene and benzene dimers. For benzene, MP2/aug-

cc-pVTZ46,47 monomer geometries from Ref. 19 were used. Two
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dimer configurations, the sandwich with R ¼ 3.7 Å and the T-

shaped form with R ¼ 5.0 Å, were considered (see Fig. 8). For

ethylene dimer, two possible structures were considered: D2d, the

global minimum, with R ¼ 3.8 Å, and the sandwich structure with

R ¼ 3.8 Å (see Fig. 8).

EFPs for each monomer discussed in the Performance of Damp-

ing Models section were obtained at the monomer equilibrium ge-

ometry with the 6-31þþG(d,p)44,45,48 basis set (6-311þþG(d,p)

basis for water). Then, EFP single point energy calculations were

performed at the dimer equilibrium geometries. The Morokuma–

Kitaura analysis49 in the EFP basis was performed for each dimer at

its equilibrium geometry. In all cases, the results of Morokuma–

Kitaura analysis were consistent with those of the reduced varia-

tional space analysis,50 with differences 0.01 kcal/mol or less. The

electrostatic energy from the Morokuma analysis was compared

with the EFP electrostatic energy. Differences between the EFP and

Morokuma electrostatic energies are analyzed in the next section.

For the benzene calculations in the Benzene Dimer section, the

EFP was constructed using the 6-311þþG(3df,2p) basis set, at the

monomer geometry described earlier. This basis set was chosen,

because the correlation consistent basis sets are not appropriate for

the Hartree–Fock-based electrostatic and repulsion terms.

Results and Discussion

Performance of Damping Models

In this section the performance of damping models 1 and 2 with

different levels of screening are analyzed. The key issues are

(i) the relative performance and advantages and disadvantages of

models 1 and 2; (ii) the relative importance of charge–charge

damping versus high-order damping in models 1 and 2; and (iii)

the performance of analytic and numerical DMAs in conjunction

with different types of damping. Answering these questions will

facilitate general recommendations regarding the evaluation of

electrostatic interactions.

The performance of the damping models is analyzed by com-

paring the EFP electrostatic energy with the electrostatic energy

from the Morokuma analysis in several different dimers. It is

assumed that the difference between undamped EFP and Moro-

kuma electrostatic energies is due to the charge-penetration:

Epen ¼ Emultipole
ES � EMorokuma

ES : (28)

Damping of the EFP (multipole) electrostatic energy should ac-

count for the charge-penetration energy and decrease the difference

between EFP and Morokuma electrostatic energies. All figures in

this section have the following format: differences between the EFP

(damped and not damped) and Morokuma electrostatic energies are

plotted versus the intermolecular separation (see Fig. 4) or versus

grid parameter rmin, at the equilibrium geometries of the dimers

(Figs. 5–7).

A comparison of different damping models for water dimer is

presented in Figure 4. The abscissa is the relative O��O distance

between two water molecules, such that 0 Å represents the equi-

librium O��O distance, negative values bring the fragments

closer together and positive values move them further apart along

the line connecting the oxygen atoms. Figures 4a and 4b show the

results based on the analytic and numerical DMAs, respectively.

Figure 4. Errors in the electrostatic energy (kcal/mol) in the water dimer as a function of oxygen–oxygen

distance. (a) Analytic DMA is used to assign multipole moments; (b) numerical DMA is used. Performance

of damping models 1 and 2 with charge–charge only and high-order damping terms is shown. Optimal rmin

(in parts of vdW) was chosen for each model: 0.5/0.6 for model 1 with charge–charge damping, 0.8/0.8 for

model 1 with high-order damping, 0.5/0.5 for model 2 charge–charge damping, and 0.6/0.8 for model 2 high-

order damping, where the first and second numbers correspond to analytic and numerical DMAs, respectively.
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The optimal value of rmin (see below) was used for each curve. A

horizontal straight line would correspond to exact agreement with

the Morokuma electrostatic energy. For the analytic DMA, all

damping models significantly improve the undamped multipolar

energy. As expected, for both models 1 and 2, adding damping

due to higher multipoles increases the magnitude of the multipo-

lar electrostatic energy (the corresponding curve lies lower). Both

charge–charge and higher-order damping curves of model 2 are

nearly parallel to the abscissa, and so the charge-penetration cor-

rection is fully captured at all intermolecular distances in the

range from �0.8 to þ0.8 Å from equilibrium. On the other hand,

for model 1, both charge–charge and high-order damping curves

drop at shorter intermolecular distances, because the electrostatic

energy in this region is overestimated; the high-order damping

contributes to the overestimation. Similar behavior occurs in the

model 1 curves for other dimers, and so the overestimation of the

Figure 5. Errors in the electrostatic energies (kcal/mol) calculated using analytic DMA in 6 homomo-

lecular dimers at their equilibrium geometries as a function of rmin. (a) Model 1 with charge–charge

damping, (b) model 2 with charge–charge damping, and (c) model 2 with high-order damping is used

for screening. Electrostatic errors without damping are given in the right hand side of each graph.

Figure 6. Errors in the electrostatic energies (kcal/mol) calculated using numerical DMA in 6 homomolec-

ular dimers at their equilibrium geometries as a function of rmin. Model 2 with (a) charge–charge damping

and (b) high-order damping was used for screening. Electrostatic errors without damping are given in the

right part of each graph.
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electrostatic energy at short intermolecular distances is general

for model 1. This probably means that the damping functionR damp

1
¼ 1� expð��RÞ 1þ �R

2

� �
overestimates damping near the

nuclei, and that the correct curve for many molecules lies some-

where in between f1 and f2 (see Fig. 1).
Results for the numerical DMA, shown in Figure 4b, are less

encouraging. The model 1 high-order damping curve strongly over-

estimates the electrostatic energy at short intermolecular distances.

Model 2 curves deviate more from the correct (Morokuma) value

than for the analytic DMA. The model 1 charge–charge damping

curve is nearly parallel to the abscissa. The undamped curve rises

more sharply and higher than for the analytic DMA. Thus, the nu-

merical multipoles produce larger errors with respect to the refer-

ence Morokuma results. The worse performance of the damping

models for the numerical DMA occurs because of intrinsic problems

in the numerical analysis, as will be discussed in some detail later.

Figure 5 compares the performance of three damping models

based on the analytic DMA for 6 typical solvent dimers: water,

methanol, acetone, DMSO, dichloromethane, and acetonitrile.

Each dimer is considered at its equilibrium geometry. The abscissa

of each graph is the grid parameter rmin in fractions of the vdW ra-

dius of each atom; rmin determines the radius of the first sphere

with grid points. As discussed in the Electrostatic Screening sec-

tion, the results of model 2 are expected to be sensitive to this pa-

rameter. The results of model 1 are expected to be less sensitive to

the choice of rmin. This is illustrated by the model 1 charge–charge

damping results, shown in Figure 5a: there is only mild dependence

on rmin for water, dichloromethane, and acetonitrile. The methanol

and DMSO curves are still not parallel to the abscissa, with the

DMSO curve being very irregular. Severe convergence problems

occurred for acetone for rmin values � 0.6 vdW. In general, the

results shown in Figure 5a suggest that for model 1 with charge–

charge damping, any value of rmin in the range 0.5 to 0.9 vdW can

be used to obtain damping parameters. The damping procedure

recovers 70–90% of the charge-penetration energy at equilibrium

distances. As discussed for the water dimer, model 1 overestimates

the electrostatic energy at shorter distances. Given these results,

model 1 with high-order damping is not considered here.

Model 2 charge–charge and high-order damping curves are

shown in Figures 5b and 5c. For all dimers, the errors in the elec-

trostatic energy depend on rmin. In general, for dimers with stron-

ger electrostatic interaction, and, consequently, shorter intermolec-

ular separations, such as methanol and water, smaller values of rmin

are preferable. For weakly interacting molecules, e.g., dichlorome-

thane and acetone, larger rmin values are more appropriate. Higher

order damping produces slightly more consistent results, with gen-

erally larger optimal rmin values. However, comparison of the two

sets of curves does not exhibit significant improvement when

higher order damping terms are included. This is most likely due

to the fact that the analytic Stone DMA overestimates charges on

atoms and underestimates higher order moments. Therefore, damp-

ing is dominated by the contribution of the charges.

Based on the foregoing, the optimal model 2 rmin are 0.4–0.5

vdW for methanol, 0.5–0.8 for water, and 0.7–0.9 for weakly

bonded molecules. Note that rmin values of 1.0 vDW and higher

are likely to result in poorly converged damping parameters and

are not recommended. As discussed for model 1, model 2 damp-

ing recovers 70–95% of the charge-penetration energy, with abso-

lute errors up to 0.7–0.8 kcal/mol.

Figure 6 shows curves obtained using model 2 and the numeri-

cal DMA. In general, the numerical DMA results are worse than

those obtained with the analytic DMA. The higher order damping

terms (Fig. 6b) seem to be especially troublesome. For some mole-

cules, only 50% of the penetration energy is recovered, with maxi-

Figure 7. Errors in the electrostatic energies (kcal/mol) calculated using numerical DMA in 2 structures

of the ethylene and benzene dimers as a function of rmin. Model 2 with (a) charge–charge damping and

(b) high-order damping was used for screening. Electrostatic errors without damping are given in the

right part of each graph.
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mum errors as large as 1.5 kcal/mol. It is interesting to examine

the differences between the EFP electrostatic energies without

damping and the Morokuma electrostatic energies, given in the

vertical box on the right side of each graph. Recall that these dif-

ferences are the charge penetration energies that must be corrected

by the damping. The numerical and analytic charge penetration

energies are rather different from each other. For example, these

energies are, respectively, 6.0 and 3.4 kcal/mol for DMSO, 3.0 and

1.2 kcal/mol for acetone, and 1.5 and 2.2 kcal/mol for methanol.

Thus, the damping correction clearly has some contribution from

some intrinsic DMA inaccuracy. If one subtracts from all curves in

Figures 6a and 6b, the difference between numerical and analytic

undamped energies, the resulting damped curves look similar to

those in Figures 5b and 5c. It is likely that the numerical DMA is

not fully converged with respect to the multipole expansion

(through octopoles) and the corresponding energy terms (through

quadrupole–quadrupole). As discussed earlier, using different pa-

rameters in the numerical DMA results in different electrostatic

energies, which can be favorable or unfavorable for a given mole-

cule. Thus, the poor performance of the damping models with the

numerical DMA is due to problems in the numerical DMA rather

than the damping model. So, using the numerical DMA for calcu-

lating the electrostatic energies is possible but should be done with

caution. If used, rmin ¼ 0.5 is recommended for the charge–charge

model 2 and rmin ¼ 0.7–0.8 is recommended for model 2 with

higher order damping.

Finally, consider two very weakly bound systems, ethylene

dimer and benzene dimer. While the dimers discussed earlier are

dipole dominant, ethylene and benzene are quadrupole molecules

and their electrostatic interaction is very weak. So, electrostatic

damping in these molecules may have different patterns than

those observed for the dipole molecules.

Figure 7 presents the results for the T-shaped and sandwich

structures of benzene dimer, and the D2d and sandwich structures

of ethylene dimer. The numerical DMA was employed with model

2 charge–charge (Fig. 7a) and higher-order (Fig. 7b). As explained

in the Numerical DMA section, the numerical DMA was used for

benzene because the analytic DMA diverges. The sandwich struc-

tures in ethylene and benzene dimers and the corresponding D2d and

T-shaped structures are expected to have similar bonding patterns.

In comparison to benzene dimer, the ethylene sandwich structure

used in these calculations has R ¼ 3.8 A, similar to R ¼ 3.7 A in the

benzene sandwich. However, in contrast to the benzene dimer, the

potential of the sandwich configuration of the ethylene dimer is

unbound.51 So, the ethylene and benzene electrostatic terms, with

and without damping should also be similar. Indeed, the correspond-

ing ethylene and benzene curves in Figure 7 are very similar. The

D2d and T-shaped structures have very similar charge-penetration

energies, and they are improved by damping in a similar manner.

The penetration energy in the benzene sandwich structure is

nearly twice as large as the penetration energy in sandwich ethyl-

ene, because the former has more interacting centers. Nonethe-

less, the damped curves for ethylene and benzene sandwich struc-

tures are similar. The screened electrostatic energy is underesti-

mated in the sandwich structures. As a result, the electrostatic

term will underestimate binding in the sandwich compounds. For

ethylene and benzene, and probably, other quadrupole molecules,

rmin ¼ 0.7–0.9 vdW, with higher order damping is recommended.

Figure 8. (a) Sandwich and D2d configurations of the ethylene dimer. (b) Sandwich, T-shaped, and

parallel-displaced configurations of the benzene dimer.
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Benzene Dimer

The benzene dimer, the simplest among �-stacking systems, is

both fundamental and very challenging to theory and experiment

due to its small binding energy (2–3 kcal/mol). Combined theo-

retical and experimental studies suggest that there are two or

three minima on the potential energy surface of the benzene

dimer: The perpendicular T-shaped and parallel-slipped configu-

rations, with the sandwich structure being highest in energy (see

Fig. 8). A rotational experiment by Arunan and Gutowsky23

determined a 4.96 Å separation between the benzene centers of

mass in the T-shaped configuration. The binding energy of the

dimer was determined to be D0 ¼ 1.6 6 0.2 kcal/mol by Krause

et al.28 and as 2.4 6 0.4 kcal/mol by Grover et al.26

Accurate ab initio calculations for the benzene dimer require

using both an extensive basis set with diffuse functions and a

high level of dynamic correlation. The most comprehensive

analysis of the benzene dimer has been presented by Sherrill and

co-workers.18,19 They combined MP2 energies using the aug-cc-

pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ bases with energies

obtained from coupled-cluster singles and doubles with pertur-

bative triple corrections [CCSD(T)]52 in the aug-cc-pVDZ basis

to estimate CCSD(T)/aug-cc-pVQZ potential energy curves for

the dimer. They also analyzed the nature of the �-� interactions

in the T-shaped and sandwich configurations of the dimer using

symmetry-adapted perturbation theory (SAPT).53 SAPT parti-

tions the total interaction energy of a complex into electrostatic,

exchange-repulsion, polarization, and dispersion contributions.

So, a qualitative analysis of the quality of the EFP results may

be assessed by comparing EFP and SAPT/aug-cc-pVDZ poten-

tial curves for each energy term separately, and by comparing

the total EFP potential energy curves for the benzene dimer with

the CCSD(T)/aug-cc-pVQZ curves from Ref. 18. Since the

SAPT/aug-cc-pVDZ relative energies are within 0.2–0.3 kcal/

mol of those obtained from CCSD(T)/aug-cc-pVQZ, small EFP

errors with respect to SAPT may be interpreted as small errors

with respect to CCSD(T)/aug-cc-pVQZ.

Figures 9–12 present comparisons of the EFP and SAPT results

for electrostatic, exchange-repulsion, polarization, and dispersion

terms, respectively. The left hand side of each figure shows the

potential energy curves for the sandwich configuration and the right

hand sides give the T-shaped curves. The equilibrium inter-mono-

mer distances (defined in Fig. 8) in the benzene dimer vary from R
¼ 3.7 Å to 4.0 Å in the sandwich and from R ¼ 4.9 Å to 5.1 Å in

the T-shaped configurations depending on the level of theory and

basis set used. The CCSD(T)/aug-cc-pVQZ values are R ¼ 3.9 Å

and R ¼ 5.0 Å, respectively. These intermolecular separations are

used as the reference values in the following discussion.

To emphasize the importance of electrostatic damping, the

electrostatic curves are plotted both with and without damping in

Figure 9. Model 2 with rmin ¼ 0.7 vdW based on the numerical

DMA was used for damping. For both sandwich and T-shaped

structures, the EFP curves without damping underestimate the

electrostatic interaction in the equilibrium region by more than

1 kcal/mol. The damping correction accounts for most of the

charge-penetration energy, so that the damped EFP energies differ

from the SAPT values by 0.2–0.3 kcal/mol at the equilibrium ge-

ometries. Damping in the sandwich structure underestimates the

penetration energy whereas damping in the T-shaped configura-

tion overestimates it. Thus, the equilibrium T-shaped configura-

tion is over-stabilized by about 0.5 kcal/mol with respect to the

sandwich geometry. Consequently, equilibrium intermonomer

separations will tend to be larger in the sandwich and smaller in

the T-shaped structures, because the difference between the EFP

and SAPT energies becomes larger at shorter distances. It is nec-

essary to stress the importance of electrostatic damping for a sys-

Figure 9. Comparison of the EFP and SAPT electrostatic energies (kcal/mol) in the benzene dimer for

(a) sandwich configuration and (b) T-shaped configuration. Both damped and undamped EFP electro-

static curves are shown. SAPT energies from Ref. 18.
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tem like the benzene dimer, because both equilibrium geometries

and binding energies would be significantly in error without the

damping term.

The exchange-repulsion energy curves are shown in Figure 10.

At the equilibrium sandwich geometry (Fig. 10a), the exchange-

repulsion energy is underestimated by about 0.2–0.3 kcal/mol,

whereas in the T-shaped structure it is in very good agreement with

the SAPT exchange-repulsion energy. The net effect of this is an

over-stabilization of the sandwich with respect to the T-shaped

configuration by 0.2–0.3 kcal/mol.

The magnitudes of the polarization energies in the benzene

dimer are small (see Fig. 11). The EFP polarization over-stabi-

lizes the sandwich structure by 0.1 kcal/mol and under-stabilizes

the T-shaped form by 0.3 kcal/mol. The net result is over-binding

the sandwich by 0.4 kcal/mol at equilibrium.

The dispersion energy in benzene dimer (see Fig. 12) can be

very important, depending on the isomer. The EFP dispersion

curve for the sandwich configuration is in good agreement with the

SAPT curve in the equilibrium region, and the curve for the T-

shaped configuration underestimates the SAPT curve by only 0.3–

Figure 10. Comparison of the EFP and SAPT exchange-repulsion energies (kcal/mol) in the benzene

dimer for (a) sandwich configuration and (b) T-shaped configuration. SAPT energies from Ref. 18.

Figure 11. Comparison of the EFP and SAPT polarization energies (kcal/mol) in the benzene dimer for

(a) sandwich configuration and (b) T-shaped configuration. SAPT energies from Ref. 18.
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0.4 kcal/mol. Similar to the polarization term, the EFP dispersion

predicts the sandwich configuration to be too low by 0.3–0.4 kcal/

mol with respect to the T-shaped dimer. In both dimer configura-

tions the EFP dispersion curves are too shallow. This may be due

to the omission of higher order terms in the dispersion energy.

Based on the preceding analysis of each energy term that con-

tributes to the EFP interaction energy, one can conclude that the

net effect of the EFP errors, relative to SAPT will be to over-bind

the sandwich structure with respect to the T-shaped dimer by

about 0.5 kcal/mol. This is indeed demonstrated by Figure 13, in

which the total binding energies of both structures are plotted.

Compared to CCSD(T), EFP over-binds the sandwich dimer by

about 0.4 kcal/mol and under-binds the T-shaped structure by 0.1

kcal/mol. The equilibrium intermolecular separations calculated

by EFP are 0.1–0.2 Å longer than those calculated by CCSD(T).

Figure 14 shows the potential energy curves for the parallel-

displaced configuration with R1 ¼ 3.4, 3.6, and 3.8 Å, calculated

by EFP and CCSD(T)/aug-cc-pVQZ. At the CCSD(T) equilib-

rium inter-monomer separation of 3.6/1.6 Å, the EFP and

CCSD(T) binding energies differ by 0.8 kcal/mol. The EFP equi-

Figure 12. Comparison of the EFP and SAPT dispersion energies (kcal/mol) in the benzene dimer for

(a) sandwich configuration and (b) T-shaped configuration. SAPT energies from Ref. 18.

Figure 13. EFP, SAPT, and CCSD(T) potential energy curves (kcal/mol) for the (a) sandwich configura-

tion and (b) T-shaped configuration of the benzene dimer. SAPT and CCSD(T) results from Ref. 18.
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librium geometry is R1 ¼ 3.8 Å, R2 ¼ 1.2 Å, versus R1 ¼ 3.6 Å,

R2 ¼ 1.6 Å for CCSD(T). This is not in good agreement as was

found for the other two isomers, although the surface here is very

flat. In the parallel-displaced configuration, the separation

between the monomers is the smallest among the three structures.

Since the EFP electrostatic and presumably exchange-repulsion

terms underestimate the binding energy at short distances in the

sandwich configuration (see Figs. 9a and 10a), this is also prob-

ably true for the parallel-displaced structure. Consequently, the

EFP potential energy curve in the parallel-displaced dimer with

R1 ¼ 3.4 Å lies 2.5–4.0 kcal/mol higher than the corresponding

CCSD(T) curve, and the EFP equilibrium geometry is displaced

to larger R1 and smaller R2 values. However, the EFP curve with

R1 ¼ 3.8 Å (equilibrium value) closely follows the corresponding

CCSD(T) potential curve.

Table 1 summarizes the interaction energies of the three struc-

tures of the dimer calculated by the MP2 and CCSD(T) methods

and by EFP. In all structures, relative to CCSD(T) with the same

basis set, MP2 underestimates the equilibrium distances by 0.1–

0.2 Å and overestimates the binding energies by 0.7–2.1 kcal/mol.

The best agreement between MP2 and CCSD(T) is for the

T-shaped structure, while the worst is for the parallel-displaced

configuration. Comparing EFP with CCSD(T)/aug-cc-pVQZ, EFP

overestimates the inter-monomer separations by 0.1–0.2 Å, and

inaccuracies in the interaction energies are 0.1–0.4 kcal/mol. In

general, the agreement between the EFP and CCSD(T) methods is

very reasonable, and overall EFP is in better agreement with

CCSD(T) than is MP2. This is striking in view of the orders of

magnitude less computer time required by EFP. For example, a

single-point energy calculation in the 6-311þþG(3df,2p) basis set

(660 basis functions) by MP2 requires 142 min of CPU time on

one IBM Power5 processor, whereas the analogous EFP calcula-

tion requires only 0.4 s.

Conclusions

The charge-penetration energy, i.e., the decrease in the classical

electrostatic interaction energy of two multipole expansions due to

the overlap of the electron densities, is a significant part of the total

electrostatic interaction. Introducing a charge-penetration correc-

tion into the EFP method significantly improves the accuracy of

equilibrium geometries and binding energies of weakly interacting

molecules.

This work investigated two different models for evaluating

charge-penetration corrections and the importance of including

damping corrections in multipole energy terms of higher order than

charge–charge (charge–dipole, dipole–dipole, and charge–quadru-

pole). The accuracy of the damping models was studied in con-

junction with alternative methods for distributing multipoles, i.e.,

analytic or numerical DMAs. Both damping models work reason-

ably well, accounting for more than 70% of the charge-penetration

energy. Model 1 is more stable with respect to the grid parameter

rmin, but sometimes experiences difficulties with finding optimal

damping parameters. High-order damping within model 1 is not rec-

ommended. Electrostatic energies calculated by using model 2 are

more dependent on rmin, but there are no difficulties with optimizing

damping parameters. The analytic DMA produces more satisfactory

electrostatic energies than the numerical DMA; the latter is prob-

ably not fully converged with respect to the highest multipole

moment (octopole) used in this study. However, the numerical

DMA can still be used when the analytic DMA breaks down. With

Figure 14. EFP and CCSD(T) potential energy curves (kcal/mol) for

the parallel-displaced configuration of the benzene dimer. CCSD(T)

results from Ref. 18.

Table 1. Equilibrium Geometries (Å) and Interaction Energies (kcal/mol) for Different Configurations

of the Benzene Dimer.

Method Basis

Sandwich T-shaped Parallel-displaced

R Energy R Energy R1 R2 Energy

MP2a aug-cc-pVDZ*b 3.8 �2.83 5.0 �3.00 3.4 1.6 �4.12

aug-cc-pVTZ 3.7 �3.25 4.9 �3.44 3.4 1.6 �4.65

aug-cc-pVQZ*b 3.7 �3.35 4.9 �3.48 3.4 1.6 �4.73

CCSD(T)a aug-cc-pVDZ*b 4.0 �1.33 5.1 �2.24 3.6 1.8 �2.22

aug-cc-pVQZ*b 3.9 �1.70 5.0 �2.61 3.6 1.6 �2.63

EFP 6-311þþG (3df,2p) 4.0 �2.11 5.2 �2.50 3.8 1.2 �2.34

aRef. 18.
bBasis sets as described in Ref. 18.
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the analytic DMA, higher-order damping corrections in model 2

introduce a minor improvement in electrostatic energies of dipole

dimers considered in this work. Using higher-order damping along

with the numerical DMA produces less stable results. However, for

quadrupole molecules, like ethylene and benzene, using high-order

damping is more favorable.

Analysis of bonding in the benzene dimer, a prototype of aro-

matic �-� interactions, shows that the EFP method can accurately

determine equilibrium geometries and interaction energies of this

very challenging system. EFP errors with respect to the CCSD(T)/

aug-cc-pVQZ method are 0.2 Å and 0.1 kcal/mol for the T-shaped

configuration, 0.1 Å and 0.4 kcal/mol for the sandwich configura-

tion, and 0.2/0.4 Å and 0.3 kcal/mol for the most challenging par-

allel-displaced structure. These errors are in general smaller than

the corresponding MP2 errors at a small fraction of the computa-

tional cost. Therefore, it is concluded that EFP can be reliably used

for studying �-� interactions in other and larger systems.

This study shows that in its present implementation, EFP is a

computationally very inexpensive but accurate alternative to

MP2. Moreover, the accuracy of EFP can be systematically

improved by expanding perturbative series in the electrostatic,

polarization, and dispersion terms. The low computational cost of

EFP allows Monte-Carlo and molecular dynamic simulations for

systems consisting of hundreds of molecules, which opens new

horizons in studying intermolecular interactions.
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