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A hybrid quantum mechanics/molecular mechanics (QM/MM) method for the electronic excited states has
been developed. The equation-of-motion coupled cluster with single and double excitations method (EOM-
CCSD) is used for the QM region, while the effective fragment potential (EFP) method describes a MM part.
The EFP method overcomes the most significant limitation of QM/MM by replacing empirical MM interactions
and QM/MM coupling by parameter-free first-principles-based ones, while retaining the computational
efficiency of QM/MM. The developed QM/MM scheme involves quantum-mechanical coupling of the
electrostatic and polarization terms in the QM/MM Hamiltonian and allows accurate calculation of the electronic
excited states of chromophores in various environments. Applications to the water complexes of formaldehyde
and p-nitroaniline show that the orbital relaxation of the solute in the electric field of the solvent provides the
majority of the solvatochromic effect, and the response of the polarizable environment to the density of the
specific electronic state is much smaller in magnitude.

1. Introduction

Differential solvation of the electronic states of a chromophore
in a solvent, called solvatochromism, can be used as a measure
of solute-solvent interactions.1,2 While multiple absorption and
emission spectroscopic studies provide valuable information on
the magnitude and dynamics of solute-solvent coupling,
calculations in the condensed phase still remain a major
challenge to the theoretical community.3 The increased number
of nuclear and electronic degrees of freedom makes accurate
ab initio calculations on a condensed phase system unfeasible
long before the system can approach the bulk. One general
approach to this type of problem is to separate a system into
two parts, such that one (active) part is treated by quantum
mechanical (QM) techniques, and the other, usually larger, part
is calculated by using classical (molecular) mechanics (MM).4

The Hamiltonian of the system then consists of three terms:

where HQM/MM is a coupling term. Separation of the QM and
MM subsystems, in principle, allows one to use any level of
theory in both the QM and MM parts.

There are an increasing number of studies devoted to
description of the electronic spectroscopy in the condensed
phase.5-16 For example, electronic excited states of solutes have
been extensively studied by using dielectric continuum
methods.5-7,11,13,14,17 Although continuum models are compu-
tationally inexpensive, they cannot describe explicit solvent-solute
interactions such as hydrogen bonding. Another promising
approach for studying electronic spectroscopy in large molecular
systems is by using fragment-based techniques such as the
fragment molecular orbital method.18-22 Polarizable QM/MM
models for electronic excited states have been developed in

several groups,16,23-27 starting by pioneering work of Warshel
and co-workers who used the Langevin dipole solvent model.28,29

Traditionally, the MM part in QM/MM is included through
parametrized force fields. A major drawback of such an
approach is the dependence on fitted parameters for a chosen
force field, such that different parametrizations may be optimal
for different problems and the best parameters are often not
well-defined. There is also a concern regarding the absence of
short-range repulsion and dispersion, and often polarization
coupling in the QM/MM term, although these issues have not
been well studied.3

In order to overcome these drawbacks, the effective fragment
potential (EFP) method30,31 is used for the MM part. In the EFP,
each solvent molecule is represented by an effective fragment
(EF) with a set of parameters determined from a preparatory
ab initio calculation. The uniqueness of the EFP method is that
all EFP force field parameters are deriVed from first principles,
that is, the method is free of parameter fitting. The EFP
interaction energy is a sum of electrostatic (or Coulomb),
polarization (or induction), dispersion, and exchange-repulsion
terms. Through its force field, the EFP fragments can interact
with each other and with ab initio components. It has been
shown that EFP reproduces structures and binding energies in
hydrogen- and π-bonded systems with an accuracy similar or
in some cases even better, than that of the second-order
Moller-Plesset perturbation theory, MP2.32-34 Moreover, in
order to improve accuracy and extend applicability of the EFP
method to strongly interacting species (e.g., polar or ionic
fragments), ab initio-derived short-range screening functions for
the electrostatic, polarization, and dispersion terms have been
introduced.32,35 Recently, EFP1 water potential was combined
with configuration interaction singles (CIS) and time-dependent
density functional (TD-DFT) methods to model absorption
spectra of chromophores in water.36,37

This work describes development of the hybrid QM/MM
method for the electronic excited states, in which the equation-
of-motion coupled-cluster with single and double excitations38-40

(EOM-CCSD) method is used for the QM region and the
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effective fragment potential method describes the MM part. This
QM/MM scheme has been implemented in the Q-Chem41

electronic structure package; details of the EFP implementation
in Q-Chem will be reported elsewhere.42,43 Accuracy of the
developed EOM-CCSD/EFP scheme is analyzed on examples
of the electronic excitations in the formaldehyde-water and
p-nitroaniline-water complexes.

2. Theory

a. Effective Fragment Potential Method. There are four
interaction terms in the general EFP model potential (general
EFP potential has been originally called EFP2 to be distin-
guished from the water potential EFP130,44), each of which may
be thought of as a truncated expansion: Coulombic (electro-
static), induction (polarization), exchange repulsion, and disper-
sion (van der Waals):

The terms in the EFP potential may be grouped into long-
range, (1/R)n distance-dependent, and short-range interactions,
which decay exponentially. The Coulombic, induction, and
dispersion are long-range interactions, whereas the exchange
repulsion and damping terms are short-range. EFP has been
described in detail in several papers,30,31,45,46 therefore only a
brief overview of the terms will be presented below.

The Coulomb portion of the electrostatic interaction, Ecoul, is
obtained using the Stone distributed multipolar analysis.47,48 This
expansion is truncated at the octopole term. Atom centers and
bond midpoints are used as expansion points. Classical Cou-
lombic interactions become too repulsive at short-range, when
the electronic densities of the interacting fragments overlap and
charge-penetration effects play a role. To correct for these
quantum effects, electrostatic interactions are moderated by an
exponential screening term.32,35,49

Induction (polarization), Epol, arises from the interaction of
distributed induced dipoles on one fragment with static multipole
field and a field due to induced dipoles on the other fragments.
The polarizability expansion is truncated at the first (dipole)
term; the molecular polarizability tensor is expressed as a tensor
sum of anisotropic localized molecular orbital (LMO) polariz-
abilities. Therefore, the number of polarizability points is equal
to the number of bonds and lone pairs in the system. The
induction term is iterated to self-consistency, so it is able to
capture some many body effects.50

Dispersion interactions are expressed by an inverse R
expansion,

The first term in the expansion, n ) 6, corresponds to the
induced dipole-induced dipole (van der Waals) interactions.
In EFP, coefficients C6 are derived from the (imaginary)
frequency-dependent polarizabilities integrated over the entire
frequency range.51,52 Distributed (centered at LMOs) dynamic
polarizability tensors are obtained using the time-dependent
Hartree-Fock (HF) method. In addition, the contribution of the
n ) 8 term is estimated as one-third of the n ) 6 term.
Tang-Toennies damping is used to damp the dispersion
interactions at short-range.53

The exchange repulsion interaction between two fragments
is derived as an expansion in the intermolecular overlap,

truncated at the quadratic term.54-56 Kinetic and overlap one-
electron integrals are calculated between each pair of fragments
on-the-fly. Thus, each effective fragment should carry a basis
set and localized wave function, with the smallest recommended
basis set being 6-31++G(d,p).57

b. QM/EFP Scheme for the Ground State. In a presence
of the ab initio region, the Coulomb and polarization parts of
the EFP potential contribute to the quantum Hamiltonian through
additional one-electron terms:

Electrostatic contribution V̂elec to the Hamiltonian consists of
four terms, originating from the electrostatic potential of the
corresponding multipoles (charges, dipoles, quadrupoles, and
octopoles). Polarization component V̂pol of the one-electron
Hamiltonian consists of the potential due to induced dipoles of
the effective fragments:

where µk and µ̃k are the induced dipole and conjugated induced
dipole at the distributed polarizability point k, and R and a are
the distance and its x,y,z component between the polarizability
point and the position of an electron. Summation in eq 5 comes
over all polarizability points of all fragments. Thus, the wave
function of the ab initio region depends on the values of the
induced dipoles, which in turn depend on the magnitude of the
static and induced fields due to other fragments and on the field
created by the wave function:

where Rab is the polarizability tensor, Ftotal is the total field at
the polarizability point k, Fmult and Find are fields due to static
fragments’ multipoles and induced dipoles, and Fai and Fnuc are
electronic and nuclear fields due to the quantum region. To
satisfy the self-consistency requirements, a two-level iterative
procedure is employed. At each iteration of the HF cycle, the
induced dipoles of the effective fragments are iterated until self-
consistency with each other and with the current wave function.
As a result, upon convergence of HF, the obtained induced
dipoles are consistent with each other and with the electronic
wave function. The total polarization energy of the QM/MM
system (at the HF level) is:

In the present EFP implementation, dispersion and exchange-
repulsion interactions between the active (ab initio) region and
theeffectivefragmentsaretreatedsimilarlytothefragment-fragment
interactions, as additive corrections to the total energy. Thus,
they do not affect the electronic excitation energies.

EEFP-EFP ) Ecoul + Epol + Edisp + Eexrep (2)

Edisp ) ∑
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The total ground-state energy of the QM/EFP system is given
as:

where ψgr is the ground state wave function, Ĥelec and Ĥgr
pol are

electrostatic and polarization EF contributions to the Hamilto-
nian, and the subscript “gr” means that the induced dipoles
corresponding to the electronic density of the ground state are
used. Ecoul is the electrostatic EFP-EFP energy; Eexrep and Edisp

include the exchange-repulsion and dispersion energies of both
EFP-EFP and ab initio-EFP regions, and Epol,gr is the self-
consistent ground state polarization energy of the QM/EFP
system given in eq 8.

c. EOM-CCSD/EFP Scheme for the Electronic Excited
States. In the EOM-CCSD/EFP calculations, the reference state
CCSD equations for the T cluster amplitudes are solved with
the HF Hamiltonian modified by electrostatic and polarization
contributions from the effective fragments (eq 4). Induced
dipoles of the fragments are kept unchanged during the coupled
cluster iterations and are not reoptimized for the coupled-cluster
wave function. This treatment is valid when the HF wave
function is a good zero-order approximation to the coupled-
cluster wave function and the electric fields created by these
wave functions are similar. In this case, errors introduced by
omitting the polarization self-consistency between the quantum
and effective fragments’ regions can be neglected. For the
systems considered in this work, these errors were estimated to
be less than 0.001 eV.

The electronic excitation energies in EOM-CCSD are found
from the eigenvalue problem:

where Hj ) e-THeT is the similarity transformed Hamiltonian,
T is the cluster operator (found from solving the CCSD
equations for the reference state), R is the excitation operator,
and E is the excitation energy. T and R operators are truncated
at the second level, i.e., T ) T1 + T2 and R ) R1 + R2. The
Davidson iterative procedure used to diagonalize the transformed
Hamiltonian Hj is solved with constant response of the EFP
environment, that is, the induced dipoles of the effective
fragments are kept at their “ground state” values. The QM/EFP
excitation energy is then:

where ψex ) eTRψgr is the excited state EOM-CCSD wave
function.

To estimate a response of polarizable environment to the
change of the electronic wave function upon excitation, the one-
electron density of each excited state is calculated and used to
obtain the EFP induced dipoles and polarization energy corre-
sponding to the given electronic state Epol,ex, resulting in the
following equation:

Polarization energy corresponding to these “excited state”
induced dipoles µex

k and µ̃ex
k is:

where Fex
ai is the field due to the excited state one-electron

density. Additional correction Epol,corr to eq 12 should be added
to account for the change in the Ĥpol upon excitation:

The last expression would be exact if the excited-state electronic
wave function and the EFP induced dipoles were obtained self-
consistently; otherwise it is an approximation only, providing,
however, the leading contribution to the interaction of the excited
state wave function with the ground-state induced dipoles.24

Combining eqs 8, 13, and 14, we arrive to the following
expression:

that describes the response of the polarizable environment to
the given excited state. ∆Epol is added to the electronic excitation
energy of the considered state. The first two terms in eq 15
correspond to the difference of the polarization energy of the
QM/EFP system in the excited and ground electronic states;
the last term is the leading correction to the interaction of the
ground-state-optimized induced dipoles with the wave function
of the excited state.

The developed formalism for calculation of the electronic
excitation energies in the hybrid QM/EFP system requires the
knowledge of the one-particle excited-state density. In case of
EOM-CCSD, where the Hamiltonian is non-Hermitian, the one-
particle density matrix is obtained by subsequent solving right
and left eigenvalue problems;58 thus, the cost of the calculation
is approximately doubled compared to the calculation of the
excitation energy in the gas-phase. The cost of the calculation
of the interaction energy of the EFP region is negligible
compared to the cost of the excited state calculation.

The interface between EOM-CCSD and EFP can be easily
extended to other excited state methods of the EOM-CC and
configuration interaction (CI) family, such as CI with single
excitations59,60 [CIS] and with perturbative double excitations61,62

[CIS(D)], or different variants of EOM-CC such as spin-flip,63-65

electron attachment,66 ionized potential67,68 methods, or EOM-
CCSD with inclusion of triple excitations.69,70 Important ad-
vantage of the suggested EOM-CCSD/EFP scheme is that the
electronic wave functions of the excited states remain orthogonal
to each other since they are obtained with the same static
characteristics of polarizable environment. This would not be
the case if polarization of the environment were treated fully
self-consistently and Davidson’s diagonalization procedure for
the excited state were solved with instantaneous reoptimization
of the induced dipoles of the solvent. The orthogonality between

Egr
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the electronic states is necessary for calculation of the excited
state properties such as transition densities and transition dipole
moments. Another advantage of the developed EOM-CCSD/
EFP scheme is the ability to obtain any number of the electronic
excited states in one diagonalization cycle. Again, in case of
self-consistent treatment of polarization, nonorthogonality of
different electronic states could become an obstacle for simul-
taneously finding several states and requires separate Hamilto-
nian diagonalizations for each individual electronic state. As
will be shown in Section 4, the magnitude of the polarization
correction in the considered systems is of the order 0.01 eV
and contains only a minor correction to the total solvatochromic
shifts. This leads to a conclusion that the error due to nonself-
consistent treatment of polarization is also very small and may
be neglected in most practical applications.

Influence of the solvent on the electronic excited state can
be separated into electronic and solvent reorganization effects.
Although the electronic effects are important for modeling
absorption or emission spectra (i.e., this situation would
correspond to a nonequilibrium solvation), both electronic and
solvent-reorganization effects have to be included for modeling
equilibrium solvation. Typically, to account for solvent reor-
ganization effects, one needs to follow the dynamics of the
solvated state. The current implementation of QM/EFP aims at
description of the instantaneous electronic solvent effects;
description of the solvent reorganization effects on the excited
state will be possible after implementing the analytic gradients
within the QM/EFP scheme.

Although the developed QM/EFP scheme has multiple
advantages for modeling electronic absorption spectra in
solvents, certain limitations of its applicability should be
mentioned. As any fragmentation technique, the QM/EFP
scheme can be safely used when coupling between a solute and
solvent region is relatively weak such that the electronic density
of the solute and solvent can be separated. For example, QM/
MM is generally not applicable for systems with delocalized
electronic density (such as a nanotube or a conjugated polymer)
since it is not possible to separate quantum and classical regions
without breaking the conjugation. In cases when the electronic
density of the solute is significantly spread to the solvent region,
special care should be taken. For example, to properly describe
the solvated electron71 or charge-transfer-to-solvent states of
halogens,72 the quantum region should be extended to include
several solvent molecules that host the electronic density of the

solute. On the other hand, excited states with Rydberg character
may be described by the QM/EFP scheme either by increasing
the quantum region or by introducing fully quantum short-range
(exchange-repulsion and dispersion) coupling terms in the QM/
MM Hamiltonian (see eq 9 and the preceding discussion). The
quantum description of the short-range terms will properly
account for cavity effects, which may be important in solvation
of Rydberg states. This development is in progress and will be
reported elsewhere.

3. Computational Details

All calculations are performed in GAMESS73,74 and Q-Chem41

electronic structure packages. The effective fragment potential
for water molecule was generated with 6-311++G(3df,2p)
basis75-77 using MAKEFP run in GAMESS. Geometries of the
formaldehyde and PNA complexes with two, four, and six
waters were obtained as lowest energy structures found with
Monte Carlo temperature annealing protocol. Geometries of
these structures are provided in the Supporting Information. In
Monte Carlo simulations, formaldehyde and PNA were also
represented as effective fragments, with parameters obtained
in 6-311++G(3df,2p) basis. The EFP parameters of water and
geometries of the clusters were converted into Q-Chem format
through a set of scripts.

6-31+G* basis75,78 is used for fully quantum and QM/MM
calculations. In QM/MM calculations, formaldehyde or PNA
are treated with EOM-CCSD, while waters are described by
EFP. EOM-CCSD is used in fully quantum calculations. All
orbitals were kept active in QM/MM calculations. Fully quantum
EOM-CCSD calculations for complexes of PNA with two, four,
and six waters were performed with frozen core orbitals in the
correlated part of the calculations. EOM-CCSD calculations for
gas-phase PNA were performed both with all active and with
frozen core orbitals.

4. Results and Discussion

Table 1 compares the excitation energies of the n f π*
transition in formaldehyde-water complexes obtained by the
QM/MM (i.e., EOM-CCSD/EFP) and fully quantum approach,
EOM-CCSD. Decrease of the dipole moment of formaldehyde
upon excitation (EOM-CCSD values of the dipole moment in
the ground and excited states are 2.65 and 1.40 D) results in
more preferable solvation and stabilization of the ground state

TABLE 1: Solvatochromic Blue Shifts (eV) in the n f π* Transition in Formaldehyde-Water Complexesa

a Gas phase excitation energy is 4.137 eV. b Total (electrostatic + polarization) indirect contribution to the solvatochromic shift, see eqs 11.
c Electrostatic (indirect) contribution to the solvatochromic shift (see text for details). d Indirect polarization contribution to the solvatochromic
shift (see text for details). e Direct polarization contribution (i.e., “polarization correction”) to the solvatochromic shift calculated by eq 15.
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with respect to the excited state in polar or polarizable
solvents.15,26,79,80 Thus, the blue solvatochromic shift is expected.
As follows from Table 1, the blue shift of 0.1-0.3 eV is
observed in formaldehyde complexes with 2, 4, and 6 waters.
This shift is accurately captured by the EOM-CCSD/EFP
scheme; small 0.01-0.05 eV discrepancies to full EOM-CCSD
can be attributed to the incompleteness of the basis set and basis
set superposition error in the full EOM-CCSD calculations,
partial delocalization of the excited state on several waters that
cannot be captured by QM/MM, and omission of the quantum
treatment of the short-range terms, dispersion, and exchange-
repulsion.

The main contribution to the solvatochromic shift in EOM-
CCSD/EFP comes from the “indirect” term, consisting of
electrostatic and polarization components of the EFP potential
added as one-electron terms to the quantum Hamiltonian (see
eq 11). The “indirect” term describes the orbital relaxation of
the solute in a presence of the electrostatic field of the solvent.
Approximate weights of the electrostatic and polarization
components were estimated by performing additional calculation
with omitting polarization from the water EFP potential. As
follows from Table 1, the electrostatic contribution to the
solvatochromic shift dominates the indirect term; polarization
is responsible for about 20% of the shift. The response of the
polarizable environment to the change in solute’s electronic
density upon excitation, calculated by eq 15, is about three times
smaller than the indirect polarization shift, or ∼0.01 eV in
absolute values. Thus, polarization correction provides only a
minor contribution to the solvatochromic shift in formaldehyde-

water complexes. As opposed to the indirect contribution, the
direct polarization term stabilizes the excited state. It is expected
to observe a somewhat larger role of polarization in larger
clusters and bulk systems, where the many-body effects become
very prominent. However, we expect that the trend where the
relative weights of contributions to the solvatochromic shifts
decrease in the order: electrostatic > indirect polarization > direct
polarization, may be general to many polar or polarizable
solvents.

Solvatochromic shifts of the charge-transfer (CT) π f π*
singlet and triplet excitations in p-nitroaniline (PNA) are
analyzed in Table 2. Shapes of the π and π* orbitals are shown
in Figure 1. The singlet CT excited state of PNA has zwitterionic
character and a larger dipole moment (15.41 D in the excited
state vs 7.38 D in the ground state, as calculated by EOM-
CCSD). The zwitterionic excited state is stabilized in polar
solvents and becomes red-shifted.81,82 For example, the red shift
of ∼0.6 eV is observed in bulk water.81 As shown in Table 2,
PNA clusters with 2, 4, and 6 waters experience the red shift
of 0.2-0.3 eV. Comparison of the fully quantum and QM/MM
treatments shows that the EOM-CCSD/EFP scheme captures
the solvatochromic shifts very well, with discrepancies not
exceeding 0.03 eV. Similarly to that in formaldehyde, the
“indirect” term, that is, orbital relaxation of the solute in the
electrostatic field of the solvent, is responsible for the majority
of the shift in PNA, and the electrostatic term dominates here
too, providing about 80% of the indirect contribution. The effect
of repolarization of the environment as a response to a change
of the electronic wave function in the excited state contributes

TABLE 2: Solvatochromic Red Shifts (eV) in the π f π* Singlet and Triplet Transitions in PNA-Water Complexes

a Gas phase excitation energies (with frozen-core orbitals in correlated calculations) are 4.654 eV (singlet) and 3.484 eV (triplet).
Corresponding excitation energies with all-active orbitals differ by less than 0.001 eV. b Core orbitals were kept frozen in correlated
calculations. c Total (electrostatic + polarization) indirect contribution to the solvatochromic shift, see eq 11. d Electrostatic (indirect)
contribution to the solvatochromic shift (see text for details). e Indirect polarization contribution to the solvatochromic shift (see text for
details). f Direct polarization contribution (i.e., “polarization correction”) to the solvatochromic shift calculated by eq 15.
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3-8% to the total solvatochromic shift. Even though the effect
of the polarization contribution is relatively small, it improves
the agreement between the fully quantum and QM/MM
calculations.

Solvatochromic shifts of the triplet πf π* transition in PNA
are presented in the second part of Table 2. Analysis of the
wave functions originated from placing two electrons in two
orbitals shows that singlets can be either covalent or zwitterionic
in character, whereas all triplets are covalent.83 The covalent
nature of the πf π* PNA triplet manifests itself in a relatively
small increase in the dipole moment (10.39 D as compared to
7.38 D in the ground state), and, as a consequence, in smaller
solvatochromic shifts of 0.09-0.13 eV. Relative weights of the
direct and indirect terms and of the electrostatic and polarization
contributions are similar to those in the singlet state. Theoretical
investigation of the triplet states is especially important since
triplets are usually not attainable by direct experimental
measurements, but play an important role in relaxation dynamics
of the electronic energy. Different solvation of the singlet and
triplet states may explain observed differences in the relaxation
dynamics of PNA in different solvents.82 This important topic
will be investigated in future work.

5. Conclusions

The interface of the effective fragment potential method and
the EOM-CCSD excited state method has been developed. This
QM/MM scheme involves quantum coupling of the electrostatic
and polarization terms in the QM/MM Hamiltonian and allows
accurate calculation of the electronic excited states of chro-
mophores in various solvents. Computational cost of the
developed method is about twice of the cost of the gas-phase
EOM-CCSD calculations on a chromophore. Applications to
the water complexes of formaldehyde and PNA show that the
orbital relaxation of the solute in the field of the solvent provides
the majority of the solvatochromic effect and is dominated by
the contribution of the Coulomb term. Response of polarizable
environment to the density of the specific electronic state is
much smaller in magnitude.
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