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1. INTRODUCTION

Theoretical chemists have always strived to perform quantum
mechanics (QM) calculations on larger and larger molecules and
molecular systems, as well as condensed phase species, that are
frequently much larger than the current state-of-the-art would
suggest is possible. The desire to study species (with acceptable
accuracy) that are larger than appears to be feasible has naturally
led to the development of novel methods, including semiempi-
rical approaches, reduced scaling methods, and fragmentation
methods. The focus of the present review is on fragmentation
methods, in which a large molecule or molecular system is
made more computationally tractable by explicitly considering
only one part (fragment) of the whole in any particular calcula-
tion. If one can divide a species of interest into fragments, employ
some level of ab initio QM to calculate the wave function, energy,
and properties of each fragment, and then combine the results
from the fragment calculations to predict the same properties
for the whole, the possibility exists that the accuracy of the out-
come can approach that which would be obtained from a full
(nonfragmented) calculation. It is this goal that drives the
development of fragmentation methods.

An additional potential positive aspect of fragmentation meth-
ods is their ability to take advantage of massively parallel compu-
ters. If one can calculate the energy of each fragment in such a
manner that the fragment calculation is essentially independent of
the calculations for all of the other fragments, then each fragment
calculation can be performed on a separate compute node. This is
sometimes called coarse-grained parallel computing, and it can
be very efficient. If, in addition, the QM algorithm one is using
(e.g., for second order perturbation theory, MP2) has itself been
developed for parallel hardware, one can implement a multilevel
parallel approach, with fine-grained parallelism employed among
the cores within each node. This further improves the parallel
efficiency of the calculation.1

Aiming at achieving computational efficiency, a variety of
methods based on localized orbitals was developed starting with
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Adams in 1961.2 These methods are only briefly mentioned
in this review, as they typically deal with orbitals in the full system
rather than molecular fragments. Klessinger and McWeeny3

in 1965 in their Group SCF (self-consistent field) method
suggested defining molecular orbital groups to reduce the scaling
of SCF. Christoffersen and co-workers4�14 employed localized
molecular orbitals (LMOs) and floating spherical Gaussian orbi-
tals (FSGO)15 to separate the subdensity matrices of fragments
that are then summed to obtain the total density and (thereby)
desired properties. The method has been applied with success to
many species, including molecules of biological importance. As
another important example, Stoll and Preuss16 in 1977 used a
subsystem-based approximation to define the total density, and
suggested many-body corrections to the energy from the density
computed at these levels. Stoll17 in 1992 suggested many-body
incremental corrections to the correlation energy, based on
LMOs. The development of LMO methods for fragments is still
an active area of research.18,19 In a group of methods based on the
divide-and-conquer (DC) idea,20 an ad hoc total density from
fragment calculations is constructed, followed by a single energy
evaluation using this density.

The elongation method (usually abbreviated as ELG), based
upon localized orbitals, was developed by Imamura21 in 1991
(related to the earlier work by Demelo et al.22) to enable calcula-
tions on large polymeric chains at the computational cost of a
much smaller system. A good example of an application for which
the ELG method was developed is that of a polymerization/
copolymerization reaction. Reactions of this type begin with an
initiation step, followed by some number of propagation steps,
and ultimately complete with a termination step. This is the
series of steps that are employed in the elongation methodology.
Initially, the applicability of the elongationmethod was limited to
periodic polymer chains,21 however the method has since been
extended to aperiodic systems23 and hydrogen bonded systems
such as water clusters.24 Since the original formulation, a new
localization scheme25 (a central aspect of the formalism) as well
as extensions have been proposed.26�44 The elongation method
is fundamentally an LMO approach, rather than a fragment-
based approach, so it is discussed only briefly here.

There have been many fragment-like approaches to electronic
structure theory, in which fragments appear as groups of atoms
and the electronic state of the full system is computed. Dreyfus
and Pullman45 in 1970 and Morokuma46 in 1971 systematically
considered both the Hartree product wave function and the
fully antisymmetrized total wave functions constructed from wave
functions of two weakly interacting fragments. This approach
was extended to an arbitrary number of fragments by Ohno and
Inokuchi47 for an antisymmetrized product in 1972, and by
Gao48 for a Hartree product in 1997. Some theoretical founda-
tions for fragment-based methods were given by Kutzelnigg and
Maeder in 1978.49

The idea of performing fragment calculations in the Coulomb
field of other fragmentswith orwithout the corresponding exchange
has been reinvented and reformulated over the years in various
forms, and given names such as mutual consistent field (MCF),50

structural SCF,51 self-consistent embedded ions (SCEI),52,53

double self-consistent field (DSCF),54 self-consistent charge
(SCC)55 and monomer SCF.56 One of the early methods to
accomplish this self-consistent cycle is attributed toMorokuma46

in 1971, who introduced it to add the polarization term to the
analysis of Dreyfus and Pullmann.45 The Morokuma develop-
ment was followed by the systematic work of Ohno47 in 1972

and the energy decomposition (EDA) method by Kitaura and
Morokuma57 in 1976. The EDA method was later extended to
more than two fragments by Chen and Gordon58 in 1996. While
these earlier approaches were not intended for large-scale calcula-
tions, the MCF method by Otto and Ladik50 is the prototypical
approach for self-consistent fragment calculations that are used
today for large systems. Later it was applied to periodic systems
by Bohm59 in 1982, Kubota et al.51 in 1994, and Pascual and
Seijo53 in 1995. Gao employed this MCF approach in his molec-
ular orbital-derived empirical potential for liquid simulations
(MODEL)48 in 1997 (later renamed explicit polarization, X-Pol)
and by Kitaura et al.60 in the fragment molecular orbital (FMO)
method in 1999.

An important advance in the development of fragment-based
methods was made by the explicit division of the equations into
blocks derived for individual fragments. While the earlier meth-
ods had to diagonalize the full Fock matrix,46,47,57 the introduc-
tion of strong orthogonality between fragment wave functions
made it possible to block the fragment Fock matrices,50�52,54,60

although they are still coupled in many methods via the electro-
static field. Here again, note the paramount importance of the
MCF approach,50 which with modifications has been integrated
as a part of modern methods such as X-Pol and FMO.

On the basis of the starting point of computing the electronic
state of individual fragments, two main branches of methods
emerged for the subsequent refinement of properties. The first
group constitutes a perturbation treatment of fragment interac-
tions, a typical example being the MCFmethod,50,61�71 in which
the mutually polarized fragment wave functions are used in a
perturbative manner to obtain the exchange and charge transfer
interactions between fragments. The other group of methods
was inspired by the desire to decompose intermolecular interac-
tions into conceptually familiar components. In this group, pairs
or larger conglomerates of fragments are computed, and the
important concept is the treatment of many-body effects other
than the electrostatics. One of the early methods was developed
by Hankins et al.,72 who considered many-body corrections
to intermolecular interactions in vacuum. By a clever introduc-
tion of the electrostatic potential (ESP) in the many-body
expansion, Kitaura et al.60 in 1999 were able to incorporate
many-body effects in the framework of a two-body expansion,
conceptually reminiscent of some earlier methods.72,16,17 The
systematic cancellation of the double counting of the Coulomb
interaction in many-body calculations was shown diagrammati-
cally by Fedorov and Kitaura in 2004.56 Su�arez et al.73 in 2009
discussed some general aspects of many-body expansions. Gao
et al.74 suggested a means for including many-body effects using
the total wave function. Many methods discussed in detail below
partially consider many-body effects implicitly by computing
large conglomerations of atoms (fragments).

In the original 1975 implementation of MCF by Otto and
Ladik,50 the wave function of a fragment was polarized by a
partner fragment through modifying the Fock operator by the
Coulomb potential of a partner. A simple monopole approxima-
tion was used originally to represent the electrostatic potential;
HF equations for a pair of fragments were solved until self-
consistency. This strategy automatically takes care of electro-
static and polarization effects. Exchange and charge-transfer
energies were then obtained perturbatively based on the polar-
ized wave functions of the fragments. Later on, the method
was extended by including a local exchange potential (using
the original Slater expression) into the Fock operator and
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substituting the monopole approximation by distributed char-
ges.61 In 1985, implementation of the pseudopolarization tensor
(PPT) MCF,67,69 point charges and pseudopolarizabilities were
calculated for each individual fragment, and the Coulomb and
polarization interaction energies were computed using these
charges and polarizabilities. So, PPT-MCF is related to universal
force fields, like EFP,75�77 SIBFA,78 and AMOEBA.79

The idea of a perturbative treatment of fragment interactions
has been further extended and developed in the symmetry-
adapted perturbation theory (SAPT)80,81 by Moszynski, Jeziorski,
and Szalewicz in which the interaction energy is expressed in
orders of an intermolecular interaction operator V and a many
body perturbation theory (MBPT) operatorW. The polarization
energies are obtained from a regular Rayleigh�Schr€odinger
perturbation theory; for example, the Coulomb energy appears
in the first order, the induction and dispersion energies in the
second order, etc. Additionally, the exchange corrections arise
from the use of a global antisymmetrizer to force the correct
permutational symmetry of the dimer wave function in each order.
In this way, the exchange-repulsion energy appears in the first
order, and exchange-induction and exchange-dispersion contri-
bute to the second order of the perturbation theory. The super-
molecular HF energy in SAPT can be represented by corrections
in zero order inW, namely, Coulomb, induction, exchange, and
exchange-induction. The SAPT2 level is roughly equivalent to
supermolecular second-order MBPT calculations. The new
contributions to the interaction energy in the second-order
theory are Coulomb, induction, and exchange-induction correc-
tions that are second-order inW, in addition to first- and second-
order corrections toW for exchange, and zeroth-order dispersion
and exchange-dispersion corrections. The highest routinely used
level of SAPT is equivalent to fourth order supermolecularMBPT
and includes third-order corrections to W for the Coulomb
energy and higher orders of the exchange and dispersion energies.

SAPT was extended to enable its use with density functional
theory (DFT).82 In this SAPT(DFT) scheme, Kohn�Sham
(KS) orbitals and orbital energies are used to obtain Coulomb
and exchange in zero order ofW, similarly to how it is done in the
wave function-based SAPT (essentially, by replacing HF orbitals
with KS orbitals). Induction, dispersion, exchange-induction, and
exchange-dispersion are calculated by using the frequency-
dependent density susceptibility functions obtained from the time-
dependent DFT theory at the coupled Kohn�Sham level of
theory.82�84 The scaling of SAPT(DFT) is O(N6) and becomes
O(N5) if density fitting is used.85,86 This is significantly better
than the O(N7) scaling of the wave function-based SAPT.

In variational (i.e., HF) energy decomposition schemes, the
total energy is typically represented as a sum of a frozen density
interaction energy, a polarization energy, and a charge-transfer
energy. The frozen density term is calculated as the interaction of
the unrelaxed electron densities on the interacting molecules
and consists of Coulomb and exchange contributions. The polariza-
tion term originates from the deformation of the electron
clouds of the interacting molecules in the fields of each other.
The charge transfer term arises because of the electron flow
between the molecules in the system. Quantum mechanically,
polarization and charge transfer terms can be described as energy
lowerings due to the intramolecular and intermolecular relaxa-
tion of the molecular orbitals, respectively. The main differences
in the variational EDA schemes come from the manner in
which the intermediate self-consistent energies, correspond-
ing to the variationally optimized antisymmetrized wave

functions constructed from MOs localized on the individual
molecules, are determined.

The original EDA method of Kitaura and Morokuma57,87,88

(KM), which has become prototypical for many subsequent
methods, lacks the antisymmetrization of the intermediate wave
function, resulting in numerical instabilities of the polarization
and charge-transfer components at short distances and with large
basis sets. It is, however, not entirely artificial, but is connected to
the intrinsic similarity between the intramolecular (polarization)
and intermolecular charge transfers. The concept of the fragment
(monomer) polarization is apparently not well-defined with
large basis sets, especially those that contain diffuse functions
and are therefore not obviously localized on a given fragment. In
this sense, when the polarization of fragments as an important
physical concept is of interest, one may have to employ smaller
basis sets.

The restricted variational space (RVS) analysis89,58 and the
constrained space orbital variations (CSOV) method90,91 im-
prove on the KM scheme by employing fully antisymmetrized
intermediate wave functions. The main deficiency of both meth-
ods is that they do not produce self-consistent polarization
energies (which results, for example, in a dependence on the
order in which the fragments are treated) and do not completely
separate charge-transfer from polarization. In the natural energy
decomposition analysis (NEDA)92�94 the intermediate wave
function is not variational and the resulting polarization and
charge-transfer energies may be under- and overestimated, respec-
tively. In the absolutely localized molecular orbital (ALMO)
approach95 by Head-Gordon, all energy terms are calculated
variationally and the polarization and charge-transfer terms are
naturally separated. Additionally, the charge-transfer energy can
be decomposed into forward donation and back-bonding con-
tributions. An earlier implementation of EDA based on the block
localized wave function developed by Mo et al. is similar in
spirit.96 An energy decomposition analysis based on the divide
and conquer approach was also formulated.97

Fedorov and Kitaura have extended the EDA method to
covalently bound fragments by introducing the pair interaction
energy decomposition analysis (PIEDA)98 within the FMO
framework60 and showed the equivalency of the fragment SCF
in FMO and the polarized state of monomers in EDA. In the
FMO method, one performs fragment calculations in the
electrostatic field of other fragments, mutually self-consistent
with each other. This approach provides the polarized state of
the fragments including many-body polarization. In the EDA
method, the same thing is accomplished by the restriction of
orbital rotations, which only allows many-body polarization to
take place for the interfragment interactions. The exact agree-
ment of the resultant many-body polarization, shown numeri-
cally with the aid of PIEDA for water clusters, clearly
demonstrated the equivalence of the self-consistent fragment
polarizations in FMO and EDA, in this regard.

In the EDA approach developed by Su and Li,99 the interac-
tion energy is separated into Coulomb, exchange, repulsion,
polarization, and dispersion terms. In contrast with the KM and
other EDA schemes, the exchange and repulsion energies in
this scheme are separated according to the method of Hayes and
Stone.100 Dispersion is obtained using a supermolecular ap-
proach and size-consistent correlation methods (MP2 or CCSD-
(T)). Polarization is defined as the orbital relaxation energy
that occurs on going from the monomer to the supermolecular
orbitals. That is, the polarization interaction in the Su-Li EDA
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method includes both the polarization and charge-transfer con-
tributions of the KM scheme. A DFT version of the Su-Li EDA
scheme was also developed.

Wu et al. developed a density-based EDA,101 in which the
energies of the intermediate states are calculated using the densities
of the fragments, rather than their wave functions. Similarly to the
KM EDA method, the total energy is separated into a frozen
density Coulomb plus exchange repulsion term, polarization,
and charge-transfer. The frozen density energy is obtained using the
constrained search technique developed byWu and Yang.102 The
polarization and charge-transfer terms are separated from each
other by constructing an intermediate state in which the density
is relaxed without charge transfer, using the constrained DFT
method of Wu and Van Voorhis.103 The EDA approach is a useful
tool for the development of reliable force fields for condensed
phase molecular simulations.79,104�108,202,203,201

Related to EDA schemes and ideas is the self-consistent-field
method for molecular interactions (SCF-MI) first introduced by
Gianinetti et al.109,110 and further reformulated and extended by
Nagata et al.111 In the SCF-MI method one expands molecular
orbitals of a given fragment in terms of only the atomic orbitals
belonging to atoms of that fragment. This leads to absolutely
localized MOs that are free from basis set superposition error
(BSSE) but also prevents charge-transfer between the fragments.
The charge-transfer interactions between the fragments can be
added by means of single excitation second order perturba-
tion theory, as suggested by Nagata and Iwata.112 Khaliullin et al.
showed that the SCF-MI method can result in significant
computational savings (e.g., (N/O)2 speedups for the diagonali-
zation step compared to the conventional SCFmethod) and thus
is applicable to systems containing hundreds of molecules.113

Murrell and co-workers developed a method called diatomics-in-
molecules,114 that relied on a power expansion in the inter-
molecular overlap integral, in order to obtain a general expression
for the intermolecular exchange repulsion. Jensen andGordon115

built upon the Murrell approach using LMOs to derive a general
expression for the intermolecular exchange repulsion interaction
energy.116,117

A number of fragment methods have been proposed based on
the so-called thermochemical118 analogy, i.e., by capping the
fragments of interest and eliminating or subtracting the effect of
the caps. These include the molecular fractionation with con-
jugate caps (MFCC)method,119 its later extension, the generalized
energy-based fragmentation (GEBF) method,120 the molecular
tailoring approach (MTA),121 the kernel energy method (KEM),
and the fragment energymethod (FEM).73 The relation between
these has been discussed by Su�arez et al.73 Collins and co-
workers122 have developed the systematic fragmentationmethod
(SFM) in order to describe largemolecular systems with accurate
QMmethods. Smaller subsystems are treated with a high level of
accuracy. This accuracy is, in principle, retained by incorporating
nonbonded interactions between the fragments using model
potentials.123

A related, but somewhat different approach has been devel-
oped and implemented by several groups in order to expand the
size of accessible species and active species in multiconfigura-
tional self-consistent field (MCSCF) methods, in particular
the complete active space (CAS) SCF approach. Among the
most well-known of these methods are the restricted active space
(RAS) SCF method, developed by Roos and co-workers,124 the
quasi (Q) CASmethod of theHirao group,125 and the occupation
restricted multiple active space (ORMAS) method developed

by Ivanic.126 The general philosophy of these methods is to
divide a large (possibly computationally intractable) CAS active
space into logically determined subspaces, so that each subspace
is amenable toMCSCF calculations. ORMAS is the most general
of these methods and subsumes the others. Because MCSCF
calculations account only for static correlation, it is necessary to
add dynamic correlation, either variationally via configuration
interaction (multireference CI =MRCI) or perturbatively (MRPT).
MRPT is the computationally more efficient approach. Therefore,
the RASPT2 method127 and ORMAS-PT2 method128 have
recently been introduced.

Another class of methods that is related to fragmentation is the
use of LMOs to reduce the scaling of (most commonly)
correlated electronic structure methods. This is accomplished
by first performing a Hartree�Fock (HF) calculation on the
entire system and localizing the orbitals. In this sense the “local
orbital” approach is distinct frommost fragmentationmethods in
that the latter first separate the system into separate physical
collections of atoms, and subsequently perform explicit calcula-
tions on only one fragment at a time, not the entire system. Most
local orbital methods129 have built upon the beautiful early work
of Pulay and co-workers,130,131 whose work primarily addressed
second-order perturbation theory (MP2). Many others have
contributed to this field, most notablyWerner and co-workers132

(MP2 and coupled cluster (CC) methods), Head-Gordon et al.133

(MP2 and CC methods), and Carter and co-workers134 (multi-
reference configuration interaction). A recent method developed
by the Piecuch group135 called cluster in molecule (CIM) is
generally applicable and can be used as a multilevel method, in
which different parts of a system can be treated with different
levels of theory (Werner and co-workers136 used MP2 for small
contributions in their local CC method).

Another important example is the incremental method,17,137

which is mainly used to estimate the correlation energy in
periodic systems, similar to other local orbital methods, with
the important distinction that a many-body expansion in terms of
orbital contributions is used. This is conceptually similar to the
expansion used in some fragment methods, although molecular
applications have also been reported.138�140 Manby et al.141

suggested a hierachical method for the additive calculation of
the properties of clusters using edge, corner, surface and bulk
unit energies, and compared their method to the incremental
method.142

A number of fragment-based methods represent an important
class of linear scaling methods143 (sometimes called order N,
O(N)methods), which are a thrivingfield of current research.144,145

Strictly speaking, it is often not entirely clear that a particularmethod
really scales linearly, and a description like “nearly linear scaling”may
be more appropriate for practically relevant regimes of N
(as discussed by Nagata et al. in Chapter 2 of ref 144), although
one can in principle also define an asymptotic scaling for infiniteN.

Another group of approaches, only briefly mentioned is related
to the integratedMO andmolecular mechanics (MM), IMOMM
method,146 its later extension our own n-layered integrated molec-
ular orbital and molecular mechanics (ONIOM),147 methods
known as integrated MO and MO (IMOMO),148 QM:QM,149

and multiple area QM/MM.150,151 Most of these methods
compute the whole system at a low level and add higher level
results for a selected part of the system. Some of the methods
such as multiple area QM/MM150,151 and extended ONIOM152

can be considered fragment-based approaches.
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2. METHODOLOGIES

One can classify fragment-based methods in various ways.
Fedorov and Kitaura226 suggested three categories: divide-and-
conquer (DC),20 transferable approaches (SFM122), andmethods
based on many-body molecular interactions (FMO,60 MFCC119).
The distinction between the latter two groups is in the way in
which fragment interactions are added: the latter category
typically has a simple many-body expansion inspired by the
theory of molecular interactions;72 while the transferable group
has a different recipe for taking into account these interactions.
Fedorov and Kitaura also proposed the name e pluribus unum for
those methods in which the total properties are obtained by
fragment calculations under the influence (for example, in the
electrostatic field) of the whole system.

Li et al.120 grouped fragmentmethods into densitymatrix (DC,20

ELG,21 MFCC119) or energy based approaches (IMiCMO,153

MFCC,119 SFM,122MTA121). The density basedmethods compute
the density of the whole system using fragments, followed by the
calculation of the energy; the energy based methods compute the
energy directly from fragment energies avoiding the expensive step
of calculating the energy from the density of the whole system. For
some methods, like MFCC, it is possible to either compute the
energy directly or to first obtain the density and then the energy;
thus MFCC belongs to both categories.

Su�arez et al.73 classified fragment-based methods into two main
groups, those using (a) overlapping fragments (MTA,121MFCC,119

FEM,73 and SFM122) and (b) disjoint fragments (FMO, KEM).
The main idea of this classification is in the fragment definition:
whether an atom is assigned to a single fragment as in (a) or can be
found in several, as in (b).

Figure 1 illustrates an elaboration and generalization of the
classification introduced by Li et al.120 The purpose of this
modification is to introduce a more elaborate division than the
two groups that were used in the original classification, and to
extend it to apply when a property other than the energy is
directly computed from the fragment calculations. The energy-
based group is renamed the one-step group, which refers to the
direct calculation of total properties from the fragment-derived
values. This approach allows one to include properties, other than
energy, such as the density and properties linear in the density
(i.e., one-electron properties) to be included in the classification.
The distinctive feature of the one-step group is that the total

properties are obtainable directly from fragment calculations.
That is, the one-electron properties from the density can be
rewritten as an appropriate combination of fragment properties.

The two-step group, which corresponds to the density based
method of Li et al.,120 includes methods which consist of two
steps: (1) computing some total property from piecewise
values (usually, the electron density); (2) calculating a related
total property dependent on the one determined in the first
step in a nonlinear way (usually, the total energy). For methods
in this group it is necessary to perform calculations for the whole
system at once, which imposes various limitations and leads to
complications.

Each of the one and two-step groups can be further divided
to reflect the manner in which the QM calculations on the
combinations of fragments are performed. In the 1-body meth-
ods, where “1-body” refers to fragments, there are no QM calcula-
tions of the conglomerates of fragments. Instead, often either force
field derived terms are added (e.g., X-Pol48) or perturbation theory
is used based on the wave functions of fragments as the starting
point (MCF50). In the many-body subgroup pairs, triples or large
unions of fragments are computed, whereas in the conglomerate
subgroup different principles are used to combine fragments into
unions, for example, based on the cardinality (MTA method) or
buffer zone (DC method) to include a certain number of atoms
around each fragment. The many-body group eventually can be
said to be inspired by the theory of molecular interactions72 with
its many-body expansion and typically contains many-body
energy corrections such as EIJ�EI�EJ, for dimer IJ corrections
tomonomers I and J. On the other hand, the conglomerate group
uses different recipes for the construction of groups of atoms to
be computed.

Several families of methods, namely, FMO, MFCC, and KEM
have variants that fall into different categories. For instance, in
the FMO-MOmethod (introduced below), an FMO calculation
is performed in the first step, whereas the second step is
performed as in a full ab initio QM calculation for the whole
system, corresponding to one SCF iteration. In FMO-based
NMR calculations, denoted FMO1 (merged), one first performs
self-consistent calculations on fragments (FMO1). This is fol-
lowed by the calculation of NMR shifts for a large “super-
fragment” composed of a central fragment I and all fragments
within a desired radius around it (I consequently goes over all

Figure 1. Classification of fragment-based methods. Singly underlined approaches include constant embedding potentials, while doubly underlined
approaches include some form of self-consistent fragment embedding potential (SCC); other approaches have no embedding potential.

http://pubs.acs.org/action/showImage?doi=10.1021/cr200093j&iName=master.img-000.jpg&w=345&h=164
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fragments). This is the reason that some methods appear in
several different groups.

2.1. QM-Based Force Fields
Quantum mechanics calculations are often used to assist

the development and parametrization of modern polarizable
force fields. However, while it is straightforward to extract the
electrostatic point charges or multipoles from electronic struc-
ture calculations on small fragments or molecules, rigorous
formulation of accurate but computationally inexpensive ways to
model exchange-repulsion self-consistent induction, dispersion,
and charge-transfer terms can be quite intricate, especially in the
interfacial region between QM and the force field. Therefore,
various approaches have been suggested and tried over the years,
often combining quantum-mechanically based terms (typically
Coulomb and polarization) and parametrizing the rest of the
potential.

For example, in the AMOEBA (atomic multipole optimized
energetics for biomolecular applications) force field, multipoles
on atoms (up to quadrupoles)79 are obtained from the distrib-
uted multipolar analysis (DMA) and (experimental) isotropic
atomic polarizabilities with Thole’s damping functions are
used.154 Parameters for Thole’s damping functions are fitted
using EDA computations155,156 Also, in AMOEBA the van der
Waals R�7�R�14 term is parametrized to reproduce experimen-
tal gas phase and condense phase data. Parameters of bonded
terms in AMOEBA are also obtained by fitting to experimental
data. In the NEMO (nonempirical molecular orbital) force field
for water,157 multipoles up to quadrupoles are also used to
calculate Coulomb interactions, while atomic polarizabilities
are obtained by solving coupled HF equations. Dispersion is fitted
to an analytic R�6 expression with exponential damping, while
the exchange-repulsion is represented by a sum of exponential
and R�14 terms.

The essence of the direct reaction field (DRF) approach158

of van Duijnen is an explicit evaluation of the polarization
(induction) term using atomic polarizabilities and Thole’s damping
functions. The Coulomb term is evaluated using screened charges;
dispersion energy is calculated using the Slater�Kirkwood
expression159 with atomic polarizabilities, and the repulsion
component is taken to be proportional to the dispersion scaled
by van der Waals atomic radii.

In the SIBFA (sum of interactions between fragments ab
initio) force field,78,160�164 developed by Gresh and co-workers,
the interaction energy between fragments is a sum of Coulomb,
polarization, repulsion, dispersion, and charge-transfer compo-
nents. The electrostatic term is computed using distributed
multipoles up to quadrupoles centered at atoms and bond
barycenters. The multipoles are obtained using the procedure
developed by Vign�e-Maeder and Claverie.165 The Coulomb term
is augmented by an explicit penetration contribution.166�168 The
repulsion term is formulated as a sum of bond�bond, bond-lone
pair, and lone pair-lone pair interactions expressed as S2/R terms.
Here, S is an approximation of the overlap between LMOs of
the interacting partners; R is the distance between the LMO
centroids. The S2/R2 term was added to improve the accuracy of
the repulsion term.167 Polarization energies are obtained by using
permanent multipoles (the same as those that appear in the
Coulomb term) and distributed polarizability tensors computed
at the bond barycenters and on the heteroatom lone pairs.
Polarization interactions are screened by Gaussian functions that
depend on the distance between the interaction centers. The

dispersion term is described as a sum of R�6, R�8, and R�10

contributions,169 calibrated on the basis of a SAPT analysis.
The uniqueness of SIBFA is in the treatment of the charge-
transfer interactions that are modeled following the Murrell for-
mulation170 using the ionization potential of the electron donor
and the electron affinity and “self-potential” of the electron
acceptor.162,161 The charge transfer term is essential for describ-
ing polycoordinated complexes of cations.171,164

2.1.1. Effective Fragment PotentialMethod.The original
idea of the effective fragment potential method75,172,173 (EFP)
was to describe aqueous solvent effects onmolecules of biological
interest, in which the solute was described by some QM level
(usually HF) and the solvent molecules were represented by
EFPs. The EFP potential was represented as series deduced from
the long-range (in powers of (1/R) Coulomb operator) and
short-range (in powers of intermolecular overlap S) perturbation
theory. In this formulation each water molecule is represented as
a fragment of fixed geometry with a set of parameters deduced
from ab initio calculations. In the original implementation,172,173

now called EFP1, the interaction energy between water mole-
cules consists of Coulomb, polarization, and repulsion terms

EEFP1 ¼ ECoul þ Epol þ Erep ð1Þ
In the presence of a quantum region, the total energy of the QM/
EFP1 system can be written as

EQM�EFP1 ¼ ÆΨjHQM þ VCoul þ V pol

þ V repjΨæ þ ECoul þ Epol þ Erep ð2Þ
VCoul, Vpol, and Vrep are one-electron contributions to the
(unperturbed) quantum Hamiltonian HQM due to Coulomb,
polarization, and repulsion terms of EFP1 water fragments. ECoul,
Epol, and Erep are fragment-fragment Coulomb, polarization, and
exchange-repulsion energies, respectively.
The Coulomb ECoul term is evaluated using classical multi-

poles up to octopoles centered at each atom and bond midpoint.
The distributed multipole moments are obtained using the Stone
distributed multipole analysis;174,175 each water fragment has
five points with distributed multipoles. The fragment-fragment
Coulomb interactions consist of charge�charge, charge-dipole,
charge-quadrupole, charge-octopole, dipole�dipole, dipole�
quadrupole, and quadrupole�quadrupole terms. The Coulomb
contribution VCoul from a multipole point k to the ab initio
Hamiltonian consists of four terms due to EFP charges q,
dipoles μ, quadrupoles Θ, and octopoles Ω

VCoul
k ðxÞ ¼ qkTðrkxÞ � ∑

x, y, z

R
μkRTRðrkxÞ

þ 1
3 ∑
x, y, z

R,β
Θk

RβTRβðrkxÞ � 1
15 ∑

x, y, z

R, β, γ
Ωk

RβγTRβγðrkxÞ

ð3Þ
T, TR, TRβ, and TRβγ are electrostatic tensors of zero, first, second,
and third rank, respectively; x is the electron coordinate; rkx is the
distance between the position of electron x and multipole point k.
To account for short-range charge-penetration effects, the

charge�charge fragment-fragment terms and the charge-based
term in the Hamiltonian are augmented by Gaussian like damp-
ing functions of the form 1 � β exp(�RR2) . The R and
β parameters were determined from a fit of the damped multi-
pole potential to the quantumHartree�Fock potential on a set of
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points around the fragment. R is the distance between two
multipole points or between a multipole point and an electron.
The fragment polarization energy Epol is evaluated as an

interaction of induced dipoles of each fragment with the static
field due to the Coulombmultipoles and the induced field due to
the induced dipoles of the other fragments. The induced dipoles
originate at the centroids of localized molecular orbitals (LMO),
where (anisotropic) distributed polarizability tensors are placed.
Each water fragment has five distributed polarizability points: at
the oxygen (inner shell), the centers of the two O�H bonds, and
at the centroids of the two lone pairs. The polarization energy of
the fragments is calculated self-consistently using an iterative
procedure. Thus, polarization accounts for some many-body
effects that are important in aqueous systems.
When a quantum region is present in the system, the induced

dipoles of the fragments also interact with the electron density
and nuclei of the quantum part, by means of Vpol a one-electron
contribution to the quantum Hamiltonian:

V pol
k ðxÞ ¼ 1

2 ∑
x, y, z

R
ðμind, kR þ μ~ind, kR ÞTRðrkxÞ ð4Þ

where μind and μ~ind are the induced and the conjugate induced
dipoles at the polarization point k. The total electric field acting
on each fragment now consists of static and induced fields (due
to the multipoles and induced dipoles of the other fragments),
as well as fields due to the electron density and nuclei of the ab
initio part. The total polarization energy of the QM/EFP1
system is

Epol ¼ � 1
2∑k ∑

x, y, z

R
μkRðFmult, kR þ Fnuc, kR Þ

þ 1
2∑k ∑

x, y, z

R
μ~kRF

ai, k
R ð5Þ

where Fmult is the field due to the static multipoles on the EFP
fragments, and Fai and Fnuc are fields due to the density and the
nuclei of the quantum region. Polarization in a QM/EFP system
is computed self-consistently using a two-level iterative proce-
dure. The lower level, which takes care of the convergence of the
induced dipoles, is identical to the fragment-only system. The
wave function is kept frozen at this level. The lower-level iterative
procedure exits when the induced dipoles are self-consistent and
are consistent with the frozen ab initio wave function. At the
higher level, the wave function is updated based on the converged
values of the induced dipoles from the lower level. Convergence
of the upper level is determined by convergence of wave function
parameters (molecular orbital coefficients). Convergence of the
two-level iterative procedure yields self-consistent induced di-
poles and the ab initio wave function.
The remaining contribution to the ab initio-EFP interactions

accounts for exchange-repulsion and charge transfer effects. This
Vrep term is modeled in the form of Gaussian functions

V rep
k ðxÞ ¼ ∑

2

i¼ 1
βi, k expð � Ri, krkx

2 Þ ð6Þ

where k represents repulsion centers (atoms and center of mass),
rkx is the distance between a repulsion center and an electron.
Parameters R and β are obtained by fitting the repulsion term to
the difference between the HF energies of water dimers and a
sum of electrostatic and polarization terms. A total of 192 water

dimers were used in the fitting procedure. The fragment-
fragment repulsion energy Erep is modeled similarly to the ab
initio-EFP1 repulsion. However, a single exponential function
has been used instead of Gaussians.
The EFP1 water model has been combined with various wave

functions in the quantum region, including HF, DFT, MCSCF
and MP2. Excited state methods such as configuration interac-
tion with single excitations (CIS176), TDDFT,177 and MRPT178

have been interfaced with EFP1 as well. The general EFP2model
(see below) is interfaced with CIS(D)179 (CIS with perturbative
double excitations) and equations ofmotion (EOM)-CCSD.180,181

Additionally, the EFP1 model has been combined with the FMO
method.182,183 The interface between the EFP1 method and
the polarizable continuum model (PCM) has also been devel-
oped.184�187 To describe heterogeneous catalytic systems in the
presence of a solvent (the liquid-surface interface), an interface
between the EFP method and the universal force field has been
developed.188 The implementations of the EFP1 and QM/EFP1
methods have been efficiently parallelized.189

Analytic gradients have been developed for the EFP1 and QM/
EFP1models172,173 and the gradients have been used extensively in
studies of water clusters and bulk,190�193 aqueous reactions,194,195

amino acid neutral-zwitterion equilibria,184,196 and photochemistry
in water.176,177

To summarize, the EFP1 water potential described above has
proven to be a robust and useful model for treating interactions in
water. However, the main drawback of the original version of the
EFP1 model is that it is fitted to HF or DFT energies of water
dimers. Therefore, this potential does not include long-range
correlation effects such as dispersion. In order to improve the
accuracy of the water model, two more variants of EFP1 have
been developed. In one, referred to as EFP1/DFT,197 the B3LYP
functional was used to obtain EFP Coulomb and polarization
parameters, and the repulsion term was fitted to reproduce the
B3LYP/DH(d,p) energies in dimers. In the EFP1/MP2 variant,198

the potential is based on the MP2 method, that is, the multipoles
and polarizability tensors are obtained fromMP2 calculations on a
water monomer, and the repulsion is fitted to HF dimer energies.
To incorporate correlation effects, an additional dispersion term of
the form Edisp = C6/R

6 + C8/R
8 is added to fragment-fragment

interaction energies. The C6 and C8 coefficients were obtained
from a fit to MP2 correlation energies of the dimers. The original
HF-based potential is now referred to as EFP1/HF.
To extend the EFP idea to a general solvent, one needs to

design a way to accurately model exchange-repulsion and charge-
transfer interactions without extensive fitting. Moreover, the
dispersion term must be added to the model for a balanced
description of π-stacking, van der Waals complexes, and other
weak interactions. This has been realized in a general formula-
tion of the EFP method, called EFP2.77,199,200 The fragment-
fragment energy in the EFP2 method consists of the following
terms:

EEFP2 ¼ ECoul þ Epol þ Eexrep þ Edisp þ Ect ð7Þ

where Eexrep is a general (not-fitted) exchange-repulsion energy,
Edisp and Ect are dispersion and charge-transfer energies, respec-
tively. The EFP2 potential can be built for any solvent mole-
cule in a MAKEFP run in GAMESS. However, solvents with
flexible degrees of freedom (for example, long alcohols or chain
hydrocarbons) should be treated with care since EFP is inher-
ently a rigid-body model.
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The Coulomb ECoul and polarization Epol terms in the EFP2
method are obtained similarly to those in the EFP1 models. That
is, the multipoles at the atoms and bond-midpoints are generated
by the DMA, and distributed polarizability tensors are calculated
at the LMO centroids by using the coupled perturbed HF
(CPHF) approach. Since the general EFP2 potential is intended
to be used for various species, including biologically relevant
highly polar and charged fragments, such as NH4

+, H3O
+, OH�,

F�, Cl�, metal cations, etc., special care should be taken for short-
range and quantum effects. Therefore, several damping formulas
have been developed and investigated in combination with
the Coulomb and polarization energies.201�203 In particular,
Coulomb interactions at short distances can be damped either by
an exponential damping function applied to charge�charge term
only201

f ch � ch
kl ¼ 1� Rl

2

Rl
2 � Rk

2
expð�RkRklÞ � Rk

2

Rk
2 � Rl

2
expð�RlRklÞ

ð8Þ
or by using a set of exponential-based damping functions applied
to higher-order Coulomb terms as well (charge-dipole, charge-
quadrupole, dipole�dipole, dipole�quadrupole).202,203 Damp-
ing parameters R at each multipole distributed point (k or l in
the above equation) are obtained in aMAKEFP run by fitting the
damped classical Coulomb potential to the quantum (Hartree�
Fock) potential on a set of points around the fragment. Another
option is to estimate the short-range charge penetration energy
using the spherical Gaussian overlap (SGO) approximation:204,203

Epenkl ¼ � 2
1

�2lnjSklj
� �1=2Skl2

Rkl
ð9Þ

Damping of the polarization energy is extremely important to
avoid the “polarization catastrophe” that may happen due to
breaking the multipole approximation at short separations be-
tween the fragments. Exponential and Gaussian damping func-
tions have been investigated;203 damping parameters for these
functions (one parameter per polarization point, i.e., a LMO
centroid) have been set to predefined values that were picked to
be the same for all fragment types and all polarization points.
The dispersion energy between fragments is calculated using

the leading induced dipole�induced dipole 1/R6 term.205 An
empirical correction for the 1/R8 term is added as one-third
of the 1/R6 term. The resulting formula for the fragment�frag-
ment dispersion energy is

Edisp ¼ 4
3∑k, l

C6, kl

R6
kl

ð10Þ

where k and l are distributed (LMO) dispersion points on
fragments A and B, respectively (A 6¼ B), Rkl is the distance
between these points, and C6 is obtained using the following
integration:205,84

C6, kl ¼
Z ∞

0
RkðiνÞRlðiνÞdν ð11Þ

where R̅k(l) is the 1/3 of the trace of the dynamic (frequency
dependent) polarizability tensor at the point k (or l), respectively.
The integration is performed on the fly between all pairs of disper-
sion points of all fragments, using a 12-point Gauss-Legendre
quadrature. Distributed dynamic polarizability tensors on each

fragment are obtained from time-dependent HF calculations
within the MAKEFP run in GAMESS.
Dispersion interactions are corrected for charge penetration

effects. Two variants of damping functions have been employed
within the EFP2 method. One is the Tang-Toennies damping
formula206 with damping parameter set to β = 1.5:205

f TTkl ¼ 1� expð � βRklÞ ∑
6

n¼ 0

ðβRklÞn
n!

 !
ð12Þ

Another damping formula203 uses the intermolecular overlap
integrals Skl between LMOs k and l on fragments A and B:

f Skl ¼ 1� Skl
2ð1� 2 lnjSklj þ 2 ln2jSkljÞ ð13Þ

The latter formulation is parameter free and was shown to
provide accurate dispersion energies up to very short (almost
valence) separations between the fragments.
The exchange-repulsion energy in EFP2 is derived from the

exact HF expression for the exchange-repulsion energy of two
closed-shell molecules. Truncating the sequence at the quadratic
term in the intermolecular overlap and applying an infinite
basis set and the spherical Gaussian overlap approximation207

lead to the following expression for the exchange-repulsion
energy:115,208

Eexrep ¼ ∑
k, l

�4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 lnjSklj

π

r
Skl2

Rkl
� 2Sklð ∑

i ∈ A
FAkiSil þ ∑

j ∈ B
FBlj Sjk � 2TklÞ

"

þ 2Skl
2 � ∑

j ∈ B

ZJ

RkJ
� ∑

I ∈ A

ZI

RlI
þ 2 ∑

j ∈ B

1
Rkj

þ 2 ∑
i ∈ A

1
Ril

� 1
Rkl

 !�
ð14Þ

where i, j, k, and l are LMOs; I and J are nuclei, S and T are the
intermolecular overlap and kinetic energy integrals, respectively;
and F is the intramolecular Fock matrix. The overlap and kinetic
energy integrals are calculated on the fly between each pair of
LMOs on different fragments A and B. The intramolecular Fock
matrix elements are precalculated as part of the MAKEFP run.
The charge transfer fragment-fragment energyEct is derived by

considering the interactions between the occupied valence
molecular orbitals on one fragment with the virtual orbitals on
another fragment.209,210 The charge transfer term results in
significant energy-lowering in polar or ionic species. An approx-
imate formula, based on a second-order perturbative treatment of
the intermolecular interactions, uses canonical HF orbitals of
individual fragments and a multipolar expansion of the electro-
static potential V of the fragment. The charge transfer energy of
fragment A induced by fragment B is approximated as

EctAðBÞ ¼ 2 ∑
occA

i
∑
virB

n

VB
in � ∑

allA

m
SnmVB

im

ð1� ∑
allA

m
Snm2ÞðFAii � TnnÞ

½VB
in � ∑

allA

m
SnmV

B
im

þ ∑
occB

j
SijðTnj � ∑

allA

m
SnmTmjÞ� ð15Þ

whereVB is the electrostatic potential on fragment B; i, j, n, andm
are canonical orbitals. A similar expression for the energy EB(A)

ct is
obtained when fragment A induces charge transfer in fragment B.
Charge transfer is treated as an additive pairwise interaction, so the
total charge transfer energy is a sum of the EB(A)

ct and EB(A)
ct terms
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of all pairs of fragments A and B. The charge transfer term is the
most computationally expensive term in EFP2; therefore, since it
is relatively small in nonpolar or weakly polar systems, the charge
transfer interaction is often omitted in EFP2 calculations.
Exact analytic gradients are available for all EFP2 fragment-

fragment terms.211,212 Similar to the EFP1models, the general EFP2
potential can be used in Monte Carlo and molecular dynamics
simulations. It was also shown that inMonteCarlo simulations, EFP
can serve as an accurate importance function for a QM/EFP
potential.213 The general EFP2 model is also used in combination
with the SFM, as discussed below. A hybrid EFP-FMO method,
called EFMO, is also described below.
A general EFP2 ab initio-fragment interface is under develop-

ment. The Coulomb and polarization quantum-EFP terms are
treated similarly to the QM-EFP1 scheme, through inclusion of
one-electron EFP terms into the QM Hamiltonian. Recently, a
formula for the exchange-repulsion energy between quantum
and EFP regions has been derived and implemented.214 Imple-
mentation of the exchange-repulsion gradients is in progress, as is
the formulation of the ab initio-EFP dispersion interaction.
To extend the general EFPmodel to covalently bound systems,

a covalently bound ab initio/EFP interface has been developed.215

The method is similar in spirit to that of Assfeld and Rivail216 and
is based on defining a buffer region that separates the QM and
EFP parts. The buffer region consists of several LMOs that are
kept frozen in the EFP calculations. In order to avoid variational
collapse of the ab initio wave function into the buffer region,
MOs of the ab initio part are kept orthogonal to the buffer LMOs.
The buffer region creates a necessary separation between the ab
initio and EFP regions such that the QM�EFP interactions can
be considered to be nonbonded interactions and can therefore be
treated in the same way as other EFP�QM interactions. Using
the buffer region does not increase the cost of the QM/EFP
calculations.
A variant of a flexible EFP potential has been developed by

Nemukhin and co-workers217,218 in which a covalently bound
system (such as a polypeptide) is divided into small EFP frag-
ments. Ab initio�EFP interactions are described in a similar
manner to those in a QM�EFP1 model (with Coulomb, polar-
ization, and repulsion terms), while fragment�fragment interac-
tions are described at the level of a customary force field. This
allows flexibility in a covalently bound molecule and optimization
of internal degrees of freedom.
2.1.2. Explicit Polarization Potential. The original formu-

lation of X-Pol by Gao48,54 was called MODEL and formulated
for homogeneous clusters representing liquids. In 2007, MOD-
EL was extended by Xie and Gao219 to covalently connected
fragments with the use of the generalized hybrid orbital method
(GHO).220 From the beginning, X-Pol was envisioned as the
next generation force field, based on QM calculations of frag-
ments, and it was suggested that some parameters are needed for
the implementation. X-Pol is typically used with semiempirical
methods that describe fragment wave functions. The distinct
feature of the X-Pol method is the incorporation of many-body
polarization through performing a double SCF calculation; that
is, self-consistent calculations of fragments in the electrostatic
field of the other fragments (similar to the EFP approach). In the
X-Pol method, the electrostatic field is usually represented by the
field of Mulliken charges (often scaled by an empirical factor).
The basic equations of X-Pol can be summarized as follows.

The total energy of the system, Etot, divided into N fragments, is
defined relative to the sum of the energies of noninteracting

fragments EI
0

Etot ¼ ÆΦjĤjΦæ� ∑
N

I¼ 1
E0I ð16Þ

where the total Hamiltonian is given by

Ĥ ¼ ∑
N

I¼ 1
Ĥ0

I þ 1
2 ∑

N

I¼ 1
∑
J 6¼I

ĤIJ ð17Þ

and the total wave functionΦ is the Hartree product of fragment
wave functions ΨI.

Φ ¼
YN
I¼ 1

ΨI ð18Þ

ĤI
0 is the electronic Hamiltonian of isolated fragment I, and the

interaction potential is expressed as

ĤIJ ¼ � ∑
2M

i¼ 1
∑
B

β¼ 1

q Jβ
jrIi � r Jβj

þ ∑
A

R¼1
∑
B

β¼ 1

ZI
Rq

J
β

jrIa � r Jβj
þ EvdWIJ ð19Þ

The first term in eq 19 describes the interaction of electrons
i in fragment I with partial charges q on atoms β in fragment J.
The second term in eq 19 describes the interaction of nuclear
charges Z on atoms R in fragment I with partial charges
on atoms β in fragment J. The third term describes the
Van derWaals (vdW) interaction energy usually represented by
the Lennard-Jones potential between atoms in fragments
I and J.
In applying the X-Pol method, one performs SCF calcula-

tions on the individual fragments in the electrostatic field of the
point charges due to the other fragments, determined using the
electron density of the other fragments, until full self-consis-
tency is reached. The fragment boundaries are treated with
frozen orbitals, whereby the four bonds on the typical boundary
carbon atom are divided equally (meaning two bonds to each
fragment) between two fragments. The first group of orbitals,
which is inside the fragment, is fully SCF-optimized, while the
other group of orbitals that belong to other fragments is frozen
and contributes to the total Fock matrix and density, while
remaining frozen. Polypeptides are usually divided at CR atoms,
which are the boundary atoms in X-Pol. Thus, the fragments
correspond to peptide units as defined by IUPAC221 rather than
residues.
In 2008, Xie et al.222 modified the formulation of X-Pol to

obtain rigorously analytic gradients. The modification was ne-
cessitated by the use of the Mulliken charges to represent the
external field. In this method, individual fragment Fock operators
are modified with additional terms derived from the variation of
the total electronic energy with respect to the electronic states of
all fragments. In 2009, Song et al.223 extended the RHF version of
X-Pol to DFT.
In 2010, Cembran et al.224 proposed the X-Pol-X method,

which adds interfragment exchange interactions. Different
from the earlier X-Pol, this new formulation appears to belong
to the two-step category in the classification of fragment-based
methods. In the X-Pol-X formalism, the fragments in X-Pol are
replaced by blocks, which may or may not be associated with
specific groups of atoms, although the practical implementa-
tion still uses fragments as blocks. The blocks are described by
block-localized wave functions (BLW). The total X-Pol-X
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energy is given by

EX-Pol-X ¼ ∑
K

μν
DμνðHμν þ FμνÞ ð20Þ

where K is the total number of basis functions in the whole
system and H and F are the one-electron and Fock matrices,
respectively, as in an ab initio calculation for the whole system.
The density matrix is defined as

D ¼ ~Cð~CTR~CÞ�1~CT ð21Þ
In eq 21, ~C is the matrix of occupiedMOs, with nonzero blocks
on the diagonal. Each block in theDmatrix corresponds to the
respective block in X-Pol-X. R is the matrix of the interblock
AO-based overlap integrals (a and b denote blocks)

Rab
μν ¼ Æχaμjχbνæ ð22Þ

The interfragment exchange is apparently accounted for
through the block-orthogonalization constraint (~CTR~C)�1,
although the interblock potential is described with
Coulomb terms.
Practically, one still has to solve Hartree�Fock equations

for blocks, with the appropriately constructed Fock matrix.224 In
X-Pol-X, in contrast to X-Pol, the free block energies are not
subtracted from the QM energy as in eq 16. This suggests that
X-Pol-X has become more sophisticated than a “next generation
force field”.
In 2010, Gao et al.74 proposed the generalized X-Pol method,

GX-Pol. This approach has two formulations, based on (a)
consistent diabatic configurations (CDC) and (b) variational
diabatic configurations (VDC). The two approaches have some
similarity with (a) the valence bond (VB) (or MCSCF) and (b)
CI theories, respectively. The analogy is not complete, since the
VB, MCSCF, and CI methods all account for the occupation of
virtual orbitals and describe electron correlation, whereas GX-Pol
effectively accounts for quantum effects (such as charge transfer)
between fragments in the RHF fashion. This GX-Pol approach is
conceptually analogous to the MP2 and CI in vibrational SCF
(VSCF),225 which accounts for the anharmonicity rather than the
electron correlation.
The CDC approach is based on pairs of blocks X2; the energy

is obtained by

EX2 ¼ ÆΘX2jĤjΘX2æ ð23Þ
where the wave function for M blocks is given by

ΘX2 ¼ ∑
M

a¼ 1
∑
M

b¼ a þ 1
cabΨ

A
ab ð24Þ

The pair wave functions in eq 24 are

ΨA
ab ¼ RA

abÂðΦ1 ::: Φab ::: ΦM Þ ð25Þ
where Â is the antisymmetrizer and Rab

A is the normalization
constant. Φab is the wave function of the pair of blocks (ab).
The coefficients cab and other variables in the block wave
functions are determined self-consistently. An extension to
an arbitrary combination of blocks (i.e., more than pairs) was
also proposed.
In the VDC approach, the energy E is obtained by diagona-

lizing a CI-like secular equation with each matrix element,

such as HI,J corresponding to the combination of pairs I = (ab)
and J = (rs)

�����
H11-ES11 ::: H1,M2-ES1,M2

::: ::: :::

HM2, 1-ESM2, 1 ::: HM2,M2-ESM2,M2

����� ¼ 0 ð26Þ

In eq 26, M2 = M(M � 1)/2 is the total number of dimer
configurations Ψab

A , and the corresponding overlaps and
Hamiltonian matrix elements are given, respectively, by

Sab, st ¼ ÆΨA
abjΨA

stæ ð27Þ

Hab, st ¼ ÆΨA
abjĤjΨA

stæ ð28Þ
It should be noted that CDC and VDC give different energies,

like CI and MCSCF do for electron correlation. This new
formulation of GX-Pol can describe charge transfer between
blocks, previously not considered in X-Pol. As for X-Pol-X, GX-
Pol is a more general method than the original X-Pol.

2.2. Fragment Molecular Orbital Methods
Since the original formulation60 during the last century,

the FMO method226,227 has undergone considerable develop-
ment extending the applicability of the method to a wide variety
of types of systems. A review of the FMO method in 2007 by
Fedorov and Kitaura228 was followed by a book229,230 summa-
rizing the activity of a number of research groups developing and
applying FMO.

The gist of the FMO method is to incorporate high order
interactions into low order expansions in terms of fragments,
inspired by molecular interaction models.72 In particular, the
electrostatic interaction is treated at the full N-body order (M =
N), where N is the total number of fragments; this is accom-
plished by incorporating the Coulomb field of all N fragments
into the self-consistentmonomer SCF cycle (see introduction for
a more detailed discussion), while nonelectrostatic interactions
(exchange-repulsion, charge transfer, and dispersion) are treated
at a lower order, typically M = 2 or 3. The fragments, their pairs
(M = 2, FMO2) and triples (M = 3, FMO3) are explicitly treated
quantum-mechanically in the presence of the Coulomb
(i.e., electrostatic) field of the whole system. In this manner,
the low-order nonelectrostatic interactions are coupled to the
electrostatics. In most systems, this is a reasonable approxima-
tion, because the nonelectrostatic interactions are typically
shorter-range.

Beginning with this assumption, it becomes acceptable to
break a system into many smaller, localized pieces, treating the
long-range effects of the full system using only a Coulomb
operator. The driving motivation for this approximation and
subsequent fragmentation is to find a route to drastically reduce
the computational cost required for calculations. Even when the
most efficient algorithms are used, for example, with MP2 or
CCSD(T), the system size in terms of basis functions is the
limiting factor. It is this roadblock in current ab initio methods
that the FMO method attempts to overcome, first by reducing
computational cost through fragmentation as mentioned above,
and second by employing multilevel parallelization through the
use of the generalized distributed data interface (GDDI).1 It is
this combination of theoretical approximations and exploitation
of modern computational resources that has allowed the FMO
method to perform all electron calculations on over 20 000
atoms.231
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Fragment creation in the FMOmethod involves the detaching
of bonds electrostatically, assigning two electrons from the
broken bond to one fragment and none to the other. Where
these bond detachments occur is left up to the user, relying on
their own chemical intuition and knowledge of the system being
investigated. A general guideline is to avoid detaching bonds
involved in considerable electron delocalization, for example,
within benzene rings. There are well established standard frag-
ments for polypeptides (fragmented at CR atoms), nucleotides,
and saccharides. Metal ions have very considerable charge transfer
to solvent232 and represent an example of the need to define
large fragments. When fragmenting a chemical system in this
manner, the charge on fragments is not affected by bond
detachment, so a negatively charged residue retains this same
negative charge after fragmentation. The technical details of
this are well illustrated elsewhere.229,199 Note that the FMO,
ELG, and X-Pol methods appear to be among the few fragment
methods that do not add caps (hydrogen or more involved) to
detached bonds.

The detachment of bonds in the FMOmethod can be done in
two ways. In the original method, hybrid orbital projection
(HOP) operators233 are used to properly divide the variational
space for the atom from which a bond is detached, because this
atom has to be present in two fragments: This atom is present in
one fragment just to describe the detached bond; the same atom
is present in the second fragment since it contains the rest of the
electrons that “belong” to that atom. This procedure is readily
accomplished with projection operators, based on precomputed
hybridized orbitals (e.g., sp3) for the atom at the detached ends
of the fragmented bond. In this method, often referred to as
the HOP method, there are no restrictions on the variational
optimization of the occupied orbitals of the fragments, in contrast
to the second approach described in the next paragraph. This
HOP method is considered to be a good approach for very polar
systems such as proteins with charged residues.

The second detachment method is based on adaptive frozen
orbitals (AFO),234 in which the electron density distribution is
precomputed for an approptiate MO in a model system that
represents the system of interest. This precomputed electron
density is subsequently frozen in the FMO calculation. The
treatment of the variational space division for each bond-detached
atom in a fragmentation process is very similar to the HOP
procedure, although the AFO procedure is achieved in practice
in a differentmanner by Fockmatrix transformations. However, an
important distinction in the AFO procedure is that there is a
restriction on the variation of the occupied fragment orbitals on the
atoms that are involved in the fragmentation (the detached bond
orbitals). This is particularly important for systems in which the
detached bonds are inevitably close to one another. This happens
in covalent crystals and related systems such as nanowires, for
which the AFO procedure is preferred. The HOPmethod is based
on projection operators in the general form |ϕæ Æϕ|. Such projection
operators are used in many methods, for instance, in the core
operator of model core potentials.235 The FMO AFO approach
was adapted from the EFPmethod,75,215 which is in turn related to
other methods, such as the GHO approach220 of Assfeld and
Rivail.216 The AFO method is similar to these other methods in
that the density of some occupied orbitals is frozen, but differs in
the variational space division, as well as in other technical details such
as the method to obtain the bond orbitals, and their orthogonality.

HOP-based approaches require a separate preliminary genera-
tion of hybrid orbitals. Although this is straightforward, it does

add an extra step. To date, bonds have been detached at carbon
and silicon236 atoms. On the other hand, in the AFO approach the
frozen orbitals are generated on the fly. Therefore, in principle any
system can be computed, although a practical implementation
may require an elaborate algorithm to properly build a model
system in complicated cases. The AFO-based FMO approach has
been applied to bonds detached at carbon and silicon.

Now, consider a summary of the basic FMO formulation. For
a more detailed mathematical description the reader is referred to
chapter 2 of ref 144. The basic algorithm for calculating the
energy of a system using the FMO method is as follows (see
Figure 2):
(1) The initial electron density distribution is calculated for

each monomer.
(2) Themonomer Fock operators are then constructed using

these densities and the energy of each monomer is
calculated in the Coulomb bath of the rest of the system.

(3) Each of the monomer energies is iterated to self-consis-
tency, leading to a converged ESP. This step in FMO
development is usually called the monomer SCF or SCC.

(4) Fragment dimer calculations (FMO2) are then per-
formed in the converged ESP of the rest of the system.
Each dimer calculation is only performed once (not self-
consistently).

(5) Optionally, fragment trimer calculations (FMO3) are
performed next in the converged ESP of the rest of the
system. Each trimer calculation is only performed once.

Within the two- and three-body FMO methods (FMO2 and
FMO3, respectively), the total energy of the system can be
written as

EFMO2 ¼ ∑
N

I
EI þ ∑

N

I > J
ðEIJ�EI � EJÞ ð29Þ

EFMO3 ¼ EFMO2 þ ∑
N

I > J > K
fðEIJK � EI � EJ � EKÞ � ðEIJ � EI � EJÞ

� ðEIK � EI � EKÞ � ðEJK � EJ � EKÞg ð30Þ
with monomer (I), dimer (IJ), and trimer (IJK) energies being
obtained as described above. The beauty of the seemingly

Figure 2. General outline of a standard FMO calculation including up
to dimer interactions.

http://pubs.acs.org/action/showImage?doi=10.1021/cr200093j&iName=master.img-001.jpg&w=240&h=179
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simplistic form of eq 29 is its ability to encapsulate the concepts
of properly handling many-body effects, shown in the diagram-
matic treatment56 and the Green’s function formalism.237

The Fock equation used in the FMO method

~FxCx ¼ SxCx ~εx, x ¼ I, IJ, IJK ð31Þ

~Fx ¼ ~Hx þ Gx ð32Þ
is a modified version of the standard form. Themodification adds
a term, Vμv

x , to the one-electron Hamiltonian, ~Hx, that represents
the ESP calculated during the monomer SCF

~Hx
μν ¼ Hx

μν þ Vx
μν þ B∑

i
Æμjϕhi æÆϕhi jνæ ð33Þ

To properly divide basis functions across fractioned bonds, a
projection operator (HOP), B∑iÆμ|ϕihæÆϕih|νæ, is also added to the
Hamiltonian, where i runs over hybrid orbitals ji

h on all bond
detached atoms in fragment x. The constant B is chosen to be
sufficiently large to remove the corresponding orbitals out of the
variational space. Typically, B = 106 a.u.

One of the most important components of the FMO approach
is the ESP, calculated during the monomer SCF process. The
ESP of the full system takes the form

Vx
μν ¼ ∑

Kð6¼xÞ
ðuKμν þ vKμνÞ ð34Þ

uKμν ¼ ∑
A ∈ K

Æμjð � ZA=jr� rA jÞjνæ ð35Þ

vKμν ¼ ∑
λσ ∈ K

DK
λσðμνjλσÞ ð36Þ

The term uμv
K represents the nuclear attraction contribution to

the energy, with the two-electron contribution represented by
the second term vμv

K , expressed in terms of AOs μ and ν. Both of
these terms are calculated for each of the surrounding monomers
K with electron density DK.

One might wonder if the addition of exchange integrals to the
ESP in eq 36 could improve the results. Following an initial
analysis237 in 2006, it was later concluded238 that because of the
lack of orthogonality between fragment wave functions, the
addition of exchange to ESPs in the SCC procedure actually
decreases the accuracy. It is also possible to use point charges for
all ESPs. This was shown to work particularly well for large basis
sets by Fedorov et al.239 These authors also proposed to screen
point charges by introducing an exponent prefactor to the point
charge potentials in eq 35. Such screening was found to be useful
in particular for the AFO scheme when ESP are represented by
point charges, and for molecular clusters the effects of screening
were found to be small.

Even using the formulation described thus far, the computa-
tional cost can still become excessive due to the increasing cost of
the two-electron term, vμv

K , contained in the ESP. Additional
approximations can be used to reduce this cost by creating a
cutoff value Rapp. Two-electron terms outside of this boundary
can be treated in a more approximate manner; however, this
additional layer of complexity can decrease the accuracy of the
method. This is due to the delicate balance among the approxi-
mations in different FMO terms.

To understand this, consider a dimer IJ separated from a
fragment L, which exerts an ESP upon I, J, or IJ, schematically

represented as IJ...L. If the distance between J and L is short
(no ESP approximation), but that between I and L is long
enough to apply the ESP approximation, there is a loss
of balance, because in dimer IJ and monomer J the ESP due
to L is computed without approximations, but in monomer I
it is approximated. Consequently, pair corrections of the
form EIJ � EI � EJ include potentials due to L both with
and without approximations. Because of the rapidly increasing
number of dimers with system size, the error accumulates,
creating a significant loss of accuracy in the total energy of the
system.

To avoid the problems created by using distance based
approximations to the ESP, a reformulation of the energy expres-
sion is used240 that is equivalent to eq 29 but more accurate when
using approximations to the ESP

EFMO2 ¼ ∑
N

I
E

0
I þ ∑

N

I > J
ΔE

0
IJ þ ∑

N

I > J
TrðΔDIJVIJÞ ð37Þ

with the analogous expression241 for FMO3 being

EFMO3 ¼ ∑
N

I
E

0
I þ ∑

N

I > J
ΔE

0
IJ

þ ∑
N

I > J > K
ðE0

IJK�E
0
I � E

0
J � E

0
K �ΔE

0
IJ �ΔE

0
IK �ΔE

0
JKÞ

þ ∑
N

I > J
TrðΔDIJVIJÞ þ ∑

N

I > J > K
½TrðΔDIJKVIJKÞ

� TrðΔDIJVIJÞ � TrðΔDIKVIKÞ � TrðΔDJKVJKÞ�
ð38Þ

where ΔEIJ0 = EIJ0 � EI0 � EJ0 and the new energy terms Ex0 are
defined as the internal n-mer energies with the ESP contributions
subtracted out

E
0
x ¼ Ex � TrðDxVxÞ, x ¼ I, J, IJ ð39Þ

and ΔDx is the difference density matrix, defined as

ΔDIJ ¼ DIJ �DI x DJ ¼ DIJ � DI 0
0 DJ

" #
ð40Þ

The above formulation in eq 37 allows the total energy to be
calculated explicitly from only the dimer ESP VIJ. Equation 38
contains both dimer and trimer ESPs, resulting in a more
considerable effect of approximations on FMO3. Approxi-
mations can be applied to monomers and dimers separa-
tely, with the dimer ESP directly contributing to the total
energy. The monomer ESP determines the monomer elec-
tron densities, and therefore only contributes to the total energy
indirectly.

The total density can be calculated in the same manner as the
total energy (cf., eq 29), and one-electron properties such as
multipole moments are straightforward to calculate once the
total density is obtained. For example, Sekino et al. computed
moments up to quadrupoles.242

Equation 38 includes both the two-body ΔDIJ and three-
body ΔDIJK =DIJK�DIxDJxDK difference density matrices.
This form of the energy equation, when applying three-body
approximations to the ESP, partially retains the problem of
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ESP imbalance that the reformulation attempts to avoid. This
retention of error is due to the uniform application of the
distance definition Rapp. To avoid this the distance based
approximation was also reformulated241 to treat the matrix
elements of Vμv

x block-wise so that

R
∼
IJ, Lðμ, νÞ ¼

RI, L for μ, ν ∈ I
RJ, L for μ, ν ∈ J
RIJ, L for μ ∈ I, ν ∈ J or μ ∈ J, ν ∈ I

8>><
>>:

9>>=
>>;

ð41Þ
This allows for the application of approximations, for example in
the I block ofVμv

x , to use the distanceRI,L, while using the uniform
distance definition RIJ,L for the off-diagonal elements corre-
sponding to both fragments I and J.

It is now appropriate to discuss the types of approximations
applied to the ESP using the previously described energy expres-
sions. Two levels of approximation can be used, both of which are
applied to the two-electron integral term in eq 34. The first level of
approximation, applied at intermediate distances, is the Mulliken
atomic orbital population to the two-electron integrals.243,244

Eq 36 can be rewritten as

vKμν = ∑
λ ∈ K

ðDKSKÞλλðμνjλλÞ ð42Þ

The application of this approximation can reduce the compu-
tational cost of the two-electron integrals by a factor of NB

(number of basis functions).
The second level of approximation uses fractional atomic

charges QA derived from the Mulliken atomic populations PA of
the monomers. This approximation is applied at long distances
and simplifies eq 36 as

vKμν = ∑
A ∈ K

ÆμjðPA=jr� rAjÞjνæ ð43Þ

effectively reducing the computational cost of the two-electron
integrals by another factor of NB.

For far separated monomers the corresponding dimers do not
need to be computed with the SCF procedure, as the monomer
states already polarized by the ESP are very little perturbed by an
explicit dimer SCF. However, there is a Coulomb interaction
between such monomers that should be computed and added to
the total energy

E
0
IJ = E

0
I þ E

0
J þ TrðDIu1, IðJÞÞ þ TrðD Ju1, JðIÞÞ

þ ∑
μν ∈ I

∑
Fσ ∈ J

DI
μνD

J
FσðμνjFσÞ þ ΔENRIJ ð44Þ

where u1,I(J) and u1,J(J) (cf. eq 35) are the one-electron Coulomb
potentials of the force exerted by fragment J on fragment I, and
vice versa. The electron�electron interaction (cf. eq 36) and the
nuclear repulsion (NR) are also added in eq 44.

The final equations for the basic energy evaluation in FMO2
and FMO3 for RHF wave functions are eqs 37 and 38, res-
pectively. These equations can be readily extended to other wave
functions. A presentation of the application to other methods can
be found in chapter 2 of ref 144.

The original energy gradient245 based on the HOP approach
was proposed for FMO2 in 2001 and contained several approxi-
mations. The derivative of Mulliken point charges in ESP was

added by Nagata et al.246 in 2009, and the derivative of the HOP
terms was developed by Nagata et al.247 in 2010. The FMO3
gradient was introduced in 2010 by Komeiji et al.248 The FMO2
gradient for the AFO approach was proposed in 2009 by Fedorov
et al.249 A fully analytic FMO gradient without approximation
was developed by Nagata et al.250 in 2011 with the introduction
of the self-consistent Z-vector (SCZV) procedure to obtain the
exact derivatives of the dimer terms coupled to the electrostatic
potential.

In 2002, Inadomi et al.251 proposed the FMO-MO method,
which according to the classification of fragment methods
as discussed above, belongs to a different category from the
rest of the FMO methods. While most FMO approaches are
one-step approaches, the FMO-MO method is two-step,
in which the density is obtained from the FMO calculation
and used to construct the Fock matrix of the whole system in
the exact ab initio fashion. Watanabe et al.252 benchmarked
the FMO-MO method for DNA, and Umeda et al.253 pro-
posed an efficient parallel algorithm for this method. It should
be noted that the FMO-MO method (so far limited to RHF)
can be used as a traditional ab initio method, because it
produces the energy, MOs and other properties from the total
Fock matrix.

Sekino et al.242 in 2003 suggested taking the union of
fragment MOs as a representation of the MOs of the whole
system. Tsuneyuki et al.254 in 2009 developed the FMO-LCMO
method, which has the limited but important aim of producing
MOs near the HOMO and LUMO. This is accomplished
by constructing a small MO-based Fock matrix collecting
monomer and dimer contributions for a few orbitals of
interest. Nishioka and Ando255 in 2011 took advantage of the
FMO-LCMO scheme and used it for the theoretical modeling
of the electronic coupling. Fedorov and Kitaura238 in 2009
proposed to build the total AO-based Fock matrix for the whole
system (FMO/F) from monomer and dimer Fock matrices.
This is in contrast to the FMO-MO method, in which a similar
matrix is computed in the ab initio fashion using the total
density. Adding the exchange to this total Fock matrix (FMO/
FX) considerably improves the description of the virtual MOs.
All of these methods are FMO extensions for generating a
specific property (the MOs), rather than a density-based
method like FMO-MO, aimed at delivering the energy, MOs
and other properties.

Sugiki et al.55d in 2003 began the process of extending FMO
to wave functions other than RHF, by developing FMO2-
based DFT, extended to FMO3 by Fedorov and Kitaura256 in
2004; Shimodo et al.257 in 2006 reported some accuracy
benchmarks for FMO2-DFT. In 2004, Møller�Plesset per-
turbation theory was interfaced with FMO by Fedorov and
Kitaura,258 and an alternative implementation was reported by
Mochizuki et al.259,260 In 2009, RI-based FMO2-MP2 was
proposed by Ishikawa and Kuwata261 and Cholesky decom-
position based FMO2-MP2 by Okiyama et al.262 Mochizuki
et al. developed an efficient parallel algorithm on the Earth
Simulator for FMO-based MP2 in 2008263 and MP3 in
2010.264 The FMO3-based MP2 method was developed for
the energy by Fedorov and Kitaura265 in 2009 and the gradient
by Mochizuki et al.266 in 2011.

The first MD simulations using FMO were reported by
Komeiji et al.267 in 2003, indicating that the gradient accuracy
problem (which has subsequently been solved byNagata et al.250)
requires larger fragments. Ishimoto et al.268,269 in 2004�2005
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used their Hamiltonian algorithm for FMO-MD. Dynamic
fragmentation was proposed by Komeiji et al.270 in 2009 to cope
with the problems of bond breaking in FMO-MD. A review of
FMO-MDmethods was published by Komeiji et al.271 in 2009. A
path integral based FMO-MDwas developed by Fujita et al.272 in
2009. A FMO-MD method with periodic boundary conditions
was developed by Fujita et al.273 in 2011.

Fedorov and Kitaura274 in 2005 developed FMO-based
MCSCF and coupled cluster275 methods. As an important step
to improve the efficiency, Fedorov et al.276 introduced the multi-
layer FMO(MFMO)method, in which the system can be divided
into several layers, and each layer is allowed to have its own basis
set and level of theory. The original MFMO formulation276

suggested that layers can have a different many-body expansion,
which was later realized byMochizuki et al.266 under the name of
FMO(3)-MP2, which should also be called FMO3-RHF:FMO2-
MP2 for the case when the two layers include all fragments. In a
quest for the exact solution, Maezono et al.277,278 in 2006�2007
proposed the FMO-based quantum Monte Carlo method.

One of the main targets of the FMO method is biochemical
simulations, for which it is very important to properly consider
solvent effects. The FMO-based PCM was developed for both
the energy by Fedorov et al.279 in 2006 and the gradient by
Li et al.280 in 2010. A Poisson�Boltzmann model was incorpo-
rated into FMO by Watanabe et al.281 in 2010. For discrete
models of explicit solvation, water can be described either as
FMO or EFP fragments. The latter is due to the work of Nagata
et al. for the FMO/EFP energy182 in 2009 and gradient183

in 2011.
Complementing the ground state methods, FMO-based

MCSCF was the first excited state method, reporting accuracy
for singlet and triplet calculations of solvated phenol.274 Mochizuki
et al. developed FMO-based CI with singles (CIS)282 in 2005
and added the perturbative treatment of doubles in 2007.283

The FMO2-based TDDFT method was proposed by Chiba
et al.284,285 in the gas phase in 2007 and solution286 in 2008; the gas-
phase gradient was developed287 in 2009 and the FMO3-based
TDDFT method was proposed288 in 2010. For open shells, the
ROHF-based MP2 and CC methods were developed by Pruitt
et al.289 in 2010.

All of these excited state methods are built around the
central excited state fragment, which naturally contains the
chromophore. In the FMO2 model, dimers that include the
central fragment add explicit quantum effects, while other
fragments only exert their electrostatic potential (ESP). In
contrast to the ground state FMO, FMO1 for excited states is
quite useful as an approximation to full FMO2, if one is
interested in the excitation energies. The working equation
is very similar to eq 29, with the difference that the energies of
the central monomer and dimers that contain the central
monomer correspond to the excited state, while other energies
are for the ground state.

There is an important difference between MCSCF on the one
hand, and CI or TDDFT on the other. In the former, ESPs are
computed for the central excited state (described by MCSCF),
while in the latter the ESPs correspond to the ground state (RHF
or DFT, respectively). The FMO1-based CI method has been
described as a multilayer approach with a single chromophore
fragment in the second layer,282 but it can also be thought of
as a single layer FMO1-CI, because these two descriptions
are identical. On the other hand, for TDDFT, one can define
FMO1-RHF:TDDFT, which corresponds to performing TDDFT

calculations for the chromophore in the field of the ESP
computed at the RHF level. This is different from FMO1-
TDDFT, in which the ESPs are computed with DFT.

To analyze the effect of isotopic substitutions by using wave
functions for nuclei, Ishimoto et al.290 in 2006 developed
a multicomponent method. Auer et al.291 in 2009 proposed
the FMO-based nuclear-electronic orbital (NEO) method.
Mochizuki et al.292 in 2006 developed a method for calculating
the dynamic polarizability in the FMO framework. An interface
to model core potentials (MCP) for the treatment of heavy
atoms was added in 2006 by Ishikawa et al.293 The total
electrostatic potential was used to obtain atomic charges fitted
to it by Okiyama et al. in 2007294 and 2009.295 Sekino et al.296 in
2007 implemented the calculation of NMR chemical shifts with
FMO2. Gao et al.297 in 2007 proposed an approach for evaluating
NMR shifts from dimers, by using two fragmentations shifted with
respect to each other, extended298 later in 2010 to larger con-
glomerates of fragments but with a single fragmentation in the
FMO1(merged) method.

The FMO method is suited to various analyses, as it provides
information on fragments and their interactions that are naturally
built into the method. In 2006, Amari et al.299 developed the
visualized cluster analysis of protein�ligand interactions based
on the FMO method. Du and Sakurai300 in 2010 proposed a
multivariate analysis of properties of amino acid residues.

An important goal is to obtain more information than simple
pair interaction energies (PIEs), also called interfragment inter-
action energies, IFIEs. Mochizuki et al.301 in 2005 developed the
configuration analysis for fragment interaction (CAFI), providing
a means to extract for each orbital the stabilization component of
the polarization and the charge transfer for IFIEs. Fedorov and
Kitaura built EDA into the FMO method, developing the pair
interaction energy decomposition analysis (PIEDA),98 which
decomposes PIEs into their electrostatic, exchange-repulsion,
charge transfer, and dispersion components. A fragment inter-
action analysis based on local MP2 (FILM) was proposed by
Ishikawa et al.302 in 2007. FILM allows extracting orbital-based
contributions to the electron correlation component of the
interaction energy.

The counterpoise correction303 for the basis set superposition
error (BSSE) conceptually is a two-fragment method, so it is
natural to attempt to include it into fragment methods. After the
initial probing,293,302 two methods304,305 have been developed
for BSSE corrections of the FMO energy in eq 29. The validity of
these corrections remains to be seen, as it has not been shown
that they indeed bring the results closer to the complete basis set
limit. One should also be aware that careful tests306 indicate that
in particular for MP2 the CP correction does not improve the
results in this sense, especially for small basis sets.

Geometry optimizations for the FMO method were reported
by Fedorov et al.307 in 2007. Subsequently, Ishikawa et al.308 in
2010 suggested the partial energy gradient (PEG) method and
Fedorov et al.309 in 2011 introduced the frozen domain (FD)
concept in their FMO/FD method. The focus of both of these
methods is to perform an efficient geometry optimization of a part
of the system. In the FMO/FD approach (Figure 3), the system
is divided into several domains: frozen, polarizable and active.
The electronic state of the frozen domain is computed only at the
initial geometry, and the polarizable domain is recomputed for
new geometries during geometry optimizations of atoms in the
active domain. The main purpose of FMO/FD and its faster
derivative FMO/FDD (in which the number of dimer calculations
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in the polarizable domain is reduced by omitting pairs of fragments
except those in the active domain) is to efficiently perform geometry
optimizations of the active sites in large molecular systems. To
demonstrate the efficiency of the FMO/FDD approach, Fedorov
et al.309 optimized the geometry of a large protein�ligand complex
with 19471 atoms at the B3LYP/6-31G(d) level of theory for the
polarizable domain. This calculation took 32 h on six dual-CPU
quad-core 2.83 GHz Xeon nodes.

There are several fragment methods that are closely related to
the FMO method. The electrostatically embedded many-body
expansion (EEMB) method310�313 corresponds to FMO with
constant ESP, which is not updated in the SCC fashion, and is
often taken to be represented by point charges from molecular
mechanics. Hirata et al.314 in 2005 proposed representing the
ESP by dipoles and in 2008315 by point charges fitted to reproduce
the fragment electrostatic potential.

In the effective fragment molecular orbital (EFMO) method
Steinmann et al.316 merged the ideas of EFP and FMO
(Scheme 1). In their method, no SCC calculation is performed,
and all fragments are computed in vacuum (i.e., in the absence of
the ESP). The many-body polarization is added, computed from
fragment polarizabilities (as in the EFP method). The long-
range Coulomb interaction in eq 44 is computed using multi-
poles, also following the EFP method. Short range dimers
(for which the interfragment distance RIJ is smaller than a
threshold RESDIM) are computed self-consistently, in vacuum.

The EFMO energy expression is given by

E ¼ ∑
N

I¼ 1
E0I þ ∑

N

I > J
RIJ e RESdim

ðE0IJ � E0I � E0J � EindIJ Þ

þ ∑
N

I > J
RIJ > RESdim

ΔE
0ESM
IJ þ Eindtotal ð45Þ

The superscript 0 indicates that the corresponding calculations
are performed in vacuum. The total induction energy Etotal

ind is
corrected for double counting by subtracting SCF dimer
contributions EIJ

ind (because SCF dimers have implicit pola-
rization). The long-range electrostatic term ΔEIJ0

ESM of dimers,
for which the interfragment separation is larger than RESDIM, is
computed with multipoles, consistent with the approximate
method of computing the energy of far separated dimers in
FMO, eq 44.

In the EFP method, multipoles up to octopoles are used. In
the EFMOmethod, the multipole expansion is truncated at the
level of quadrupoles since higher multipoles become less
important at large interfragment separations. Distributed mul-
tipoles and polarizability tensors for computing polarization
terms are calculated on-the-fly for each individual fragment.
The main differences between EFMO, FMO, and EFP are
summarized in Scheme 1. The computational cost of the
EFMO method is significantly less than the cost of a corre-
sponding FMO calculation. The EFMO method employs
explicit ab initio calculations on the closely lying dimers where
quantum effects such as charge penetration and charge-transfer
are important and the semiclassical EFP terms could become
less accurate.

Several methods, which appeared earlier than EFMO,
are related to it and differ in the details of computing
EFP-related terms in EFMO. These methods include the
polarizable multipole interaction with supermolecular pairs
(PMISP)317�319 and the approach by Beran.320,321 PMISP
involves capping fragments so it may be closer to methods like
KEM rather than FMO, modified with the addition of the
explicit polarization.

2.3. Molecular Tailoring Approach
Since the original formulation of the molecular tailoring

approach (MTA)121,322 the fragmentation scheme has under-
gone significant changes and improvements.323,324 The general
idea of the MTA is similar in nature to both MFCC and
SFM, with aspects of the divide and conquer method

Figure 3. Schematic representation of FMO/FD and FMO/FDD. Frag-
ments are divided into three domains, frozen (gray), polarizable (blue), and
active (red). All three domains are computed with QM (using multilayer
FMO). An actual geometry optimization of the partially solvated prosta-
glandin H(2) synthase-1 in complex with the reversible competitive
inhibitor ibuprofen (PDB 1EQG) is shown at the lower part. Reproduced
with permission from the TOC graphic of J. Phys. Chem. Lett. 2011, 2,
282�288. Copyright 2011 American Chemical Society.

Scheme 1. Comparison of the Effective Fragment Molecular Orbital Method (EFMO) with EFP and FMO

http://pubs.acs.org/action/showImage?doi=10.1021/cr200093j&iName=master.img-002.jpg&w=114&h=116
http://pubs.acs.org/action/showImage?doi=10.1021/cr200093j&iName=master.img-003.jpg&w=500&h=129


P dx.doi.org/10.1021/cr200093j |Chem. Rev. XXXX, XXX, 000–000

Chemical Reviews REVIEW

incorporated as well. The MTA has been tested on a number
of systems325�328 including large π-conjugated systems, for
example, graphene sheets.329 Further refinements of the method
allow for geometry optimizations based on the adjustment of
the cardinality of the fragments and their overlapping sections.
This newest implementation of the MTA is appropriately
named the cardinality guided molecular tailoring approach
(CG-MTA).323

The current implementation of the MTA is highly automated,
with the user only needing to specify two values in addition to
providing the coordinates of the target system. The first value
specified is the maximum fragment size in terms of atoms per
fragment. The second value, R-goodness (Rg), is central to the
MTA fragmentation scheme and will be discussed in greater
detail below.

The general fragmentation process for the MTA begins
with the specification of the maximum fragment size and
Rg and proceeds as follows. (1) Create an initial set of frag-
ments by centering a sphere of radius Rg at each atom and
assigning all atoms falling within the sphere to the fragment.
During this process care is taken not to break aromatic rings or
double bonds. Additional atoms are included or excluded
based on the maximum fragment size. (2) Fragments created
in step one are merged according to their proximity, while
staying within the maximum fragment size set initially.
(3) Merging of fragments is performed recursively depending
on the maximum overlap of nearest neighbor fragments. This
recursive merging stops once all fragments reach the max-
imum fragment size. (4) The final set of fragments is checked
for the respective Rg value of the included atoms. (5) Broken
bonds are capped using hydrogen atoms positioned along the
appropriate bond vectors. (6) All intersecting portions of the
merged fragments are computed, with the sign of each con-
tribution being set according to (�1)K�1 where K = number
of fragments involved in the intersection. (7) The energy
expression for the fragmentation scheme is created and the
total energy of the system is calculated.

The value Rg used for fragment definition defines the radius
of the sphere centered at atom i in the molecule of interest. All
atoms that fall within this sphere are chosen to be part of
fragment Fi. Since a sphere of radius Rg is created around all
atoms in the system of interest at the beginning of the
fragmentation process, each atom is bound to appear in more
than one fragment even after the merging process in step 2.
When this occurs, such atoms are evaluated for how accurately
the local environment is represented by measuring the Rg value
of the atom in each fragment. The largest of these values is
chosen to represent the Rg of the atom in that particular
fragmentation scheme. This is important since the value of Rg
measures the quality of the fragmentation scheme based on
how well the chemical environment around atom i is repre-
sented. A larger value of Rg will give a better representation of
the chemical environment, providing more accurate results. It
has been shown that values of Rg in the range 3�4 Å is
necessary to achieve accurate results. While the minimum value
of Rg ensures that each atom will have a certain representation
of the surrounding chemical environment, the maximum frag-
ment size assures that fragments do not become too large based
on the computational resources available. The use of spheres
centered around atoms also allows for an inherent treatment of
nonbonded effects. For example, in a system such as a protein
with a three-dimensional structure, one can imagine atoms in

parts of the system that are not connected to the atom center i
falling within the sphere created by Rg. In such cases such, it is
possible for only hydrogen atoms in the unconnected region to
fall into the sphere. When this occurs, atoms bonded to these
hydrogens are added to the fragment as well. In general, the
fragmentation process is automated to account for such
systems.

Consider a general molecule M that, after the complete
fragmentation procedure, is broken into two fragments F1
and F2. The overlap of these two fragments, F1|F2, must be
subtracted from the energy, giving the total energy expression for
the system as

EM ¼ EF1 þ EF2 � EF1 ∩ F2 ð46Þ

This expression for the total energy holds true for any system
with only single overlaps between fragments. In the case of
nonlinear systems, wheremore than two fragments overlap in the
same region, additional terms must be added or subtracted from
the total energy. Taking these cases into consideration, a general
expression for the total energy of a chemical system containing K
fragments can be derived as

EM ¼ ∑
K

i
EFi � ∑

K

i > j
EFijFj þ ::: þ ð� 1ÞK � 1 ∑

K

i > j > k
EFijFjj:::jFK

ð47Þ

During the course of energy calculations for all fragments, the
individual fragment densities are obtained during the standard
SCF procedure. The complete density matrix for the full system
can be constructed using the density matrix from each fragment.
To obtain the most accurate density matrix for the system,
individual density matrix elements are chosen from fragments
based upon the quality of the Rg value calculated for each atom
during the fragmentation process.

The derivative of the energy expression eq 47 with respect to
coordinates Xμ can be easily derived as

∂EM
∂Xμ

¼ ∑
K

i

∂EFi
∂XFi

μ � ∑
K

i

∂EFijFj
∂Xμ

FijFj
þ ::: þ ð � 1ÞK � 1∑

K

i

∂EFijFjj:::jFK
∂Xμ

FijFjj:::jFK
ð48Þ

whereXFi μ refers to the nuclear coordinates of atomμ in fragment
Fi and XFi |Fj | μ refers to the coordinates of the overlapping section
of fragments Fi and Fj. An analogous expression for the Hessian
can be written as

H ¼ ∑
K

i
HFi � ∑

K

i
HFijFj þ ::: þ ð � 1ÞK � 1∑

K

i
HFijFjj:::jFK

ð49Þ

Additional capabilities have been added to the CG-MTA includ-
ing correlated methods such as MP2 and RI-MP2,330 course
grained parallelization323 and the calculation of vibrational
frequencies.331

2.4. Kernel Energy Method
The original formulation of the kernel energy method

(KEM)332 was tested on a number of systems.333�336 Further
improvement to themethod337 allowed the KEM to be applied to
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systems beyond its original limitation to peptides and polymers.
Based loosely on the energy decomposition analysis, the kernel
energy method takes into account fragment or “kernel” interac-
tions up to fourth order terms.338 More recent improvements
have enabled the KEM to accurately model π-conjugated
systems, most notably graphene.339

The purpose for developing the KEM was to perform
quantum calculations on systems with biological importance,
such as proteins. By considering a system to be composed of
individual “kernels” with known atomic coordinates, the con-
tributions of all kernels in a system can be combined to provide
properties for the full system. In this way the energy and
properties of large systems can be obtained even if calculations
on the full system are impossible. A few simple rules govern a
calculation using the KEM, the most important being the
requirement that each atom must be present in some kernel
once and only once.

Once a system has been divided into separate kernels,
care must be taken to remove any dangling bonds at the
periphery of the kernels through the use of hydrogen
caps. After all dangling bonds are capped, each kernel energy
is evaluated, followed by all “double kernel” calculations
of nearest neighbor kernels. In the original method, only
those kernels covalently bonded to one another were con-
sidered during double kernel calculations. However, dur-
ing subsequent development, the method was modified to
include separated kernels during the double kernel evalua-
tion, providing a more accurate description of the systems
tested.

The sum of kernel contributions to the total energy of a system
can be written mathematically as

Etotal ¼ ∑
n � 1

i¼ 1;j¼ i þ 1
Eij � ∑

n � 1

i¼ 2
Ei ð50Þ

Eij represents the energy of two covalently bonded kernels and
Ei is the energy of a single kernel. During further development,
the definition of double kernel calculations was extended to
include all double kernels, not only those connected by a
covalent bond. The modified formula for the total energy is
then written as

Etotal ¼ ∑
n � 1

i¼ 1;j¼ i þ 1
ð ∑
n � m

i¼ 1
j¼ i þ m

EijÞ � ðn� 2Þ ∑
n

i¼ 1
Ei ð51Þ

or written more intuitively

Etotal ¼ ∑
1 e i e n

Ei þ ∑
1 e i < j e n

ΔEij ð52Þ

ΔEij is defined as the interaction energy of two kernels (ΔEij =
Eij� (Ei + Ej). To improve the accuracy of the method beyond
the inclusion of disconnected double kernel calculations, both
triple and quadruple kernel calculations were implemented.
The total energy including triple kernel contributions is

Etotal ¼ ∑
1 e i e n

Ei þ ∑
1 e i < j e n

ΔEij

þ ∑
1 e i < j < k e n

ΔEijk ð53Þ

with the expression for ΔEijk following that of ΔEij (ΔEijk =
Eijk � (Ei � Ej � Ek) � (ΔEij � ΔEik � ΔEjk)). Similarly,
inclusion of quadruple kernel energies gives the expression

Etotal ¼ ∑
1 e i e n

Ei þ ∑
1 e i < j e n

ΔEij

þ ∑
1 e i < j < k e n

ΔEijk þ ∑
1 e i < j < k < l e n

ΔEijkl ð54Þ

and ΔEijkl follows from the expressions for ΔEij and ΔEijk.
Although the use of quadruple kernels is not typically re-
quired, addition of these terms can be advantageous for large
systems or if a computer with many nodes and cores is available.
In most cases, inclusion of double and triple kernel interactions is
sufficient to achieve a high level of accuracy compared to fully ab
initio calculations. Equations 52 and 53 of the KEM can be
compared with those in the FMO method, eqs 37 and 38. The
difference is the inclusion of the ESP in FMO.

Applications of the KEM have included proteins,332 as well as
other biologically relevant systems such as DNA.333 More re-
cently the KEMhas been applied successfully to systems containing
extended aromatic character339 and nitrate ester.340 Application
to systems with such diffuse electrons is typically a failing point
for most fragmentation methods, however the KEM overcomes
this deficiency through the use of a new bond fractioning scheme.
Instead of fractioning single bonds perpendicular to the direction
of bonding, the KEM method employs a “fissioning” process
where the aromatic bonds are divided in half parallel to the
direction of bonding. This creates two aromatic bonds, one in
each of the two kernels created. Breaking a conjugated system
such as graphene into kernels using this process has produced
results accurate to within 1 kcal/mol of full ab initio HF andMP2
calculations. A recent development of the KEM includes a general-
ized fragmentation scheme341 based on the approach of Deev
and Collins122 that aims to increase the computational efficiency
through elimination of extraneous double, triple, and quadruple
kernel calculations.

2.5. Molecular Fractionation with Conjugate Caps and
Related Fragmentation Methods
2.5.1. MFCC. As with many fragmentation methods, the

molecular fractionation with conjugate caps (MFCC) app-
roach119,342�349 attempts to reduce computational costs and
provide a means to calculate interaction energies, but specifically
for protein�ligand systems. The original formulation of the
MFCC approach342 fractioned only peptide bonds to enable
the calculation of protein�ligand binding energies. The frac-
tioned bonds are then capped with so-called “concaps” that
resemble the local environment of the fragment. By adding
together the individual contributions of the fragments and
subtracting the contributions from the merged concaps, the total
interaction energy of the protein�ligand system can be calcu-
lated. An important difference between the MFCC method and
other fragmentation methods that employ capping of fractioned
bonds is the nature of the caps used. Instead of simple hydrogen
caps, the caps in the MFCC approach are formed using portions
of the neighboring sections of the molecule. This provides both
an efficient method for choosing caps as well as including a
representation of the local environment during individual frag-
ment calculations. Further developments have provided the
ability to fraction disulfide bonds and allowed for the inclusion
of nonbonded interactions in globular proteins.
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As mentioned previously, the focus of the original formulation
of theMFCC approach was to break a protein into its constituent
amino acids and calculate the interaction energies between
individual protein fragments and the ligand of interest. The
simplest example is a protein P composed of N amino acids

P ¼ nA1A2A3A4:::AN ð55Þ
where Ai represent the individual amino acids and n distinguishes
the N-terminus of the protein

n ¼ NHþ
3 ðNH2Þ ð56Þ

with the opposite end, AN, representing the C-terminus

AN ¼ RNCHCOO�ðRNCHCOOHÞ ð57Þ
To calculate the interaction between protein P and an arbitrary
molecule M, the protein is divided into single amino acid
fragments across the homolytically broken N�C peptide bonds
(Figure 4). This creates N fragments with either one or two
unpaired electrons located where the N�C bond(s) used to be.
To avoid this unnatural electronic state, each fragment is assigned
either one or two concaps, Cap

1 and Cap
1*. The main purpose of the

caps350 is to complete the valency requirements of the “dangling”
bonds left over after fractionation.
Consider the fractioning of the bond in a simple two amino

acid (dipeptide) system. The bond fractioning and subsequent
capping gives

A1A2 ¼ A1C
1
ap þ C1�

apA2 � C1�
apC

1
ap ð58Þ

The energy contained in A1A2 can be represented by the sum of
the individual amino acid fragments minus the artificial molecule
created by joining the two concaps. One can similarly break a
larger tripeptide system of three amino acids to give three
fragments and the corresponding concaps

A1A2A3 ¼ A1C
1
ap þ C1�

apA2C
2
ap

þ C2�
apA3 � C1�

apC
1
ap � C2�

apC
2
ap ð59Þ

These two simple examples illustrate the two cases of singly and
doubly capped fragments, with the general systems of interest
consisting of both the protein and the general ligandM.Note that
the original MFCC formulation was only concerned with the
interaction energy between a rigid protein and ligand, foregoing

the subsequent intramolecular energy calculation for the full
system. The total interaction energy can be represented by

EðM� PÞ ¼ ∑
N

i
EðM � Ci � 1�

ap AiC
i
apÞ � ∑

N � 1

i
EðM � Ci�

apC
i
apÞ

ð60Þ
The term E(M� Cap

i�1*AiCap
i ) represents the interaction energy

between molecule M and the capped protein fragment
Cap
i�1*AiCap

i . The second sum of terms represents the interaction
of moleculeM with the artificial molecule formed by connecting
concaps, Cap

i* Cap
i . The regularity of amino acid bonding provides

a simple choice for the concaps. Since only peptide bonds are
being broken, the N-terminus side of each amino acid can be
capped with an NH2 group and the C-terminus side can be
capped with Ri+1CRH2 (see Figure 4). This choice of caps
ensures that the valence requirements of the broken bonds are
complete and the approximate chemical environment around
the fragment is being properly represented. Another benefit of
choosing caps in this way is the nature of the artificial molecules
formed when joining caps, creating reasonable molecular species
such as H2NRi+1CRH2. The most recent implementation of the
MFCC method employs two different sizes of concaps,351 a
“small” and a “large” version. The small concap only extends
across the nearest neighbor amino acid, while the large concap
extends across the two nearest neighbor amino acids. Use of the
large concap provides the obvious benefit of increased accuracy,
with the trade-off being an increase in computational cost.
In the special case where disulfide bonds are fractioned,352 for

example a bond between two cystines, an additional termmust be
added to eq 60:

EðM� PÞ ¼ ∑
N

i
EðM � Ci�1�

ap AiC
i
apÞ � ∑

N � 1

i
EðM � Ci�

apC
i
apÞ

� ∑
N � 1

i
EðM � DCi�

apDC
i
apÞ ð61Þ

DCap* andDCap
i can be either MeS or HS caps, with the MeS caps

shown to give slightly more accurate results.
Further development of the MFCC approach353,354 addressed

the limitation of calculating only the interaction energy by
allowing for the calculation of the total electron density, electro-
static potential and dipole moment of proteins. Using the basic
dipeptide example in eq 58, the total electron density of the
system, F, can be expressed as

F ¼ FA1
þ FA2

� Fcc ð62Þ
where FA1

and FA2
represent the densities of the capped amino

acid fragments after fractionation and Fcc represents the
density of the merged concap. By calculating the densities of
the separate fragments, the total density of the system can be
determined. One advantage of this formulation lies in the choice
of concaps after fractionation. If the cap chosen for fragment A1
includes the entirety of fragment A2, then eq 62 is exact, giving
the correct limiting behavior if the caps are chosen to be
sufficiently large. For a system of N amino acids, eq 62 can be
generalized as

F ¼ ∑
N

i¼ 1
Fi � ∑

N � 1

i¼ 1
Fcci � ∑

Nd

i¼ 1
Fdci ð63Þ

Figure 4. Example of a typical MFCC fractionation scheme. The parent
system is divided at the peptide bond into two fragments that are then
capped. The caps are then combined into a single concap to be
subtracted from the sum of fragment contributions.

http://pubs.acs.org/action/showImage?doi=10.1021/cr200093j&iName=master.img-004.jpg&w=204&h=143
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where the third summation over Fidc is only included when
disulfide bonds are fractioned. Using this representation of the
total density of the system, the electrostatic potential can easily
be obtained as

jðrÞ ¼ �
Z

Fðr0Þ
jr� r0j dr

0 ð64Þ

with the total electrostatic potential derived through the combi-
nation of individual electrostatic potentials of the fragments:

j ¼ ∑
N

i¼ 1
ji � ∑

N � 1

i¼ 1
jcc
i � ∑

Nd

i¼ 1
jdc
i ð65Þ

In a similar fashion, the dipole moment, μ, of the protein can be
calculated as

μ ¼ ∑
N

i¼ 1
μi � ∑

N � 1

i¼ 1
μcci � ∑

Nd

i¼ 1
μdci ð66Þ

Obtaining the total electron density of the system provides a
route to calculating the total energy of the system,351 either
through the standard SCF method or by using Kohn�Sham
orbitals and the DFT formalism. The implementation of theMFCC
approach that allows for the calculation of the total energy using
the density matrix (DM) has been termed the MFCC-DM
approach.
Two versions of the MFCC-DM approach,354 the “simple”

approach (MFCC-SDM) and the “ghost” approach (MFCC-
GDM), are available. These two variants are the result of using
extra hydrogens as part of the conjugate caps. If the MFCC
approach were exact, then the density matrix elements associated
with the hydrogen atomic orbitals (AOs) would be effectively
zero. Since the MFCC approach is not exact in practice, these
matrix elements add small contributions to the density matrix.
The two implementations, MFCC-SDM and MFCC-GDM,
differ in how these extraneous hydrogen AOs are handled. In
the MFCC-SDM approach the matrix elements are simply
neglected, whereas in the MFCC-GDM approach the extra
hydrogens are treated as ghost atoms and the matrix elements
are accounted for explicitly.
Other than how the extraneous hydrogen atoms are handled,

the most important difference between the two MFCC-DM
implementations is the structure of the density matrix. In the
MFCC-SDM approach the number of electrons is not exactly
conserved since the contributions from the extra hydrogen atoms
are simply ignored. In theMFCC-GDM approach this deficiency
is addressed, since the extraneous hydrogen atoms are treated
explicitly as ghost atoms in the system. The trade-off for the exact
treatment of the density matrix in the MFCC-GDM approach
is an increase in computational cost compared to the MFCC-
SDM approach. In practice it has been shown that both
approaches produce sufficiently accurate results when compared
to full ab initio HF calculations.354

To improve the description of globular macromolecules with
two- and three-dimensional structures, the addition of non-
bonded or “through-space” interactions was implemented.355

Currently this includes a description of two-body interactions
only due to the negligible contribution of higher order interactions
in proteins. In general, if two fragments are separated by more
than one fractioned bond, they may still be adjacent to one
another in the structure of the macromolecule. Following the

EDA, the interaction of these two fragments can be calculated by

ΔEð2Þ ¼ ∑
i
∑
j
½EðAiAjÞ � EðAiÞ � EðAjÞ� ð67Þ

Instead of capping these fragments in the same fashion as
described earlier, these separated fragments are capped only with
hydrogen atoms. This avoids overcounting the two-body correc-
tion as well as simplifying the expression needed to calculate
the “through-space” two-body correction. This correction can be
added to the previous representation for the full energy of the
system, giving

E ¼ ∑
N

i¼ 1
EðAiÞ � ∑

N � 1

i¼ 1
EðAi

ccÞ � ∑
Nd

i¼ 1
EðAi

dcÞ þ ΔEð2Þ ð68Þ

This new expression for the total energy of the system is termed
the energy-corrected MFCC (EC-MFCC) approach.
In addition to theMFCC formalism described above, a number

of other capabilities have been added recently. These capabilities
include gradients for geometry optimizations356,355 and the
hybrid generalized molecular fractionation with conjugate caps/
molecularmechanics (GMFCC/MM) approach357 that usesMM
for long-range interactions. The addition of the conductorlike
polarizable continuum model (MFCC-CPCM)358 and the pair-
wise interaction correction to the density matrix formulation of
theMFCC approach (MFCC-DM-PIC),359 allow for the calcula-
tion of the electrostatic solvation energy of macromolecules and
the treatment of short-range polarization interactions, such as
hydrogen bonding, respectively. Additionally, the electrostatic
field-adapted molecular fractionation with conjugate caps (EFA-
MFCC)360 approach improves the ability to treat charged systems
by adding a description of the surrounding environment using
point charges. All of these improvements to the original formula-
tion provide a means to perform calculations on a variety of large
macromolecular systems, while including a number of important
intermolecular interactions.
2.5.2. Generalized Energy-Based Fragmentation Ap-

proach. The generalized energy-based fragmentation (GEBF)
approach has been proposed120 as a reformulation of the EFA-
MFCC approach. This method builds upon the fragmentation
scheme of the MFCC approach, but improves upon the descrip-
tion of the environmental electrostatic field added in the EFA-
MFCC approach. The atoms far separated from the fragment of
interest are represented as point charges and included in the ab
initio calculation on the fragment. The main improvement over
the EFA-MFCC approach is the inclusion of electrostatic inter-
actions with polar groups, improving the ability of the method to
calculate dipole moments and static polarizabilities.
A new fragmentation scheme is also introduced for the GEBF

approach, distinguishing the method from previous MFCC
implementations. The general fragmentation scheme consists of
the same ideas, dividing a large system into smaller fragments and
capping each fragment with the neighboring fragment to con-
serve the valence requirements of the broken bonds. Any
dangling bonds left, such as those on the capping fragment, are
capped with hydrogen atoms. However, the inclusion of neigh-
boring fragments is not restricted to those exclusively covalently
bonded to the fragment; nonbonded fragments are included as
well. By choosing the number of fragments to be included in each
quantum calculation using a distance based cutoff, the size of the
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fragments and therefore the accuracy of the method can be easily
varied depending on computational resources.
Consider a linear system, M, of six fragments

M ¼ m1m2m3m4m5m6 ð69Þ
with connectivity represented in Figure 5. Starting with m1,
derivative subsystems are formed including the central fragment
(m1) and all fragments covalently and, in this case, hydrogen
bonded to m1. This process is then repeated for all mi (i = total
number of fragments) fragments in the full systemM, producing i
subsystems in the general case. Subsystems that may be present
in a larger subsystem are eliminated to avoid double counting.
For example, the subsystemm1m2m3m4 appears in the subsystem
m1m2m3m4m6 and should therefore be eliminated from consid-
eration. In this case, two subsystems are eliminated, leaving four
unique subsystems.
The remaining subsystems are then checked for double count-

ing of fragment interactions. For example, if the four-body
interaction m1m3m4m6 occurs more than once in the four deriva-
tive subsystems, a complementary subsystem must be built and
subtracted from the sum of the subsystems. This process is
followed through for all n-body interactions down to single
fragment terms, with each subsystem being assigned a coefficient
Ci of either 1 or�1. The total energy of the systemM can then be
represented as

E ¼ ∑
N

i
CiEi ð70Þ

where N is the total number of subsystems. This fragmentation
scheme provides nearly all of the three- and four-body interactions,
with a small number being neglected. However, these neglected
terms were shown to be a small source of error.120 The final
requirement of the fragmentation process in theGEBF approach is
for the net number of hydrogen atoms used for capping to be zero.
After the fragmentation and construction of derivative sub-

systems is complete, each subsystem calculation is performed in
the field of point charges on all other atoms. The partial charges
QA used in the GEBF approach are derived from the natural

population analysis (NPA)361,362 and computed for the central
fragment only during an initial HF or DFT calculation on each
subsystem. These point charges are then incorporated into a
second HF or DFT calculation for all subsystems. Including the
point charges in the energy expression, the total energy of the
system is

E ¼ ∑
N

i
Ci~Ei � ð∑

N

i
Ci � 1Þ∑

A
∑

B > A

QAQ B

RAB
ð71Þ

~Ei is the total energy of the i-th subsystem that includes the
effects of the electrostatic field. The derivatives of this equation
have also been derived,363 allowing for geometry optimizations
and vibrational frequency calculations. The most recent im-
provements to the method include an algorithm for automatic
fragmentation and derivative subsystem construction for general
molecules.364

2.5.3. Other MFCC-Related Methods. A number of more
recent approaches have been proposed based on the general
fractionation scheme suggested in the MFCC method. An
extension of the frozen-density embedding (FDE)365 scheme
to the MFCC approach uses overlapping electron densities of
different subsystems to provide a more accurate representation
of the surrounding environment, as well as a better representa-
tion of the total electron density. Another approach366 rigor-
ously derives the additivity rule used in the MFCC approach
within the semilocal DFT formalism. Finally, the multilevel
fragment-based approach (MFBA)367 employs a fragmentation
scheme that is similar to the MFCC formulation (using hydro-
gen for caps instead of nearest neighbor fragments), while using
different levels of ab initio theory for nonbonded fragment
calculations depending on the fragment separation.
The polarized protein-specific charge (PPC) method pro-

posed by Ji et al.368 in 2008 is based on fitting atomic charges to
MFCC-derived electrostatic potentials, analogously to the
FMO-derived charges294,295 developed in 2007. The PPC
method was applied369�376 to a number of studies showing
the importance of the polarization missing in commonly used
force fields.

Figure 5. Depiction of a fragmentation scheme created by the GEBFmethod containing primitive subsystems derived from each central fragment. Solid
lines depict covalent bonds while dashed lines represent hydrogen bonds. All possible subsystems are shown, including those that would be removed
(i.e., 1234) because of double counting.

http://pubs.acs.org/action/showImage?doi=10.1021/cr200093j&iName=master.img-005.png&w=503&h=191
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2.6. Systematic Fragmentation Method
A more recent approach122,377 to fragmenting large chemical

systems is the systematic fragmentation method (SFM). Origin-
ally designed to treat large proteins, polymers and surfaces, the
SFM takes a unique approach to fragmenting systems. In the
same vein as the other fragmentation methods, SFM employs
highly accurate methods, such as MP2 or CC, to perform
calculations on the smaller fragments, obtaining the total energy
of the system. However, instead of having uniquely defined
fragments, the SFM uses overlapping sections of the molecule to
account for interactions between fragments. By performing the
fragmentation in this way, each atom “feels” the presence of
the full system without the use of an externally applied field.
Nonbonded interactions are also accounted for between far
separated regions of the system, originally using simple electro-
statics, but more recently by using the EFP method to obtain
more accurate results.199 The SFM has been used to describe
the isomerization of DNA helices199 and retinal,378 as well as to
give a proper description of potential energy surfaces of chemical
reactions.379

The underlying premise behind the SFM is in thinking of a
chemical systemas a collection of single-bonded functional groups.
The definition of a functional group is central to the fragmentation,
allowing for different levels of fragmentation (larger individual
fragments) to increase the accuracy of the individual calculations.
This also allows for a better description of many-body effects, as
any atom in the fragment would be influenced by more of the
system during the full ab initio calculations. The general fragmen-
tation scheme is best described using a linear molecule, M, of
arbitrary length K

M ¼ G1G2G3:::GK ð72Þ
The “super” molecule can be broken into two distinct molecules
by stretching the bond betweenGn�1 andGn to infinity. The bond
is broken homolytically, assigning one electron from the broken
bond to Gn�1 and the other to Gn. To avoid charged fragments
created by such a scheme, hydrogen atoms are used as “caps” on
each of the fragments. The overall fragmentation creates two
molecules

M f M1 þ M2 ð73Þ
which are composed of

M1 ¼ G1G2G3:::Gn�1H
ðn � 1Þ ð74Þ

M2 ¼ HðnÞGnGnþ1:::GK ð75Þ
where H(n�1) and H(n) are the hydrogen caps for their respective
fragments, located along the direction of the broken bond at a
chemically sensible distance for the specific GH bond.122

The energies of these fragments can then be calculated and are
related by

EðMÞ ¼ EðM1Þ þ EðM2Þ þ dE1 ð76Þ
where dE1 represents the energy change created by the bond
breakage. To allow for overlapping fragments, it is acknowledged
that the fragmentation choice just described is not the only
possible fragmentation scheme. The complete moleculeM could
also be broken at some other single bond, creating different
fragments, M3 and M4, giving the following energy expression

EðMÞ ¼ EðM3Þ þ EðM4Þ þ dE2 ð77Þ

where

M3 ¼ G1G2G3:::Gi�1H
ði � 1Þ ð78Þ

M4 ¼ HðiÞGiGiþ1:::GK ð79Þ
By performing both fragmentations at the same time, one can
represent the total molecule M as

M f G1G2G3:::Gn�1H
ðn � 1Þ þ HðnÞGnGnþ1:::Gi�1H

ði � 1Þ

þHðiÞGiGiþ1:::GK ð80Þ
This double fragmentation creates a new energy expression

EðMÞ ¼ EðM1Þ þ EðM5Þ þ EðM4Þ þ dE3 ð81Þ

The new fragmentM5 is the result of fragmentM2 being broken
into two pieces by the second fragmentation. Specifically,

M5 ¼ HðnÞGnGnþ1:::Gi�1H
ði � 1Þ ð82Þ

The new term dE3 is the result of an approximation; namely, if
the Gn�1Gn bond is separated from the Gi�1Gi bond by a great
enough distance, the energy difference from simultaneous frag-
mentation will equal the sum of the energy changes of each
fragmentation performed separately

dE3 ≈ dE1 þ dE2 ð83Þ

As the distance between the two fragmentation sites increases,
the approximation in eq 83 becomes more and more reliable.
Rearranging eqs 77 and 81, while using the equality in eq 83, it
can be shown that

dE3 ¼ EðMÞ � EðM1Þ � EðM5Þ � EðM4Þ
≈ EðMÞ � EðM1Þ � EðM2Þ þ EðMÞ � EðM3Þ � EðM4Þ

ð84Þ
or more simply

EðMÞ≈ EðM2Þ þ EðM3Þ � EðM5Þ ð85Þ

Using the molecular definitions, it becomes apparent that M5 is
simply the overlapping or “double counted” region common to
both M2 and M3.

Within the foregoing formulation, there are different “levels”
of fragmentation. Fragmentation level 1 consists of fragmenta-
tion sites separated by one functional group, level 2 has frag-
mentation sites separated by two functional groups and so on.
The current implementation of the SFM allows for up to frag-
mentation level 3, with the obvious possibility for extension to
higher levels. As the fragmentation sites become farther separa-
ted, the approximation in eq 83 becomes more reliable and the
total energy of the system approaches that of the full ab initio
calculation.

To illustrate the exhaustive fragmentation of a system using
the different fragmentation levels, consider the acyclic molecule
M again

M ¼ G1G2G3G4G5G6G7G8 ð86Þ
In this case, the fixed length K = 8. Under the level 1 fragmenta-
tion scheme the two broken bonds are separated by only one
functional group. The first fragmentation site is chosen between
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G1 and G2 and the second site between G2 and G3. The first
fragmentation creates

M ¼ G1 þ G2G3G4G5G6G7G8 ð87Þ
while the second creates

M ¼ G1G2 þ G3G4G5G6G7G8 ð88Þ
Subtracting group G2 to avoid double counting, we get the
following representation of molecule M:

M ¼ G1G2 þ G2G3G4G5G6G7G8 � G2 ð89Þ
Following this scheme through to all possible fragmentation sites
allowed by level 1, until no fragment larger than two functional
groups remains, the bonded energy of molecule M can be
represented by the sum of fragment energies as follows:

Ebondedlevel1 ðMÞ ¼ EðG1G2Þ þ EðG2G3Þ
þ EðG3G4Þ þ EðG4G5Þ þ EðG5G6Þ
þ EðG6G7Þ þ EðG7G8Þ � EðG2Þ � EðG3Þ
� EðG4Þ � EðG5Þ � EðG6Þ � EðG7Þ ð90Þ

Using the same methodology for level 2, with fragmentation sites
instead separated by two functional groups, the bonded energy of
M is represented by

Ebondedlevel1 ðMÞ ¼ EðG1G2Þ þ EðG2G3Þ
þ EðG3G4Þ þ EðG4G5Þ þ EðG5G6Þ
þ EðG6G7Þ þ EðG7G8Þ � EðG2Þ � EðG3Þ
� EðG4Þ � EðG5Þ � EðG6Þ � EðG7Þ ð91Þ

and using level 3, with fragmentation sites separated by three
functional groups, gives a representation of the bonded energy
of M

Ebondedlevel2 ðMÞ ¼ EðG1G2G3Þ þ EðG2G3G4Þ
þ EðG3G4G5Þ þ EðG4G5G6Þ þ EðG5G6G7Þ
þ EðG6G7G8Þ � EðG2G3Þ � EðG3G4Þ
� EðG4G5Þ � EðG5G6Þ � EðG6G7Þ ð92Þ

Carrying this fragmentation scheme out to level n, where n is
the number of groups in the system, one would be left with the
unfragmented system. By using higher levels of SFM, and
consequently larger fragments, the total energy will approach
that of the exact system.

So far, only the bonded energy of the example system has been
discussed, leaving out a great deal of important contributions to
the total energy contained in the nonbonded interactions of
separated functional groups. Recently, the calculation of these
interactions has moved from a simple electrostatic model in the
original formulation, to a more sophisticated approach combin-
ing ab initio and EFP method calculations.378 The choice of
performing either full ab initio calculations or EFP calculations
is based on the shortest atom�atom distance between the
interacting fragments. At short ranges (<2.7 Å) the non-
bonded interactions are calculated with the full ab initio
method being employed. For intermediate distances
(2.7�4.5 Å) the EFP method is used, effectively reducing
the number of ab initio calculations required and increasing
the computational efficiency.

The simplest case of nonbonded interactions occurs between
just two separated functional groups, for exampleG1 andG4. The

nonbonded energy contained in the “super-group” G1G4 can be
given by

Eð1, 1Þnb ½G1;G4� ¼ EðG1G4Þ � EðG1Þ � EðG4Þ ð93Þ
E(G1G4) is the supermolecular energy of the two separated
functional groups and E(G1) and E(G4) are the one-body
fragment energies. During the calculation of the supermolecular
energy E(G1G4), the two functional groups retain their original
positions from the complete system M. This procedure can be
carried out to its eventual conclusion of all possible pairs of
separated functional groups, providing the total two-body non-
bonded interaction energy of the entire system M.

In some instances, three-body interactions can play a very
important role in chemical systems.380�384 To account for these
interactions a similar approach can be taken by considering
the interaction of three functional groups, G1, G2, and G3. The
interactions of these three groups is ignored unless two of
the three are bonded in the full system M. To give a specific
example, consider the case in which G2 is directly bonded to G3,
giving the three body interaction energy as

Eð1, 2Þnb ½G1;G2G3� ¼ EðG1G2G3Þ � EðG1Þ � EðG2G3Þ
� Eð1, 1Þnb ½G1;G2� � Eð1, 1Þnb ½G1;G3� ð94Þ

The three-body energy is simply the supermolecular energy
E(G1G2G3)minus the one-body energyE(G1), the bonded energy
of E(G2G3) and the two-body nonbonded energies Enb

(1,1)[G1;G2]
and Enb

(1,1)[G1;G3].
Using all three of these expressions for the bonded and

nonbonded energies, the total energy of the entire system, ESFM,
can be expressed as a sum of bonded and non-bonded energies

ESFM ¼ Ebonded þ Enon-bonded ð95Þ
The term Enonbonded includes all of the terms up to n-th order. In
practice it has been shown that the inclusion of nonbonded terms
in the level 3 fragmentation scheme provides the best combina-
tion of accuracy and computational efficiency. The choice of
including three-body nonbonded interactions depends on the
system of interest, with molecular clusters such as water necessi-
tating the inclusion of three-body interactions.

The SFM has some limitations, the most important of which is
the inability to break bonds more complex than single bonds.
There is also a limitation in the fragmentation of cyclic molecules
such as cyclohexane. During fragmentation the capping hydro-
gens may become too close, causing a steric interaction not
present in the complete system and violating the approximation
that fragmentation sites are energetically independent. This
problem can be alleviated through the use of the so-called ring
repair rule122 to effectively avoid such nonphysical interactions.
Active development of the SFM currently includes a reformula-
tion of the polarization interactions to give a more accurate
description of highly polar molecular clusters.

2.7. Divide-and-Conquer Methods
2.7.1. Original Divide and Conquer Approach. The

original formulation of the divide and conquer (DC) approach
was proposed by Yang20 in 1991. Based on the Kohn�Sham
(KS) formalism, the DC approach aims to avoid the use of theN/
2 KS orbitals and instead divide the density of the system of
interest into the sum of the densities of the subsystems. The DC
formalism was generalized to a more efficient one-electron
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density matrix approach that is generally applicable to ab
initio385�388 and semiempirical methods.389,390 As with other
fragmentation methods, the local environment of each subsys-
tem is taken into account, in this case through the use of buffer
regions surrounding each fragment. Since themethodwas initially
proposed, it has been expanded to electron correlation methods as
well.391 Nakai’s group392�401 and others402,403 made many con-
tributions to further development. The main contributors to these
enhancements of the DC approach will be discussed, beginning
with both the original and improved density matrix formulations
proposed by Yang.
In the KS formalism, the total energy of a system ofN electrons

in an external field υ(r) can be represented using the electron
density F(r) as

E½F� ¼ Ts½F� þ
Z

υðrÞFðrÞdr þ Exc½F�

þ 1
2

Z
FðrÞFðr0Þ
jr� r0j drdr

0 þ ∑
a, b

ZaZb

Rab
ð96Þ

Ts[F] represents the kinetic energy of the noninteracting elec-
tron gas with density F in the ground state. The term Exc[F] is the
exchange-correlation energy. The final term in eq 96 is the
nuclear repulsion. In the conventional KS formalism, the energy
functional E[F] is minimized with respect to the density by
satisfying the KS equation

ĤψiðrÞ ¼ �1
2
∇2 þ Veff ðrÞ

� �
ψiðrÞ ¼ εiψiðrÞ ð97Þ

Veff(r) is the KS effective local potential, and Ĥ is the KS
Hamiltonian. As in the KS formalism, the DC approach uses the
electron density as the main variable. However, the DC approach
represents the total electron density of the full system as a sum of
subsystem contributions. This is accomplished through the use of
normalized “partition functions”

∑
R
pRðrÞ ¼ 1 ð98Þ

pR(r) is a positive weighting function for subsystem R. More
specifically, pR(r) is large for the subspace of subsystem R and
small otherwise. This leads to an expression for the total electron
density of the system

FðrÞ ¼ ∑
R
pRðrÞFðrÞ ¼ ∑

R
FRðrÞ ð99Þ

The partition functions have been determined previously,20

and apparently the density and energy do not depend signifi-
cantly upon the specific form of the partition function. The
density of an individual subsystem can now be defined using the
Fermi function404 fβ(x) as

FRðrÞ ¼ 2pRðrÞ∑
m
fβðεF � εRmÞjψR

mðrÞj2 ð100Þ

where

fβðxÞ ¼ ½1 þ expð � βxÞ��1 ð101Þ

ψm
R represents an eigenfunction that is localized on the particular

subsystem R, and εm
R is the corresponding eigenvalue of the

subsystemR. The eigenfunctionsψm
R are linear combinations of a

set of local basis functions.

ψm
RðrÞ ¼ ∑

j
CR
jmj

R
j ðrÞ ð102Þ

It is the use of localized basis functions for a particular
subsystem that allows the DC method to scale nearly linearly
with system size. The coefficients Cjm

R are solutions to the
generalized eigenvalue equation, derived from the Rayleigh�
Ritz variational principle

ðHR � εRmS
RÞCR

m ¼ 0 ð103Þ

The Fermi energy404 εF from eq 98 is determined from

N ¼
Z

FðrÞdr

¼ 2∑
R
∑
m
fβðεF � εRmÞÆψR

mjFRðrÞjψR
mæ ð104Þ

N is simply the normalization condition for the electron density.
After solving the preceding equations self-consistently, the
energy expression from eq 96 can be expressed in terms of the
eigenvalues

~E½F� ¼ ε~þ
Z

F½�jðrÞ=2� VxcðrÞ�dr þ Exc½F�

þ ∑
a, b

ZaZb

Rab
ð105Þ

ε~ is an approximation to the KS eigenvalues, represented by

ε~¼ 2∑
R
∑
m
fβðεF � εRmÞÆψR

mjFRðrÞjψR
mæ ð106Þ

In an effort to improve upon the original formulation, Yang
proposed a reformulation of the DC formalism based on the one-
electron density matrix.385 Defined in terms of the KS orbitals,
the one-electron density matrix can be expressed as

Fðr, r0Þ ¼ 2 ∑
N=2

m
ψmðrÞψmðr0Þ ¼ ∑

ij
FijjjðrÞjjðr0Þ ð107Þ

The density matrix Fij is given by the linear coefficients in the
expansion of the KS orbitals

Fij ¼ 2 ∑
N=2

m
CimCjm ð108Þ

The partition matrix for each subsystem can now be defined in
the atomic orbital space, with a normalization condition that is
similar to the original formulation in eq 98

∑
R
pRij ¼ 1 ð109Þ

and constructed using the following rules:

pRij ¼
1 if i ∈ R and j ∈ R
1
2

if i ∈ R and j ˇ R

0 if i ˇ R and j ˇ R

8>>><
>>>: ð110Þ
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Subsystem contributions to the density matrix can now be
written as

Fij ¼ ∑
R
pRij Fij ¼ ∑

R
FRij ð111Þ

The expression in eq 111 is equivalent to the expression from the
original formulation in eq 99. A corresponding approximation to
the original formulation, using a set of local eigenvectors to
approximate the density matrix of a subsystem, can be applied to
give

Fij
R ¼ 2pRij ∑

m
fβðεF � εRmÞCR

imC
R
jm ð112Þ

An analogous expression for the Fermi energy, determined by the
normalization, can then be expressed as

N ¼ ∑
ij
FijSij ¼ ∑

ij
ð2∑

R
pRij ∑

m
fβðεF � εRmÞCR

imC
R
jmÞSij ð113Þ

Finally, the analogous expression for the sum of the eigenvalues is
written as

ε ¼ 2∑∑fβðεF � εRmÞεRm∑pRij C
R
imC

R
jmSij

¼ ∑
ij
ð2∑

R
Pij

R∑
m
fβðεF � εRmÞCR

imC
R
jmÞHij ð114Þ

The main advantages of the new DC formulation include the
removal of the time-consuming partition function integrals, as
well as the general applicability the approach now has to ab initio
methods such as Hartree�Fock. Analogous expressions for the
gradients have been derived from the original formulation as well.
The implementation of the DC method described divides a

molecular system into various subsystems, each described by a
set of local orbitals. To aid in the description of each subsystem,
the basis functions of neighboring subsystems, or “buffer”
regions, are included in each subsystem calculation. The inclu-
sion of buffer regions is determined by a distance based cutoff,Rb.
Any atom that falls inside the sphere created byRb is included as a
buffer atom in the subsystem calculation. By including the atomic
basis functions from both the subsystem and the buffer region,
computational requirements scale by a factor of NR

3 , where NR is
the number of basis functions contained in subsystem R and
the corresponding buffer region. Yang determined that the buffer
region required to achieve a certain level of accuracy remains con-
stant regardless of the system size.386 Linear scaling is then
possible by fixing the size of the buffer region for each subsystem.
In addition to linear scaling in terms of the computational time

required, Yang also proposed a reduction in memory require-
ments by storage of a sparse matrix for the total system.386 This is
accomplished using a distance based cutoff for matrix elements
between atom pairs with an interatomic distance less than Rh. By
applying this cutoff the storage requirements of the density
matrix become proportional to the size of the molecule. The
amount of CPU time required also decreases because of the
reduction in matrix element evaluations. In addition to the
density matrix, both the one-electron core Hamiltonian and
Fock matrices are treated in this way.
Following the two formulations of the DC method in 1995 by

Yang, a number of other groups proposed extensions to the
method to enhance the functionality. The first to propose such an
extension was Merz in 1996 with his semiempirical MO
implementation.389,390 A notable improvement pointed out by
Merz was the need for overlap between adjacent subsystems. To

illustrate why this is necessary, consider the closed shell Fock
matrix

Fμν ¼ Hμν þ ∑
M

λ¼ 1
∑
M

σ¼ 1
ðμνjλσÞ � 1

2
ðμσjλνÞ

� �
Pλσ ð115Þ

where the two electron integrals are represented as

ðμνjλσÞ ¼
Z Z

χ
�
μðr1Þχνðr1Þ �

1
jr1 � r2jχ

�
λðr2Þχσðr2Þdr1dr2

ð116Þ
The density matrix for a particular subsystem, PR, depends on
how the subsystem is defined. Buffer regions are included to
reduce the truncation effects of fragmentation, however their
basis functions are only included during the solution of the SCF
equations. This leads to their exclusion during construction of
the density matrix, since only basis functions that are part of the
subsystem directly, and not contributed by a buffer region, are
included. Since the density matrix elements contributed exclu-
sively from buffer region basis functions are zero, overlap
between subsystems is required to provide these contributions
to the density matrix.
A number of improvements to the DC formulation of Yang

were implemented by the Nakai group, including the ability to
perform MP2 calculations,392,395 application to delocalized
systems,393 the addition of Hartree�Fock exchange,394 CC
calculations396 and a two level hierarchical scheme.399 The pro-
blem of overlapping subsystems pointed out by Merz was also
overcome in the Nakai implementation by treating each atom as
a subsystem. Detailed test calculations were performed and
showed that the use of a sufficiently large buffer region is adequate
to overcome such a small subsystem division. Even in the case of
delocalized systems, subsystems consisting of a single atom were
capable of producing reasonably accurate results when a large
buffer region (greater than 10 Å) was considered.393 It was noted,
however, that the accuracy of any DC calculation can obviously
be improved through the use of larger subsystems if desired.
Correlated calculations were improved through the use of a

“dual buffer” scheme.395 The first buffer region surrounding each
subsystem includes the calculation of the correlation energy,
while the second layer buffer only performs a Hartree�Fock
calculation. This scheme effectively exploits the local nature of
electron correlation and provides additional reductions in the
computational effort for correlated calculations.
A dual-level hierarchical scheme399 is built upon the founda-

tion of a dual buffer scheme. Following the same procedure for
calculating the correlation energy as in the dual buffer scheme, a
second level of approximation is introduced by using a small and
large basis set for HF and correlated calculations respectively.
The use of a larger basis set for the correlated buffer calculations
provides more accurate energies, while the use of a smaller basis
set for the HF buffer regions reduces the computational cost for
each subsystem calculation.
2.7.2. Adjustable Density Matrix Assembler Approach

(ADMA). Developed contemporarily with the divide and con-
quer method, the adjustable density matrix assembler approach
divides the density of a molecular system using a density matrix
approach. Originating from a similar approach called the molec-
ular electron density lego approach405,406 (MEDLA), and inspired
by earlier work by Michl407 and Stoddart,408 the ADMA409�414

method uses the idea of a fuzzy-set to remove any discontinuities
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between fragments, circumventing the need for explicit capping
or other such bond conserving approaches. Using a density
matrix formalism allows the ADMA approach to be applied
to many modern ab initio methods. The most recent formula-
tion of the ADMA approach will be discussed, as well as recent
improvements such as the inclusion of point charges during
individual fragment calculations.
The ADMA approach expresses the electron density of a

molecular system in terms of a sum of contributions from individual
fragments. Consider the exact total density of a molecule at a given
nuclear configuration

FðrÞ ¼ ∑
n

i¼ 1
∑
n

j¼ 1
PijϕiðrÞϕjðrÞ ð117Þ

where ϕi(r) and ϕj(r) are atomic orbitals (AOs). To rewrite this
expression in terms of a summation of smaller contributions, the
molecule of interest must be divided into a set of mutually exclusive
“families” f kwhere k = 1, ...,m andm is the total number of families.
Division of AOs among families is accomplished through the use of
a membership function mk(i) such that

mkðiÞ ¼ 1 if AOϕðrÞ is centered on one nuclei of set f k

0 otherwise

(

ð118Þ
Each fragment k then has a density matrix defined by

Pkij ¼
Pij if both ϕi and ϕj are centered on a nucleus of fk
1
2

if one of ϕi and ϕj are centered on a nucleus of fk

0 otherwise

8>>><
>>>:

ð119Þ
This scheme allows for an exactly additive decomposition of the
total density matrix. To illustrate this, consider a molecular system
M containing nine families

M ¼ f1f2f3:::f9 ð120Þ
The interactions of these nine families can be artificially represented
in matrix form

1 2 3
4 5 6
7 8 9

ð121Þ

Any nearest neighbor families are taken to have a strong interaction,
for example, family 4 has a strong interaction with family 5 but not
family 6. Building the total interactions from family 4, a reduced
form of the interaction matrix can be written as

1 2
4 5
7 8

ð122Þ

which includes all families with a strong interaction with the central
family 4. Of the other families considered in this reduced system,
families 2, 5, and 8 contain dangling bonds that were previously
connected to families 3, 6, and 9 respectively. These bonds are
capped with hydrogen atoms, however, the size of each family
(in this case the family represented by eq 122) is chosen to be large

enough that the corresponding orbitals from the capping hydrogen
have negligible contributions to the orbitals on the central family 4.
This allows the capping hydrogen orbitals to be excluded from
construction of the density matrix. The contribution of the reduced
system in eq 122 to the total density matrix can then be written as

1 �
2 �

3 0
� � 0 4 � 0 � � 0

� 5
0 6
� 7
� 8
0 9

ð123Þ

Each asterisk represents a contribution to the total density matrix
created by interactions contained in the reduced subsystem of
eq 122. Every interaction is scaled by 0.5, and all other off diago-
nal contributions are zero. This procedure can then be repeated,
assigning each family as the central family and building the
corresponding reduced systems. Following this procedure through
to completion, a matrix of fragment contributions to the total
density matrix is obtained.

1 � 0 � � 0 0 0 0
� 2 � � � � 0 0 0
0 � 3 0 � � 0 0 0
� � 0 4 � 0 � � 0
� � � � 5 � � � �
0 � � 0 � 6 0 � �
0 0 0 � � 0 7 � 0
0 0 0 � � � � 8 �
0 0 0 0 � � 0 � 9

ð124Þ

Each asterisk now represents a sum of two scaled contributions.
This relatively sparse fragment interaction matrix is then used to
construct a good approximation to the total density matrix. The
example shown is overly simplified; however, it provides a reason-
able illustration of how the ADMA method can reduce the
computational cost required to compute the total density matrix.
In general, the fragment choice in the ADMA approach is

unimportant, however in practice chemically reasonable frag-
ments are chosen. For example, when fragmenting a protein, a set
of chemically sensible rules are followed: (i) all heavy atoms
double bonded to an oxygen atom are considered to be frag-
ments; (ii) if a heavy atom is part of an aromatic moiety, the
entire aromatic region defines a fragment; (iii) specific chemi-
cally important substituents such as the CONH2 groups of
asparagine and gluatamine are defined as a fragment. After the
initial fragment choice, in amanner similar to theMTAmethod, a
sphere of a user defined radius is used to include neighboring
families. If a single atom belonging to another nuclear family falls
within the radius around the fragment of interest, then all atoms
in that family are included. This includes any atoms that are not
directly bonded to the fragment of interest. All dangling bonds
are considered at this point and capped using hydrogen atoms.
Once the fragment of interest and the included surroundings

are defined, the density matrix contribution can be calculated for



Z dx.doi.org/10.1021/cr200093j |Chem. Rev. XXXX, XXX, 000–000

Chemical Reviews REVIEW

all defined fragments. The accuracy of the ADMA approach may
be improved either by choosing larger fragments or by increasing
the radius of inclusion for neighboring nuclear families. The com-
posite fragment density matrix can then be used to calculate a
number of properties including the total energy, dipole moment,
electrostatic potential, and total density matrix for the molecular
system.
The accuracy of the ADMA approach depends on howwell the

local environment, determined by the radius of inclusion, is
described during each fragment calculation. The most obvious
way to improve the description of the environment is to increase
the radius of inclusion of neighboring atoms. It was shown that a
radius of up to 10 Å is needed to obtain sufficiently accurate
results (errors of less than 1 kcal/mol).415 Unfortunately, this
decreases the efficiency of the approach, particularly for large
molecules. The solution was implemented by Mezey and Exner
in 2006, termed the field-adapted ADMA (FA-ADMA)416 ap-
proach. By using a smaller radius of inclusion coupled with a more
approximate description of far separated atoms, the FA-ADMA
approach effectively increases the accuracy of the original ADMA
approach without any significant increase in computational cost.
The most effective approximation to the surroundings of

fragments in the FA-ADMAwas determined to be partial charges
based on Mulliken or L€owdin charges. The computational
scheme employed begins with a standard ADMA calculation
which is used to obtain the partial charges of all the atoms present
in the fragment calculation. During subsequent fragment calcula-
tions, these partial charges are included, gradually increasing the
number of partial charges until the full system is represented. The
entire process is then started anew, using all of the partial charges
obtained during the previous step, and continued in an iterative
process until the charges and densities for all fragments do not
change up to a certain threshold. Atoms present in the point
charge description of the environment that have been replaced by
capping hydrogens in the fragment (so-called junction atoms)
are represented by a 60% scaling of the total Mulliken charge or
an 80% scaling of the total L€owdin charge, aiding in the reduction
of error incurred by overcounting these atoms during the ab
initio portion of the FA-ADMA calculations.
Additional improvements to the ADMA approach have been

implemented in recent years. These include the use of an alternative,
more general fragmentation scheme,417 the use of the ADMA
density matrix as an initial guess for ab initio SCF calculations on
large molecules418 and an improved description of the junction
atoms at the edges of the surroundings encompassed by the radius
of inclusion.419

2.8. Other Methods
Das et al.420 in 2003 proposed the ab initio fragment orbital-

based theory (AFOT), in which the total wave function is
constructed from orbitals of fragments, which are formed and
computed without capping.

The integrated multicenter molecular orbital method (IMi-
CMO) formulated by Sakai and Morita153,421 for molecular
clusters relies on the addition of the properties of target mole-
cules computed in the buffer region of adjacent molecules, while
the effect of the rest of the system is computed with point charge
interactions. In addition to the total energies, forces and second
derivatives have also been developed.

Mata et al.422 in 2009 suggested a model to estimate the
excitation energies of large systems by diagonalizing the total
HamiltonianHij, i,j = 1, ...,N, whereN is the number of fragments.

In this Hamiltonian only the diagonal elementsHii are computed
quantum-mechanically (for each fragment, electrostatically em-
bedded in the field of others) while off-diagonal elements are
estimated semiclassically with the dipole�dipole interaction
model. This model takes into account the excitonic coupling in
molecular clusters and it has been used to compute the first
electronic absorption band of water.

Following the same methodology as the SFM, Bettens
et al.,423�425 have developed an energy based fragmentation
method based on the idea of isodesmic reactions.426 Molecules
are divided into groups in a similar fashion to the SFM and
capped with hydrogens. The main difference between the two
methods is how the groups are recombined into fragments. In
many cases the two fragmentation schemes produce the exact
same fragments. However, for higher levels of fragmentation
such as SFM level 3, the Bettens method can produce a different
fragmentation scheme. The fragments produced in these cases
are typically smaller in size than those produced by the SFM, but
many more fragments are formed. In a specialized case provided
by Bettens,425 fragments formed are one group size smaller
than the SFM fragments. In this instance SFM produces three
fragments, while the Bettens method produces eleven fragments.

In the linear-scaling three-dimensional fragment method for
large-scale electronic structure calculations (LS3DF) developed
by Wang et al.427 in 2008, the energy is constructed as a sum of
additive contributions of small conglomerates of fragments in the
self-consistent Coulomb potential determined at each iteration by
solving the Poisson equation for the total density; the conglom-
erates are used to reduce the error caused by the caps added to
dangling bonds. This method has been applied to CdSe quantum
dots that contain up to 2616 atoms.

3. SOFTWARE AND PARALLEL COMPUTING

Developing efficient software is a very important aspect of
computational and theoretical chemistry. Many research groups
concentrate on method development using some “in-house”
programs or locally modified versions of commonly used soft-
ware. Although this often results in important advances inmethod
development, such results are often not reproducible by other
scientists without reproducing the code, an arduous process.
Moreover, there is a growing need by researchers in adjacent
fields, such as biochemistry material science and engineering,
computational biology and others to use ab initio methods for
practical calculations. It is clear that there is a demand for easy-to-
use software that can be run by users on their own. This need
is at present only partially filled by software development of
fragment-based methods.

There are two types of software: programs to perform calcula-
tions, and software to aid in input file preparation and to analyze
and visualize results. For the first group, the most fragment-
friendly program at present is the general atomic and molecular
electronic structure system (GAMESS),428,429 which has EFP,
FMO, ELG, andDC in the production version. Q-Chem supports
EFP, while ABINIT-MP430,431 and PAICS432 are FMOprograms.
PEACH430 is anMDprogram used in conjunction with ABINIT-
MP to run FMO-MD simulations. MTA is based on locally
modified versions of GAMESS, and it has a Web interface.433,434

Some recent X-Pol developments use a locally modified version
of GAMESS.

GAMESS hasMacMolPlt435 as its graphical interface, although
it has limited capability specifically for fragment methods.



AA dx.doi.org/10.1021/cr200093j |Chem. Rev. XXXX, XXX, 000–000

Chemical Reviews REVIEW

Facio436 has a very elaborateWindows GAMESS/FMO interface
for input file preparation and result visualization; it has an automatic
fragmentation engine for dividing polypeptides (including proteins),
nucleotides (including DNA), saccharides or any combination
thereof into standard fragments. Biostation431 is a graphical interface
developed in conjunction with ABINIT-MP for FMO calculations.

One of the important advantages of fragmentation methods is
that they are frequently inherently scalable to many compute
nodes and cores. The FMOmethod in GAMESS presents a nice
example of this, since it has been implemented with the asso-
ciated distributed data interface (DDI)437,438 and its generalized,
multilevel partner GDDI.1 DDI facilitates the distribution of
large arrays across many compute nodes, while GDDI makes
it possible to use both coarse graining and fine graining. The
coarse-grained parallelism allows the calculation (for example) of
the contribution from each fragment to the total energy on a
different node, while the fine-grained parallelism occurs among
the cores within each node. This approach enables FMO calcula-
tions to take advantage of virtually perfect scaling on tens of
thousands of cores. While the example presented here is for FMO
in GAMESS, most of the fragmentation methods discussed here
have the potential for similar scaling.

4. APPLICATIONS

The applications below are described in subsections according
to the application field.

4.1. Homogeneous Clusters and Explicit Solvent Treatments
Fragment methods are a powerful alternative to force fields

in running molecular dynamics simulations (in fact, some ab
initio based methods are thought of as new generation force
fields48,75,316). Of course, MD simulations require very accurate
gradients, and in some cases the gradient used in the initial MD
simulations had questionable accuracy.267 Also, during QM MD
simulations, there is no enforced bond definition, and bonds can
be broken along the trajectory. If this happens, the pieces of the
broken fragment can move away from each other and attach
themselves to other fragments. If this happens, the fragment
definition becomes inappropriate. The dynamic fragmentation270

method is designed to address this issue:When a fragment breaks
into pieces, the fragment definition is changed on the fly; this can,
however, result in a discontinuity on the potential energy surface.
Some fragment methods like EFP have frozen fragment geome-
tries, and do not suffer from this problem. On the other hand,
rigid fragments cannot adjust their structure to the environment,
which limits their accuracy.

Many methods assume that fragments do not interact very
strongly. But a small interfragment distance can cause large charge
transfer and other strong interactions. In the methods that use
multipole models to describe the electrostatics, the short-range
multipole interaction can break down because of the neglect of
charge penetration; multipole screening202,239 can be used as a
remedy.

Nevertheless, fragment based methods can take into account
many-body polarization and charge transfer, and thus are new
generation force fields. In charged solutes these effects of the
polarization and charge transfer between the solute and solvent
are large and difficult to neglect.

One important application of fragment methods is the in-
vestigation of chemical reactions of small molecules in solution
with MD, with solvent molecules represented as fragments, on a
par with the solute. Sato et al.439 applied the FMO method to

study a SN2 reaction of the hydrolysis of the methyl diazonium
ion, and found two types of reaction pathway. Solute�solvent
charge transfer plays a very important role in this reaction and the
real trajectories are quite different from the textbook images of
the SN2 reaction. Sato et al.440 used the FMO method to study
the amination of formaldehyde in water and found that this
reaction proceeds via a stepwise mechanism through a zwitter-
ionic intermediate, not by a concerted mechanism.

Pomogaev et al.441 employed ELG to compute the absorption
spectra for explicitly solvated estradiol and tryptophan in the
Trp-cage protein, using snapshots from classicalMD simulations.
Kistler and Matsika442 applied the multilayer FMO-MCSCF
approach to study solvatochromic shifts of uracil and cytosine,
using snapshots of classical MD simulations. They showed by
comparison of various methods that explicit solvent methods
including the use of QM or MM to describe the solvent produce
similar results, whereas the continuum-based PCM for some
excited states gives significantly different and parameter depen-
dent results.

Fujiwara et al.443 applied the FMOmethod toMD simulations
of Zn2+ solvated by a droplet with 64 water molecules and
reproduced the experimental value of the first peak in the radial
distribution function to within 0.01 Å.

Several EFP1 andQM/EFP1 studies have been devoted to the
investigation of structures and energetics of small to medium
water clusters.190,192,444 Structural properties of bulk water193

and origins of enhancement of the dipole moment in bulk water445

were also investigated. Another important area of application of
QM/EFP1 methodology is hydration of various ions, including
halogen446 and molecular anions,447,448 as well as metal449,450 and
molecular451 cations.

Hydration and dissociation of ionic species were investigated
by Peterson and Gordon452 for NaCl and by Yoshikawa and
Morales453 for LiOH. Solvation effects on the electronic proper-
ties of a solute, such as electronegativity, hardness, HOMO�LU-
MO gaps, were investigated for ammonia454 and a set of
polyatomic molecules and ions.455

Solvent effects on neutral-zwitterionic equilibrium of aminoa-
cids were also studied with QM/EFP1. Day et al.456 investigated
small (up to ten waters) clusters of glutamic acid and water.
Solvation of glycine was studied by Bandyopadhyay andGordon.196

Solvation of alanine by increasing number of water molecules was
studied by Mullin and Gordon.457,458 Song et al. investigated
solvent effects on the conformational potential energy surfaces
(gauche versus trans conformations) of acetylcholine and acet-
ylthiocholine ACh and ATCh.459

The EFP2 model has been used to investigate intermolecular
interactions in complex molecular clusters. Adamovic and
Gordon showed that water�methanol mixtures are heterogeneic
at the microscopic level.460 The same authors investigated
interactions in styrene clusters,461 where both H-bonding and
π-bonding structures take place. π-stacking interactions were
investigated in benzene dimer,202 substituted benzene dimers,462

and benzene-pyridine dimers;463 an intriguing competition between
H-bonding and π�π bonding was observed in water-benzene
clusters.464 Interactions in π-stacks of DNA base-pairs were
studied by Ghosh et al.200 The shortening of the B�N bond in
H3BNH3 on going from the gaseous to the solid state was
explained using the EFP2 method.465

The QM/EFP method has also been used to investigate
the electronic excited states of chromophores in solution. The
spectroscopy of enzyme active sites in the presence of several
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EFP1 waters was studied by Krauss.466,467 Aqueous solvation
of the lowest singlet excited state of Coumarin 151 was investi-
gated with the CIS/EFP1 method.176 The absorption spectrum
of acetone in water was modeled with TD-DFT/EFP1 by Yoo
et al.177 Ab initio molecular dynamics with CASSCF/EFP1
was used to investigate the dynamics of solvated excited
states in coumarin 151468 and excited state hydrogen transfer
in 7-azaindole.469 The EFP2 model combined with CIS(D) was
used to investigate solvatochromic shifts of singlet and triplet
electronic states of para-nitroaniline in water, dioxane, and
cyclohexane by Kosenkov and Slipchenko.179 A combination of
the EOM-CCSD for ionization potentials (IP) method with EFP
allowed accurate description of vertical ionization energy (VIE)
of thymine in bulk water.181 Intrestingly, the first hydration shell
increases VIE by∼0.1 eV, while subsequent solvation lowers the
ionization energy and the bulk value of the solvent-induced shift
of thymine’s VIE is approximately �0.9 eV.

Influence of the water environment on energetics and pathways
of various reactions were investigated with QM/EFP1 methods.
The energetics of the Menshutkin reaction between ammonia
and methyl bromide in the presence of an increasing number of
watermoleculeswere studied byHF/EFP1.194Adamovic andGordon
showed thatMP2/EFP1 provides an accurate description of hydra-
tion effects on structures and barriers in SN2 reaction between
Cl� and CH3Br.

195 The EFP solvent model was also used to
study the kinetics of the hydrogen abstraction from H2O2 by
OHO•.470 The reaction mechanism of phosphate monoester
aminolysis in aqueous solution was investigated with DFT/EFP1
by Ferreira et al.471 The role of solvation on the relative
thermodynamic stabilities of cis- and trans-platinum dichloride
in aqueous solution was investigated by Hush et al.472 The
energy profiles for the reaction OH� + CO2 f HCO3

� in the
presence of 30 water molecules were investigated by Nemukhin
et al.473 In another study by the same authors,474 the QM/EFP
method was used to model the reactions of hydroxymethyl
radical (CH2OH)-C with glutathione tripeptide (GSH) and
with methylthiol(CH3SH) in water.

Jose and Gadre475 applied the MTAmethod to investigate the
properties of Li clusters and CO2 clusters.

476 Mahadevi et al.477

studied benzene clusters using the MTA method. Yang et al.478

employed GEBF to study water clusters.

4.2. Biochemical Systems
Biochemical systems are a major application field for fragment

methods, because the molecules in biology are large, often
containing thousands of atoms. Fragment methods have several
competitors, one is force fields; another is electronic structure
approaches that rely either on semiempirical approximations479,480

or multilayer approaches, like ONIOM147 and QM/MM.481 In
addition, purely ab initio methods are also becoming increasingly
efficient.482,483

Force fields are highly tuned for biochemical calculations,
and are ubiquitously used. Their drawback is that frequently
they are not polarizable and do not account for charge transfer
(EFP and SIBFA are examples in which both are considered),
and in addition, they are often difficult to use in practice by
nonexperts if the system contains nonstandard parts for which
no precomputed parameters are available. Force fields do have a
major advantage of their speed and the ability to use them for
molecular dynamics simulations, often essential to describe
biological processes. On the other hand, ab initio based
methods, including fragment-based approaches can incorporate

full many-body polarization and charge transfer, and they
do not rely on the need for parameters (aside from basis sets);
of course the associated cost is an increased amount of
computations.
4.2.1. Polypeptides, Proteins, Saccharides, and Oligoa-

mides. Jensen and co-workers484�490 have successfully applied
the QM/EFP approach with a buffer region to predicting pKa

values (Figure 6) of ionizable residues in proteins. Xie et al.491

employed the X-Pol method at the AM1 level to perform a 50 ps
MD simulation of bovine pancreatic trypsin inhibitor in water
with periodic boundary conditions.
Komeiji et al.492 applied the FMO/MP2/6-31G* method to

analyze the dependence of the change in the electronic structure
of ubiquitin (PDB 1UBQ) on the thickness of solvating water
layers. Five configurations corresponding to local minima were
averaged. He et al.493 applied the FMO/MP2/PCM/6-31G*
method to study the ability of FMO and empirical dispersion to
discriminate between the native and decoy structures for the Pin1
WW domain (PDB: 1I6C) and the Co repressor protein (PDB
1ORC). Sawada et al.494 used the FMO/RHF/PCM/6-31G*
method to optimize the structure of helical heparin oligosacchar-
ides (PDB 1HPN). They found that the optimized structure is
in good agreement with the NMR experiment. In addition, a
comparison of the FMO predictions with those of the force field
revealed the differences pointing to possible deficiencies in the
force field model.
Huang et al.495 applied the KEM with MP2/6-31G** to

analyze the interactions in vesicular stomatitis virus nucleopro-
tein (PDB 2QVJ) containing 33,175 atoms. Duan et al.496 used
the MFCC method at the HF, B3LYP, and MP2 levels with the
6-31+G* basis set to investigate the interaction of HIV-1 protease
with the watermolecule that bridges the flaps of the protease with
the inhibitors. Dong et al.497 applied the GEBF method at the
DFT/6-311+G** level to study the formation of single and
double helices of aromatic oligoamides. Deshmukh et al. applied
the MTA method to study intramolecular hydrogen bonding in

Figure 6. Subsystem of OMTKY3 (protein turkey ovomucoid third
domain) used to obtain the buffer region (bold) used for (b) ab initio/
buffer/EFP regions (red/blue/green) used for the computation of the
pKa of Lys55. Reproduced with permission from ref 485. Copyright
2005 American Chemical Society.

http://pubs.acs.org/action/showImage?doi=10.1021/cr200093j&iName=master.img-006.jpg&w=139&h=201
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sugars498 at theMP2/6-311++G(2d,2p) level and polypeptides499

with the DFT/6-311++G** level.
4.2.2. Protein�Ligand Binding. A number of applications

of the FMO method to various protein�ligand complexes have
been performed. Fukuzawa et al.500�502 studied human estrogen
receptor and showed good correlation with the experimental
binding energies. Sawada et al.503�506 performed a number of
FMO applications to influenza virus hemagglutinin and showed
the importance of considering the full-sized hemagglutinin upon
the binding energies. A very detailed analysis507 of the recogni-
tion patterns of sialosides by avian and human influenza hemag-
glutinins was performed using MP2/PCM/6-31G*, resulting in
good agreement with the experimental binding energies In
another study508 at the same level it was shown that binding of
influenza A virus hemagglutinin to the sialoside receptor is not
controlled by the homotropic allosteric effect (i.e., hemagglutinin
trimerization does not not increase the binding energy per
ligand). Future mutations509 of the influenza virus were predicted
by a combination of hemadsorption experiment and quantum
chemical calculations for antibody binding, and details of the
ligand binding were investigated.264,510,511

Yamagishi et al.512�514 performed an analysis of the functions
of key residues in the ligand-binding pocket of vitamin D. Ito
et al.515�517 analyzed the role of the functional groups in retinoid
X receptor and studied the influence of mutations upon the
transcriptional activation. Nakanishi et al.518 applied FMO/
MP2/6-31G* to elucidate the molecular recognition mechanism
in the FK506 binding protein. A number of other protein�
ligand complexes,519�530 as well as systems involving nucleic
acids,531�536 were also studied with the FMO method.
Taking advantage of the FMO method in the GAMESS and

ABINIT-MP packages, several pharmaceutical companies have
used it for drug-design related research. Ozawa et al. applied the
FMO MP2/6-31G* approach537 to demonstrate that CH/π
hydrogen bonds determine the selectivity of the Src homology
2 domain to tyrosine phosphotyrosyl peptides. This was followed
by a study538 that showed the importance of CH/π hydrogen
bonds in rational drug design as exemplified by leukocyte-specific
protein tyrosine kinase. Fujimura and Sasabuchi539 applied
FMO/MP2/6-31G* to elucidate the role of fluorine atoms in a
fluorinated prostaglandin agonist. Ohno et al.540 employed FMO
MP2/6-31G and discussed the strong correlation of pair inter-
action energies (PIEs) with the drug’s potency.
The MFCC method has been applied to a number of ligand

binding studies.541�545 Huang et al.546 employed KEM to study
the interaction of aminoglycoside drugs and ribosomal A site RNA
targets. Using the ELGmethod, Orimoto et al.547 investigated the
electronic structure of B-type poly(dG) 3 poly(dC) DNA.
4.2.3. Quantitative Structure�Activity Relationship

(QSAR). It is very difficult to evaluate the free energies of binding
from first principles with the accuracy of 1 kcal/mol, which is
often the difference between several ligands in protein�ligand
binding. In practical ab initio calculations, there are not only basis
set and wave function limitations and the difficulty in describing
solvent and counterions but also the entropic contribution at
room temperature requires proper configurational sampling,
which at present is usually done with MD and can require
long-time trajectories.
In QSAR studies, one introduces empirical factors by taking

computed physical quantities, {Xi} called descriptors as argu-
ments of a function f({Xi}) (often, f is the binding energy), the
coefficients in which are optimized for some training set of

systems with f({Xi}) known experimentally. The obtained rela-
tion is used to predict properties of compounds outside the
training set, for which {Xi} are computed. The underlying
condition for successful QSAR studies is that descriptors should
correlate with the desired property. Because of the fitting
nature of QSAR, various completely unrelated methods can be
used to compute descriptors.548 For example, some descrip-
tors can be computed from gas phase ab initio based calcula-
tions, the solvation effects can be estimated with the
Poisson�Boltzmann model, and the entropic factor descriptor
can be obtained from other simple models such as the number
of rotatable bonds.549

Fragment-based methods seem to be a perfect match for
fragment-based drug discovery (FBDD)550,551 and they can be
utilized to provide descriptors in QSAR. In particular, a very
useful set of descriptors is given by the pair interactions
between ligands and constituent parts of the protein
(residues or residue fragments). Because the FMO method
provides PIEs as a byproduct of the calculations, it is straight-
forward to apply FMO toQSAR studies, as reviewed by Yoshida
et al.552 In other one-step methods, such as KEM, MFCC, or
PMISP methods, one can have similar pair interaction energies,
whereas two-step methods operate with the properties of the
whole system. Ishikawa et al.553 discussed the basis sets effects
upon the PIEs.
Yoshida et al.554 employed the FMO RHF/6-31G method in

QSAR studies of cyclic urea type HIV-1 PR inhibitors, using the
sum of the residue fragment�ligand PIEs and the charge transfer
between the ligand and protein from FMO calculations as
descriptors. They found a strong correlation between the FMO
binding energy in vacuum and the sum of protein�ligand PIEs,
thus only the former was used.
Because the foregoing strategy was also used in further studies,

it is instructive to comment on the relation between the sum of
the protein�ligand PIEsΔEPL in the protein�ligand complex PL
and the binding energy ΔEb computed as the difference between
the energies of the complex PL and the isolated protein (P) and
ligand (L). Both ΔEPL and ΔEb can be used as descriptors; the
former is often used as an approximation and replacement of the
latter. For simplicity, the deformation energy, that is, the change
in the geometry of the protein and the ligand, when comparing
their isolated and complexed minima, is implicitly included in
the following derivations.518

ΔEb ¼ EPL � EP � EL ¼ ½ ∑
I ∈ P

E
0PðPLÞ
I þ ∑

I ∈ L
E

0LðPLÞ
I

þ ∑
I > J
I, J ∈ P

ΔEPðPLÞIJ þ ∑
I > J
I, J ∈ L

ΔELðPLÞIJ þ ∑
I ∈ P, J ∈ L

ΔEPLðPLÞIJ �

� ½ ∑
I ∈ P

E
0P
I þ ∑

I > J
I, J ∈ P

ΔEPIJ � � ½ ∑
I ∈ L

E
0L
I þ ∑

I > J
I, J ∈ L

ΔELIJ �

ΔEPL ¼ ∑
I ∈ P, J ∈ L

ΔEPLðPLÞIJ ð125Þ

P(PL) indicates the partial properties of P in the complex PL
(and, similarly, for L). The difference is then

ΔEb �ΔEPL ¼ ∑
I ∈ P

ΔE
0PðPLÞ
I þ ∑

I ∈ L
ΔE

0LðPLÞ
I

þ ∑
I > J
I, J ∈ P

ΔΔEPðPLÞIJ þ ∑
I > J
I, J ∈ L

ΔΔELðPLÞIJ ð126Þ
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where (A = P or L)

ΔE
0AðPLÞ
I ¼ E

0AðPLÞ
I � E

0A
I

ΔΔE
0AðPLÞ
IJ ¼ ΔE

0AðPLÞ
IJ �ΔE

0A
IJ

ð127Þ

ΔEI
A(PL) and ΔΔEIJ

A(PL)are the internal fragment and pair inter-
action energies, respectively, and are affected by the polarization
and deformation in the complex formation. In other words

ΔEb �ΔEPL ¼ ΔEpold þ def
P þ ΔEpold þ def

L ð128Þ

ΔEpol þ def
A ¼ ∑

I ∈ A
ΔE

0AðPLÞ
I þ ∑

I > J
I, J ∈ A

ΔΔEAðPLÞIJ ð129Þ

The difference between the binding energy ΔEb and the sum
of the pair interaction energies ΔEPL is simply the destabiliza-
tion polarization (denoted as “pold”) plus the deformation
energy of the protein and ligand. ΔEA

pold+def does not include
all terms in the polarization. The polarization process (see
PIEDA300) between isolated systems (P and L here) is divided
into two contributions: first, each of the two interacting systems is
destabilized relative to its own lowest energy state due to the
polarization by the other (this gives the destabilization polariza-
tion). Consequently, the polarized systems interact, and this
interaction energy includes the electrostatic energy, part of
which is the stabilizing polarization energy, exchange-repulsion,
charge transfer, dispersion and higher order terms. These terms
are separable in the EDA57 or its FMO extension, PIEDA300 when
A are individual fragments.
When the polarization and deformation energies vary con-

siderably from ligand to ligand (for instance, when comparing
ligands with different charges), the use of ΔEPL in place of ΔEb
may lead to errors in consequent QSAR and care should be taken
to use a proper training set. Finally, for completeness, it is useful
to separate518 the sum of the polarization and deformations
energies given by the difference in the energy of the protein or
ligand in the complexed and isolated states.

ΔEpold þ def
A ¼ EAðPLÞ � EA ¼ EAðPLÞ � EA � ~EA þ ~EA

¼ ΔEpoldA þ ΔEdefA

ΔEpoldA ¼ EAðPLÞ � ~EA

ΔEdefA ¼ ~EA � EA ð130Þ
~EA is the energy of isolated protein or ligand at the geometry in
the complex, whereas EA is computed at the geometry of A in its
minimum. EA(PL) is the internal energy of A in the complex PL
(defined as the FMO sum of monomer and dimers terms for
fragments in A, cf., eq 37). This analysis can be used for any type
of interactions, not just those between a protein and a ligand, and
more subsystems can be defined. In addition, the FMO method
provides all details of individual fragment contributions in the
total sums, for further insight regarding drug design and other
applications. Moreover, this analysis defines the protein and
ligand destabilization polarization energy ΔEA

pold (often ne-
glected in MM studies), as well as the deformation energy
ΔEA

def (typically included). The stabilizing polarization (pols)
and charge transfer, as well as other types of interactions are
included in the sum of the protein�ligand PIEs ΔEPL. The
former can be estimated518 using the simple response relation
ΔEA

pols ≈ �2ΔEA
pold(see actual calculations300 for numerical

justification), which leads to the total polarization

EpolA ¼ ΔEpoldA þ ΔEpolsA ¼ �ΔEpoldA ð131Þ
This way, the total polarization energy of the protein and ligand
in their complex can be estimated, which requires 5 calculations
(complex, plus protein and ligand, both at the geometry in the
complexed and isolated states).
Fischer et al.555 improved the scoring functions representing

the binding energy for human estrogen receptor subtype R and
human retinoic acid receptor of isotype γ, using atomic charges
from FMO calculations at the RHF/STO-3G level and con-
cluded that such quantum scoring functions (QSF) describe the
electrostatics accurately, and that QSF performs better than force
field analogues. Yoshida et al.556 applied FMO/RHF/6-31G to
QSAR studies of the binding affinity of substituted benzenesul-
fonamides with carbonic anhydrase, noting the difficulties in
modeling Zn2+-containing systems. Hitaoka et al.557 used FMO/
MP2/6-31G in QSAR studies of the binding affinity of sialic acid
analogues with influenza virus neuraminidase-1, where they
divided the protein into three binding pockets and used the
sums of PIEs for these subsystems as separate descriptors.
Munei et al.558 used FMO/RHF/6-31G in QSAR studies of

the binding affinity of substituted benzenesulfonamides with
carbonic anhydrase. Mazanetz et al.548 used FMO/MP2/6-31G*
in QSAR studies of cyclin-dependent kinase 2 inhibitor potency
and did a careful comparison of FMO and MM derived QSAR
models popular in drug design industry. They found that FMO
outperformed all three MM based QSAR models.
4.2.4. Excited States and Chemical Reactions. Excited

states and chemical reactions are an attractive application field of
ab initio based methods. Ishida et al.559 using the FMO method
at the RHF and MP2 levels with the 6-31G(d) basis set analyzed
the mechanism of the chorismate mutase reaction. Nakamura
et al.560 applied the FMO/MP2/6-31Gmethod to clarify the role
of K151 and D180 in L-2-haloacid dehalogenase from Pseudo-
monas sp. YL (PDB 1ZRM). Pruitt et al.289 using the multilayer
open shell (MP2/6-311G**: CR-CC(2,3)/3-21G) FMO meth-
od evaluated the enthalpy of the reversible addition�fragmenta-
tion chain transfer (RAFT) reaction involving radical species.
In treating excited stateswith theFMOmethod, a frequently used

approach is to apply an excited state calculation such as CI (or
TDDFT) to a single fragment (chromophore), computed in the
electrostatic field due to the other fragments, evaluated using RHF
(or DFT). In this method (called FMO1, indicating that only
monomers are computed) the electrostatic effect upon excited
states is considered, which is often the major effect of the environ-
ment (i.e., the rest of the system excluding the chromophore), and
higher order effects such as charge transfer can be considered
including dimer calculations of excited states (FMO2).
Mochizuki et al. did several FMO1 studies. They computed561 red

fluorescent protein with CIS(D)/6-31G(d), they simulated emission
spectra of bioluminescent luciferases562 with CIS(D)/6-31G, and
they also performed CIS(D)/6-31G(d) calculations on the family of
red563 as well as blue and yellow564

fluorescent proteins. Chiba et al.
computed the yellow photoactive protein (PDB 2PHY) both in gas
phase284 and solution284 using FMO/TDDFT/6-31G(d), consider-
ing both FMO1 and FMO2 types of excitations. Ikegami et al.565

analyzed the asymmetric excitations in the left and right branches of
the photosynthetic reaction center of Blastochloris viridis (PDB
1PRC) using the FMO method, where the asymmetry was studied
for monomers and selected dimers at the CIS/6-31G(d) level.
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Milne et al.566 applied FMO at the FMO1-TDDFT/6-311G(d,p)
and FMO2-MP2/6-311G(d,p) levels to investigate the role of AMP
protonation in firefly luciferase pH-sensitivity.

4.3. Solid-State Applications
For systems with perfect periodicity, cluster based approaches

compete with the methods employing periodic boundary con-
ditions, which often use plane waves as a natural basis set for
these systems. The latter group of methods is ultimately better,
however, given the practical limitations of the existing theories
and computer programs, and the difficulty in deriving and
implementing high level of calculations for them often drives
users to use cluster based approaches.

An important question is how relevant is the electron
delocalization for a property one is interested in? Some proper-
ties, such as band gaps and the density of states, appear to
require a consideration of the whole system, and fragment-
based methods are at a serious disadvantage. However, there
are ways to account for the delocalization at the final step by
building the Fock matrices for the whole system, as is done in
FMO-MO, FMO-LCMO, and FMO/F, or in a different way in
ELG. On the other hand, one is often interested in some local
properties in periodic systems, such as the interactions deter-
mining their global properties, and for this, pair interactions in
the FMO and KEM methods were found to be useful as
described below. Applications of fragment-based methods to
π-conjugated systems329 and graphene339 suggest their useful-
ness even for such delocalized systems.
4.3.1. Crystals, Surfaces, and Nanomaterials. Huang

et al.567 applied the KEM/MP2/6-31G(d,p) method to inves-
tigate the interactions in the crystal of two molecules TDA1 and
RangDP52. Fukunaga et al.568 applied the FMO/TDDFT/6-
31G(d,p) method to investigate the role of intermolecular inter-
actions upon the excitations energies in three isomers of quinacri-
done crystals. To facilitate calculations and make them more
realistic, an embedding model was used, in which a cluster of
quinacridone molecules was immersed in the field of a large
number of atomic charges, computed with the BLYP functional
and periodic boundary conditions, with the 6-31G(d,p) basis set.
Faujasite zeolites were modeled by Fedorov et al.234 using the

FMO/RHF/6-31G(d) method. It was found that the adsorption
energies can be quite accurately modeled with the FMOmethod,
despite a large number of detached bonds. The fragmentation
scheme is shown in Figure 7. The phenol molecule occupies a
place in the zeolite pore near the aluminum-containing fragment
with acidic hydrogens.
Zhang et al.569 applied the ELG RHF/STO-3G method to

study the adsorption of Si and C chains onto unfaulted and
faulted Si(111) surfaces. Chen et al.570 calculated the electronic
structure of the single-wall pristine boron nitride (BN) and
boron nitride-carbon (BN/C) heterostructured nanotubes using
ELG at the RHF/6-31G level.
Fedorov et al.249 applied the FMO method at the B3LYP/

3-21G(d) level to optimize the structure of silicon nanowires of
diameter 1.2 and length 4.8 (nm), and showed that FMO optimized
structures closely agree with those by PBC methods and experiment,
suggesting that the geometry can be optimized with reasonable results
using fragmentmethods.Otaki andAndo571 investigated the dielectric
properties of 5-bromo-9-hydroxyphenalenone and found that the
induced polarization is enhanced by the weak hydrogen bonding.
4.3.2. Polymers. Many applications of fragment-based meth-

ods are performed with the ELG method, which is particularly

suited for (although not limited to) linear polymer calculations.
Orimoto et al.572 applied the ELG/PM3 level to optimize struc-
tures of polysilane derivatives, poly[bis(4-propoxybutyl)silylene].
The ELG method was used extensively to calculate polariz-

abilities and hyperpolarizabilities of important nonlinear optics
materials. These two properties were studied using ELG by a
number of researchers. Ohnishi et al.573 computed donor/
acceptor substituted polydiacetylenes at the RHF/6-31G level.
Yu et al. using RHF/6-31G calculated polyimides574 and
[Li+[calix[4]pyrrole]Li�]n, up to 15 units.575 Pomogaeva
et al.576 at the RHF/6-311G level with ECP/VDZ for chalcogen
atoms (S, Se and Te) studied series of benzo-2,1,3-chalcogen-
diasoles ribbon oligomers (up to 15 units). At the unrestricted
PM3 level, Orimoto et al.577 calculated a pyrrole-based spin-
polarized molecular wire containing 1-pyrrolylphenyl nitronyl
nitroxide with oligothiophene units under the influence of an
applied electric field. Yan et al.578 computed meso�meso-
linked metalloporphyrin oligo-mers up to 22 units at RHF/6-
31G (ECP/VDZ for metals Mg, Zn and Ni).
Pomogaev et al. using ELG at the CIS/INDO level compu-

ted absorption spectra for aromaticmolecules (benzene, anthracene,
4-dicyanomethylene-4H-pyran, tryptophan, and estradiol) bound
to polyethylene579 and explicitly solvated estradiol and tryptophan.

5. CONCLUSIONS AND PROGNOSIS

During several decades, fragment-based methods have come a
long way from the initial stage of method development to large
scale applications which span many types of systems: molecular
clusters, proteins, DNA, oligosaccharides, zeolites, quantum dots,
nanowires, and others. Despite the very considerable progress, they
remain underused; there may be several reasons for this. Some of
the software developments are only locally implemented, making it
difficult for most interested users to utilize the methods. Many,
perhaps most methods are specific to one specific program; users
who are unfamiliar with that programmay have an inertial barrier to
using it. Second, many applications so far have been performed in
what should be considered demonstrative fashion, with low level
wave functions and basis sets. Third, in some cases the applications
are not conducted without properly considering all necessary
effects and factors; the most conspicuous example is the need to
incorporate solvent effects and entropy in biochemical applications.

Figure 7. Fragmentation of the complex of phenol and faujasite zeolite,
computed with FMO.234 The phenol molecule is shown in dark green,
and the active catalytic site containing three aluminum atoms and three
acidic hydrogens is shown in yellow.

http://pubs.acs.org/action/showImage?doi=10.1021/cr200093j&iName=master.img-007.jpg&w=166&h=160
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Another concern which many potential users of fragment-based
methods face is the uncertainty of the accuracy. An automatic error
control with an estimate of possible errors would be a welcome
addition to thesemethods, whose accuracy is known to dependupon
the physical nature of the systems, in particular, the electron density
localization, aswell as on thewave function andbasis set.However, in
the case of “standard” systems such as proteins, the error behavior
canbe studied in advance and reasonable automaticways to fragment
can be suggested; on the other hand, nonstandard systems may
require some preliminary accuracy tests which can be seen as a
barrier to users who are interested in a completely automatic, black-
box way of doing calculations. It can be expected that some proper-
ties that result from fragment-based calculations, for example, the
interfragment charge transfer in FMO,98 can be utilized to estimate
the error in practical calculations. Methods that have frozen frag-
ments, such as EFP, can result in errors that are caused by the
inability to relax the internal structures of the fragments.

Nevertheless, fragment-based methods also offer many advan-
tages. One is the efficiency and the ability to compute realistic
systems. Another is the additional information which they can
deliver, such as the intrinsic details of the physical picture of the
interactions in the system. As shown above, the application field is
very broad encompassing most systems of finite size, in which
chemists and physicists are interested. An important example of the
match between fragmentationmodels and their applications is given
by fragment-based drug discovery, where some progress involving
the use of the FMO method has already been achieved.551 In the
near future with the revolutionary progress in computer technology,
the advent of multicore CPUs and GPUs, increasing levels of
calculations and the ease of their execution, fragment-based meth-
ods will grow more popular in the computational community.
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