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The theory for modeling vibronic interactions in bichromophores was introduced in sixties by
Witkowski and Moffitt [J. Chem. Phys. 33, 872 (1960)] and extended by Fulton and Gouterman
[J. Chem. Phys. 35, 1059 (1961)]. The present work describes extension of this vibronic model to
describe bichromophores with broken vibrational symmetry such as partly deuterated molecules.
Additionally, the model is extended to include inter-chromophore vibrational modes. The model can
treat multiple vibrational modes by employing Lanczos diagonalization procedure of sparse matrices.
The developed vibronic model is applied to simulation of vibronic spectra of flexible bichromophore
diphenylmethane and compared to high-resolution experimental spectra [J. A. Stearns, N. R. Pills-
bury, K. O. Douglass, C. W. Müller, T. S. Zwier, and D. F. Plusquellic, J. Chem. Phys. 129, 224305
(2008)]. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4747336]

I. INTRODUCTION

The interaction of light and matter is a fundamental phe-
nomenon whose understanding and control are quintessen-
tial for advances in science and technology. Often, quantum-
mechanical treatment of the light-induced processes can be
simplified by separating electronic and nuclear degrees of
freedom by introducing the conventional Born-Oppenheimer
(BO) approximation.1 Yet, to explain processes such as
conversion of solar to electrical energy as occurs in photo-
synthetic centers of plants and bacteria and is mimicked in
photovoltaic devices, the electronic and nuclear motions can-
not be uncoupled such that the BO approximation should
be abandoned. A wide variety of classical, semi-classical,
and quantum techniques have been suggested to simulate
dynamics in such systems.2 In classical approaches the nu-
clear wavepacket is approximated by an ensemble of parti-
cles that follow classical trajectories. Semi-classical methods
add some missing quantum effects to this picture by allowing
transitions between the electronic states, for example, through
surface hopping3 or using the mean-field approximation.4, 5

In quantum-dynamics methods the nuclear wavepacket is de-
scribed by including quantum effects, such as interference be-
tween different parts of the packet.6, 7

Alternatively, one can circumvent complexities asso-
ciated with modeling dynamics of vibronic systems and
describe their vibronic spectra statically. This can be accom-
plished by solving the time-independent Schrodinger equa-
tion with an electronic-nuclear Hamiltonian. The present
work applies the latter (static) approach to a molecular sys-
tem composed of two (nearly) identical chromophores. Such
bichromophores or molecular dimers have nearly degener-
ate electronic energy levels with an energy splitting close to
the separation in vibrational energy levels, resulting in cou-
pling of the electronic and nuclear degrees of freedom. Pio-
neering work in this direction was done by Witkowski and
Moffitt,8 who derived the Hamiltonian for a dimer with a

specific symmetry element exchanging the monomers. This
vibronic model was expanded on by Fulton and Gouterman
(FG)9, 10 by describing excited state vibrations through a se-
ries of displaced harmonic oscillators.10, 11 Following this
initial work, Siebrand and co-workers extended the theory
to Raman scattering12 and made connections to molecular
aggregates.13 Since then, this model has been applied to a
number of molecular dimers,14–19 extended to include mul-
tiple vibrational modes,20–22 and used to describe vibronic
states in more complex molecular aggregates.23, 24

The original FG vibronic coupling model is limited to
cases where the dimer has a symmetry element interchang-
ing the Hamiltonians of monomers. The symmetry element
simplifies the dimer Hamiltonian and its numerical solution.
However, at the expense of increased computational complex-
ity, the Hamiltonian can be left in the asymmetric form and,
after expanding the vibrational wavefunction in a basis, di-
agonalized numerically using the iterative Lanczos diago-
nalization routine, as previously suggested by Domcke and
co-workers.25 This approach can handle asymmetries in the
vibrational wavefunction arising from partial deuteration. The
present work describes an extension of the vibronic model
to the asymmetric bichromophores of this type. The present
work assumes that the bichromophore retains symmetry of
the electronic wavefunction. However, with evaluation of an
additional electronic integral this model can be generalized to
molecules with asymmetries in electronic wavefunction aris-
ing, for example, from asymmetric molecular orientations,
substituent groups on monomers, or from different interaction
of monomers with environment, as would occur in realistic
biological or materials systems. The present work also intro-
duces the Hamiltonian for the inter-chromophore vibrational
modes, i.e., vibrations that occur between the chromophores
themselves. The inter-monomer Hamiltonian is fundamen-
tally different from the intra-monomer one because the elec-
tronic coupling depends on the distance and orientation
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between the two monomers and thus upon the inter-monomer
vibrations.

Developments described in the present study differenti-
ate from the previously reported extensions of the original
FG vibronic model in several important aspects. For example,
while the FG model was previously extended to simulate sev-
eral vibrational modes,20–22 our implementation utilizes the
iterative Lanczos diagonalization routine that allows simulta-
neous modeling of a larger number of vibrations. The previ-
ous work on asymmetric dimers18 was focused on electronic
asymmetries while maintaining the assumption of vibrational
symmetry. This is in contrast to our model that targets vi-
brational rather than electronic asymmetry. There are also
reports on modeling inter-monomer vibrations,17, 18 which,
however, do not include the explicit modulation of the exci-
ton coupling matrix element along an inter-monomer mode.
Our work presents a general approach for modeling the inter-
monomer vibrations and explicitly includes a change of the
electronic coupling along these modes.

To characterize the developed model, a series of model
spectra are produced and analyzed. As an initial test, the ex-
tended vibronic coupling model is applied to vibronic spectra
of flexible bichromophore diphenylmethane (DPM), which
has been the subject of several spectroscopic studies over the
last half century.26–30 Application to this symmetric molecule
demonstrates the validity of the inter-monomer mode Hamil-
tonian and tests the asymmetric model in the symmetric limit.
Our future work will focus on modeling vibronic spectrum
of partially deuterated DPM (d5-DPM) that will fully utilize
asymmetric aspects of the developed model.

II. THEORY

For a bichromophore (also called dimer) composed of
two (nearly) identical monomers, the Hamiltonian can be
written as a sum of the monomer Hamiltonians and electronic
coupling VAB(L) and kinetic energy TL terms

H = HA + HB + VAB(L) + TL. (1)

The electronic coupling and the kinetic energy terms depend
on the vector of six inter-monomer vibrational modes L. In
this treatment, the electronic wavefunction of the dimer is not
antisymmetrized, i.e., the electron exchange between the two
monomers is neglected. This is a reasonable assumption for a
large class of molecules, especially when monomers are spa-
tially separated. However, the following derivations remain
true even if the electronic wavefunction of the dimer is an-
tisymmetrized, as is the case for bichromophores. Antisym-
metrization of the electronic wavefunction affects the elec-
tronic coupling VAB term that will include not only Coulomb
but also exchange component.

Vibrations considered in this model are divided into
intra-monomer and inter-monomer vibrations. Intra-monomer
modes have kinetic and potential energy terms located within
HA and HB and thus can be computed by calculations on either
monomer. The inter-monomer modes are vibrations along
the L vector introduced above. Typically, the inter-monomer
modes have much lower frequencies than the intra-monomer
modes. They cannot be obtained from monomer properties

but require (partial) knowledge of the dimer Hessian. Because
of these principal differences, the treatment of the intra- and
inter-monomer modes in the model should be different. Note
that only the intra-monomer modes were considered in the
original model and most extensions. The current paper pro-
vides the first systematic extension of the dimer vibronic cou-
pling model to the inter-monomer vibrations.

A. Intra-monomer modes

Main steps of the symmetric dimer vibronic coupling
model are repeated here in order to introduce notations and
bring into context our developments. For the intra-monomer
modes, the Hamiltonian of monomer A (and analogously for
monomer B) is written as a sum of the vibrational kinetic en-
ergy term TA(QA) and the electronic Hamiltonian hA(qA; QA),

HA = hA(qA; QA) + TA(QA). (2)

The electronic Hamiltonian depends explicitly on the electron
coordinate (qA) and parametrically on the nuclear coordinate
(QA) of monomer A. Let {ψel

i (qA; QA)}∀i≥0 be the eigenvec-
tors of the electronic Hamiltonian hA with energies Ei(QA);
{φj(QA)}∀j ≥ 0 be the eigenvectors of the vibrational Hamil-
tonian Ei(QA) + TA(QA). Since similar relationships hold for
monomer B, HA + HB will satisfy the eigenvalue problem

(HA + HB)ψel
i (qA; QA)φn(QA)ψel

j (qB ; QB)φm(QB)

= Ei,j,n,m(QA,QB)ψel
i (qA; QA)φn(QA)

×ψel
j (qB ; QB)φm(QB), (3)

where

Ei,j,n,m(QA,QB) = Ei,n(QA) + Ej,m(QB), (4)

i and j represent the level of electronic excitation on
monomers A and B, respectively. Similarly, n and m repre-
sent the vibrational excitation on either monomer.

Before introducing the electronic coupling, the energies
obey the following relation:

Ei,j,n,m = Ej,i,m,n. (5)

The degeneracy in the electronic states is split by the elec-
tronic coupling term VAB(L) in the electronic Hamiltonian
Eq. (1).

Consider now a pair of exciton states. The excitation may
occur either on monomer A or monomer B; neither double
excitations (both on A and B) nor charge-transfer excitations
(electron moves from A to B or vice versa) are considered
in this model. Thus, a two element basis is sufficient for the
electronic wavefunction

{π (1)
A = ψel

1 (qA; QA)ψel
0 (qB ; QB),

π
(1)
B = ψel

0 (qA; QA)ψel
1 (qB ; QB)}. (6)

Though the following derivations are valid for any elec-
tronic states in the monomer, for the sake of simplicity, we use
the notations corresponding to the electronic transition from
the ground state ψ0 to the first electronic excited state ψ1.
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To find algebraic expressions for the vibrational energies,
the Hamiltonian has to be expanded in the electronic basis,
resulting in the following matrix elements:〈

π
(1)
A

∣∣H ∣∣π (1)
A

〉 = TA + E(1)(QA) + TB

+E(0)(QB) + 〈
π

(1)
A

∣∣VAB

∣∣π (1)
A

〉
, (7)

〈
π

(1)
B

∣∣H ∣∣π (1)
B

〉 = TA + E(0)(QA) + TB

+E1(QB) + 〈
π

(1)
B

∣∣VAB

∣∣π (1)
B

〉
,

〈
π

(1)
A

∣∣H ∣∣π (1)
B

〉 = 〈
π

(1)
B

∣∣H ∣∣π (1)
A

〉 = 〈
π

(1)
A

∣∣VAB

∣∣π (1)
B

〉
. (8)

In case of the intra-monomer modes, VAB(L) is expanded
in Taylor series about the equilibrium position of L = 0 and
only the zero-order term is kept:〈

π
(1)
A

∣∣VAB(L)
∣∣π (1)

B

〉 � 〈
π

(1)
A

∣∣VAB(0)
∣∣π (1)

B

〉

+ ∂

∂L

〈
π

(1)
A

∣∣VAB(L)
∣∣π (1)

B

〉∣∣
L=0L

+ ∂2

∂2L

〈
π

(1)
A

∣∣VAB(L)
∣∣π (1)

B

〉∣∣
L=0

L2

2
.

(9)

The remaining terms in the Taylor expansion along with
the TL term will be considered in Sec. II B regarding inter-
monomer modes, since such vibrations affecting the relative
positioning of the monomers are anticipated to have a large
effect on coupling constant. Assuming the harmonic approx-
imation for the potential energy surface (PES) in the vicin-
ity of the minimum provides a functional form for E(0)(QA),

E(1)(QA), E(0)(QB), and E(1)(QB). For example, for monomer
A,

E(0)(QA) = 1

2
Mω2

AQ2
A, (10)

E(1)(QA) = Ee + lAQA + 1

2
Mω2

AQ2
A, (11)

where M is the reduced mass and ω is the characteristic fre-
quency of the normal mode. The displacement lA is defined as

lA = dQMω2
A, (12)

dQ is the displacement along the normal mode between ge-
ometries of the ground and excited states (see Fig. 1). For
simplicity QA = 0 is defined as the equilibrium position for
the normal mode in the ground electronic state, such that a
linear term is only present in the expression for the excited
state potential energy surface.

The integral 〈π (1)
A |VAB |π (1)

A 〉 in Eq. (7) can be evalu-
ated from standard electronic structure packages by modi-
fications of the electronic structure integral codes. Input of
this integral is one of the requirements to handling electronic
wavefunction asymmetry. However, this term is not necessary
for bichromophores with symmetric electronic wavefunction
since, by symmetry,〈

π
(1)
A

∣∣VAB

∣∣π (1)
A

〉 = 〈
π

(1)
B

∣∣VAB

∣∣π (1)
B

〉
. (13)

Thus, these terms shift all energy levels by the same quan-
tity and do not affect energy spacings. Leutwyler and co-
workers studied electronic wavefunction asymmetry in the 2-
pyridone · 6-methyl-2-pyridone dimer by adding these terms
to the Hamiltonian matrix.18

To summarize, the Hamiltonian in the electronic basis
can be written as

H =
⎛
⎝ P 2

A

2M
+ EA + lAQA + 1

2Mω2
AQ2

A + P 2
B

2M
+ 1

2Mω2
BQ2

B VAB

VAB
P 2

A

2M
+ 1

2Mω2
AQ2

A + P 2
B

2M
+ EB + lQB + 1

2Mω2
BQ2

B

⎞
⎠ . (14)

The electronic coupling (or resonance integral) VAB term can
be evaluated by a number of perturbative or supermolec-
ular techniques.31–36 In this work, the coupling is calcu-
lated as half the splitting between the exciton states of the
dimer.

In the original vibronic coupling model, the Hamiltonian
in Eq. (14) is transformed to a symmetric basis

π
(1)
+ = 1√

2

(
π

(1)
A + π

(1)
B

)
, (15)

π
(1)
− = 1√

2

(
π

(1)
A − π

(1)
B

)
. (16)

FIG. 1. Potential energy surfaces for the ground (black) and excited (red)
electronic state along vibrational mode Q. Ee is the vertical excitation energy
and −l

Mω2 is the displacement between the two minima.
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This unitary transformation does not change the eigenvalues
of the Hamiltonian. In addition to the electronic basis transfor-
mation, Fulton and Gouterman used a vibrational coordinate
transformation from QA and QB to

Q± = 1√
2

(QA ± QB) . (17)

This step simplifies diagonalization of the Hamiltonian, but
only when the dimer has a symmetry element ensuring
lA = lB and ωA = ωB.

In order to extend the model to asymmetric dimers, the
transformation to the symmetric basis is not performed. By
expressing momentum and position operators with raising
and lowering operators and assuming a harmonic basis, the
Hamiltonian matrix elements are〈

π
(1)
A

∣∣H ∣∣π (1)
A

〉 = bA¯ωA

(√
n + 1δ(n′,n+1)

+√
nδ(n′,n−1)

)
δ(m′,m) +

(
¯ωA

(
n + 1

2

)

+¯ωB

(
m + 1

2

)
+ EA

)
δ(n′,n)δ(m′,m),

(18)

〈
π

(1)
B

∣∣H ∣∣π (1)
B

〉 = bB¯ωB

(√
m + 1δ(m′,m+1)

+√
mδ(m′,m−1)

)
δ(n′,n) +

(
¯ωA

(
n + 1

2

)

+¯ωB

(
m + 1

2

)
+ EB

)
δ(n′,n)δ(m′,m),

(19)

〈
π

(1)
A

∣∣ H
∣∣π (1)

B

〉 = 〈
π

(1)
B

∣∣H ∣∣π (1)
A

〉 = VABδ(n′,n)δ(m′,m), (20)

where n and n′ (m and m′) represent the excitation quanta of
a given normal mode for the vibration on A (B) monomer.
Dimensionless displacement parameters bA and bB are related
to lA and lB as

bA¯ωA = lA

√
¯

2MωA
. (21)

The expressions in Eqs. (18)–(20) are expanded in the vi-
brational basis. The solution generally converges rapidly, re-
quiring around five basis functions in each vibration for spec-
troscopically reasonable values of bA and bB. Convergence
with respect to the size of the basis is shown in the supple-
mentary material.37

Equations (18)–(20) can be extended in a straightforward
manner for multiple vibrational modes on each monomer. In
this case, each matrix element is a sum over Hamiltonians for
different vibrations and the basis functions are products of the
basis function from each vibration.

As pointed out by Förster and others16, 31, 38 there are
different regimes of vibronic coupling: strong, weak, and in-
termediate. The quantity that characterizes a mode as either
being strongly coupled or weakly coupled to the electronic

excitation is given as10, 11

p = 2
∣∣〈π (1)

A

∣∣VAB

∣∣π (1)
B

〉∣∣
Mω2dQ2

. (22)

Here, p 	 1 corresponds to strongly coupled systems;
p 
 1 characterizes weakly coupled systems. p � 1 de-
fines the intermediate coupling regime which exhibits the
most complicated spectra. For a vibration in the strong or
weak limit, it is possible to analytically compute the energies
and intensities.16 Application of perturbation theory to strong
and weak coupling regimes is shown in the supplementary
material.37 However, analytic solutions break down as the vi-
bration enters the intermediate coupling regime. Therefore, in
the present work, numerical diagonalization of the Hamilto-
nian using the Lanczos algorithm is employed for all cases,
resulting in what Andrzejak and Petelenz call the exact nu-
merical solution.16

B. Inter-monomer modes

To compute the eigenstates of inter-monomer vibrations,
it is necessary to account for the inter-monomer kinetic en-
ergy term, TL from Eq. (1), as well as higher order terms
from the Taylor expansion of VAB in Eq. (9). In order to
build a total Hamiltonian, the inter-monomer Hamiltonian
will be constructed in the {π (1)

A , π
(1)
B } basis and added onto

the intra-monomer Hamiltonian. However, because the inter-
monomer modes are inherently dependant on the electronic
state of the dimer, it is convenient to work in the sym-
metrized basis {π (1)

+ , π
(1)
− } as defined in Eqs. (15) and (16),

which are the eigenvectors of the dimer electronic Hamilto-
nian for molecules with only a vibrational asymmetry. So,
the Hamiltonian matrix elements of TL and VAB(L) are first
evaluated in the symmetrized basis {π (1)

+ , π
(1)
− } and then trans-

formed to the monomer basis {π (1)
A , π

(1)
B } and added to the

Hamiltonian of the intra-monomer modes. In the case of a
molecule that does not have electronic wavefunction symme-
try, a more complicated approach to finding the relationship
between the dimer electronic wavefunctions and the monomer
localized electronic basis will need to be taken, but this is be-
yond the scope of this paper.

Since the geometries of both exciton states π
(1)
+ and π

(1)
−

are different from the ground state geometry along the inter-
monomer mode L, the excited state surfaces are described as
displaced parabolas. Note that the first (constant) term of the
VAB expansion is omitted here since it is already included in
the intra-monomer mode Hamiltonian (14). Thus, for geome-
tries near the minima of the excited states,

〈π (1)
+ |VAB(L) − VAB(0) + TL|π (1)

+ 〉

= l+L + 1

2
Mω2

+L2 + P 2
+

2M
, (23)

〈π (1)
− |VAB(L) − VAB(0) + TL|π (1)

− 〉

= l−L + 1

2
Mω2

−L2 + P 2
−

2M
, (24)

where l+ and l− are the displacement parameters analogous
to the lA and lB terms in the intra-monomer mode case. In
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the dimer basis, each mode has two displacement parameters
(l+ and l−) corresponding to the displacements in the ground
state to first and second electronic excited state transitions. P+
and P− are the kinetic energy terms for the inter-monomer
mode in the exciton states. The off-diagonal terms of the
inter-monomer Hamiltonian are zero for symmetric electronic
wavefunction due to the hermicity of VAB and TL,

〈π (1)
+ |VAB(L) + TL|π (1)

− 〉 = 1

2

(〈
π

(1)
A

∣∣VAB(L) + TL

∣∣π (1)
A

〉
−〈

π
(1)
B

∣∣VAB(L) + TL

∣∣π (1)
B

〉) = 0. (25)

The reverse transformation from dimer symmetrized elec-
tronic basis into the monomer localized basis can be realized
by using the following matrix equality:[

π
(1)
A

π
(1)
B

]
= 1√

2

[
1 1

1 −1

] [
π

(1)
+

π
(1)
−

]
. (26)

Applying this matrix transformation to the VAB(L) + TL

terms results in the following form of the inter-monomer
mode Hamiltonian:〈

π
(1)
A

∣∣VAB(L) + TL

∣∣π (1)
A

〉 = 〈
π

(1)
B

∣∣VAB(L) + TL

∣∣π (1)
B

〉
= 1

2
(l+ + l−) L + 1

2

(
1

2
Mω2

+ + 1

2
Mω2

−

)
L2, (27)

〈
π

(1)
A

∣∣VAB(L) + TL

∣∣π (1)
B

〉 = 〈
π

(1)
B

∣∣VAB(L) + TL

∣∣π (1)
A

〉
= 1

2
(l+ − l−) L + 1

2

(
1

2
Mω2

+ − 1

2
Mω2

−

)
L2. (28)

The Hamiltonian described in Eqs. (27) and (28) can be
added to the intra-monomer mode Hamiltonian (Eqs. (18)–
(20)), expanded in a vibrational basis of inter- and intra-
monomer modes, and numerically diagonalized.

C. Intensities

Diagonalizing the Hamiltonian (Eqs. (18)–(20), (27)
and (28)) results in the vibrational substructure of the exci-
ton states. Evaluation of the intensities of the vibronic states
in a fluorescence spectrum is discussed in this subsection. Ab-
sorption intensities can be derived analogously.

Following Fulton and Gouterman,10 the transition dipoles
of a symmetric R+ and antisymmetric R− excited state to the

ground state are

R+ =
∫ ∫

ψ1(q; Q,L)∗M+ψ0(q; Q,L)dq

φ1(Q,L)∗φ0(Q,L)dQdL, (29)

R− =
∫ ∫

ψ1(q; Q,L)∗M−ψ0(q; Q,L)dq

φ1(Q,L)∗φ0(Q,L)dQdL, (30)

where ψ1(q; Q, L) is the initial (excited state) electronic wave-
fucntion of the dimer, φ1(Q, L) is the initial vibrational wave-
function, ψ0(q; Q, L) and φ0(Q, L) are the final (ground state)
electronic and vibrational wavefunctions (the latter is not nec-
essarily the wavefunction with no vibrational excitations).
M+ and M− are the symmetric and antisymmetric transition
dipole operators. The evaluation of R+ shall now be demon-
strated while R− can be obtained analogously. Assuming that
the electronic wavefunction is not strongly affected by the
changes in vibrational coordinates, the integral over electronic
coordinates and transition dipole operator may be factored out
of the integral over nuclear coordinates. Expanding ψ1(q) in
the vibrational basis results in

ψ1(q) = π
(1)
A

∑
n

∑
m

∑
p

CA
n,m,pφn (QA) φm (QB) φp (L)

+π
(1)
B

∑
n

∑
m

∑
p

CB
n,m,pφn (QA) φm (QB) φp (L) ,

(31)

where {CA
n,m,p, CB

n,m,p} are the expansion coefficients repre-
senting the dimer vibrational wavefunction on the basis of
monomer vibrational wavefunctions. Equation (31) can be
transformed into the symmetrized electronic dimer basis by
applying Eq. (15). It is easy to see that the evaluation of the
symmetric transition dipole moment R+ reduces to calcula-
tion of the vibrational overlap integral and the purely elec-
tronic transition dipole moment (TDM) between the ground
and symmetric excited state π

(1)
+ ,∫

π
(1)
+ M+ψ0dq. (32)

The transition dipole moment between the symmetric dipole
operator and antisymmetric wavefunction is zero by a symme-
try argument. This is explicitly shown in the supplementary
material.37 Thus, Eq. (29) can be rewritten as

R+ = 1√
2

∫
π

(1)
+ M+ψ0(q; Q)dq

(∫ ∑
n

∑
m

∑
p

CA
n,m,pφn (QA) φm (QB) φp (L) φ0(Q,L)dQdL

+
∫ ∑

n

∑
m

∑
p

CB
n,m,pφn (QA) φm (QB) φp (L) φ0(Q,L)dQdL

)
. (33)
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The final state vibrational wavefunctions are combina-
tions of wavefunctions corresponding to various vibrational
modes, φ0(Q, L) = φi(QA)φj(QB)φk(L), where i, j, and k rep-
resent the excitation level on A, B, and inter-monomer vibra-
tions, respectively. Assuming orthogonality of the vibrational
wavefunctions and the parallel mode approximation,39 the ex-
pression in Eq. (33) reduces to

R+ = 1√
2

∫
π

(1)
+ M+ψ0(q; Q)dq

(
CA

i,j,k + CB
i,j,k

)
. (34)

The transition dipole corresponding to the transition from
the antisymmetric electronic state is

R− = 1√
2

∫
π

(1)
− M−ψ0(q; Q)dq

(
CA

i,j,k − CB
i,j,k

)
. (35)

The intensity is proportional to a square of the transi-
tion dipole moment. The total spectrum may be obtained by
summing the intensities of the peaks corresponding to the
symmetric and antisymmetric transitions. Note that transi-
tions in asymmetric bichromophores may have mixed sym-
metric/antisymmetric character.

III. MODEL SPECTRA

In this section, general behavior of a model vibronically
coupled bichromophore system is considered. In particular,
spectra of asymmetric chromophores, i.e., chromophores with
different vibrational frequencies or displacements of a normal
mode, and spectra of inter-monomer modes are discussed.
Model spectra showing the differences between the strong,
weak, and intermediate coupling regimes as well as the inter-
action between multiple vibrations are shown in the supple-
mentary material.37 In all figures in this section and the sup-
plementary material,37 transitions through the antisymmetric
TDM are shown in red while transitions through the symmet-
ric TDM are shown in blue.

Various effects of asymmetry in intra-monomer vibra-
tional modes are illustrated in Figs. 2–4. The asymmetry of
the vibrational mode is controlled by parameter δ, with δ = 0
corresponding to a symmetric vibration, i.e., vibration that is
identical on monomers A and B. Figure 2 shows a case when
vibrational modes on monomers have different frequencies.
The interesting effect arising due to this asymmetry is split-
ting of the vibrational peaks in the absorption spectrum. In-
terestingly, the progression off the S1 state favors the higher
energy vibration while the progression off the S2 state favors
the lower energy one. The picture does not change when the
symmetries of S1 and S2 states are switched: the lowest state
exhibits the more intense progression in a high-frequency vi-
bration. Splittings of the vibrational peaks are also observed
in the corresponding emission spectra, but intensities of the
split lines are almost equal.

A different case of asymmetry arises when the vibrational
modes on the monomers have different displacements be-
tween the ground and excited state. Such asymmetries are ex-
pected to occur in deuterated molecules because deuteration
changes the normal mode vectors, and thus the displacements
to the excited state geometry. Model spectra corresponding
to the mode in strong coupling regime are reported in Fig.
3. Despite the fact that the frequencies of the two vibrations
are identical, the absorption spectrum shows energy splittings
in the Frank-Condon progressions both off S1 and S2 origins.
Similar to the case of the asymmetric frequencies, the lower
frequency peak has lower intensity off S1 and higher intensity
off S2. However, unlike the case with asymmetric frequencies,
the intensity of the S1 origin and S1 band is depleted suggest-
ing that the vibration with higher b value is coupled to the
S1 state. Different from the case of asymmetric vibrational
frequencies, no splitting is present in the emission spectra be-
cause the emission levels are governed by the ground state
frequencies.

In the previous example (Fig. 3), the vibration is in the
strong coupling limit. In Fig. 4, the vibrational mode with
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FIG. 2. Model spectra of one intra-monomer vibrational mode in strong coupling regime with different frequencies on either monomer. ωA = 150 cm−1,
ωB = 150 + δ cm−1, bA = bB = 1.0, VAB = 400 cm−1. The first row is absorption, the second row is S1 emission, and the third row is S2 emission. δ = 0 in
(a)–(c); δ = 30 cm−1 in (d)–(f); δ = 75 cm−1 in (g)–(i).
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FIG. 3. Model spectra of one intra-monomer vibrational mode in strong coupling regime with different displacements on either monomer. ωA = ωB

= 150 cm−1, bA = 1.0, bB = 1.0 + δ, VAB = 400 cm−1. The first row is absorption, the second row is S1 emission, and the third row is S2 emission.
δ = 0 in (a)–(c); δ = 0.3 in (d)–(f); δ = 0.6 in (g)–(i).

asymmetric displacements is placed in the weak coupling
regime. In this case, the asymmetry is manifested in mix-
ing of S1 and S2 progressions, i.e., as the asymmetry is in-
creased, each peak in the absorption spectrum has a mixture
of the symmetric and antisymmetric character. The peak cor-
responding to the S2 origin gains intensity while the higher
vibrational energy levels in the S2 emission spectrum are re-
duced in intensity. Another interesting effect observed in these
spectra is the increase of the splitting between the S1 and S2

origins upon increasing asymmetry between the modes.
Finally, the properties of the inter-monomer vibrations

are examined. In the considered examples, the S1 state is anti-
symmetric and S2 is symmetric. As discussed above, the inter-
monomer vibrations may have different displacement and fre-

quency parameters for the first and second excited states of a
bichromophore. In the first series of spectra, shown in Fig. 5,
the effect of changing an excited state frequency is investi-
gated. As demonstrated in Fig. 5, changing the S1 frequency
for an inter-monomer mode results in corresponding change
in the vibrational progression off the S1 origin, while main-
taining the same vibrational pattern for the progression off the
S2 state. Both the S1 and S2 emission spectra retain the same
vibrational spacing because these progressions are dictated by
the ground state vibrational states which are independent of
whether the molecule was in the S1 or S2 excited states.

The effect of different displacements between the S1

− S0 and S2 − S0 states (bS− and bS+ parameters, respec-
tively) is investigated in Fig. 6. When the bS− displacement is
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FIG. 4. Model spectra of one intra-monomer vibrational mode in weak coupling regime with different displacements on either monomer. ωA = ωB

= 300 cm−1, bA = 0.6, bB = 0.6 − δ, VAB = 50 cm−1. The first row is absorption, the second row is S1 emission, and the third row is S2 emission.
δ = 0 in (a)–(c); δ = 0.2 in (d)–(f); δ = 0.4 in (g)–(i).
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FIG. 5. Model spectra of one inter-monomer vibrational mode with different frequencies in the ground and first and second excited states of the dimer.
VAB = 300 cm−1, b− = b+ = 0.8 in all spectra. ωg·s = ω− = ω+ = 100 cm−1 in (a)–(c); ωg·s = 100 cm−1, ω− = 150 cm−1, ω+ = 100 cm−1 in (d)–(f);
ωg·s = 100 cm−1, ω− = 150 cm−1, ω+ = 80 cm−1 in (g)–(i). The first row is absorption, the second row is S1 (S−) emission, and the third row is S2 (S+)
emission. Changing the frequency of one state does not change the spacing between frequency levels for the other state.

decreased, the Frank-Condon progression off the S1 origin in
absorption and emission is depleted, while the S2 bands re-
main unaffected. Similar effects are observed in the spectra of
diphenylmethane, analyzed in Sec. IV. In those spectra, the
low frequency inter-monomer vibrations T and T̄ appear in
the S1 but not S2 florescence spectra.

IV. MODELING VIBRONIC SPECTRUM
OF DIPHENYLMETHANE

In this section the extended FG model is applied to sim-
ulate vibronic spectra of the bichromophore DPM. Zwier
and co-workers have gathered high-resolution absorption and
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FIG. 6. Model spectra of one inter-monomer vibrational mode with different displacement parameters for the S1 and S2 states of the dimer. VAB = 300 cm−1,
ωg·s = ω− = ω+ = 100 cm−1 in all spectra. b− = b+ = 0.8 in (a)–(c); b− = 0.4, b+ = 0.8 in (d)–(f); b− = 0.0, b+ = 0.8 in (g)–(i). The first row is absorption,
the second row is S1 (S−) emission, and the third row is S2 (S+) emission. Changing the displacement for one state allows to suppress the Frank-Condon
progression on this state while keeping it on the other.

Downloaded 01 Sep 2012 to 128.210.126.199. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



084112-9 Nebgen, Emmert, and Slipchenko J. Chem. Phys. 137, 084112 (2012)

TABLE I. Intra-monomer vibrational parameters for diphenylmethane as
found from B3LYP/cc-pVTZ calculations on toluene.

Expt. ωa Calc. ω Quenching Basis
Assignment (cm−1) (cm−1) b p factorb functionsc

6a0
1 554 530 0.26 3.4 Simulated 2

6b0
1 622 639 0.43 1.1 Simulated 5

110
1 749 748 0.05 68 1.0 ...

10
1 822 801 0.65 0.36 Simulated 7

120
1 1006 1023 0.73 0.23 0.81 ...

18a0
1 1035 1054 0.39 0.77 0.97 ...

9a0
1 1204 1206 0.43 0.54 0.89 ...

19b0
1 1447 1535 0.02 129 1.0 ...

aDPM experimental frequencies from Ref. 29.
bQuenching factors used to compute the effective electronic coupling as in Eq. (36) for
modes not directly included in the simulation (“simulated”). The product of all quench-

ing factors is
∏N

i=1 e
−b2

i = 0.48.
cNumber of vibrational basis functions used in modeling.

emission spectra of the first two singlet excited states of DPM
and we will follow their notations for labeling the DPM vi-
brational modes.29

A. Computational details

Vibrational frequencies and displacement parameters for
each vibration as well as an electronic coupling term and
relative transition dipole moments of S1 and S2 are required
as input for the vibronic model. The parameters for intra-
monomer modes were obtained from density functional the-
ory (DFT) and time-dependent density functional theory (TD-
DFT) calculations on toluene which is considered to be a
“monomer” of diphenylmethane. The ground and first ex-
cited state geometries of toluene were optimized with B3LYP
functional40–42 in the cc-pVTZ basis set43 with the Q-Chem
electronic structure package.44 Vibrational frequencies of the
ground state of toluene were obtained at the same level of
theory. ezSpectrum software45 was used to find the displace-
ments between the ground and first excited state geometries
on the basis of the ground state vibrational vectors. These
displacements were converted into b parameters; the normal
modes with the largest b parameters and corresponding p val-
ues (Eq. (22)) are listed in Table I. The number of vibrational
basis functions needed for convergence for different b values
is determined from extensive testing shown in supplementary
material.37

To obtain the parameters for the inter-monomer modes,
one needs to perform electronic structure calculations on the
S0, S1, and S2 states of the dimer (DPM). The parameters
obtained from DFT and TD-DFT B3LYP/cc-pVTZ compu-
tations are summarized in Table II. The experimental spectra
of DPM reveal progressions along five low-frequency inter-
monomer modes: symmetric and antisymmetric torsions T
and T̄ , symmetric and antisymmetric R and R̄ modes, and the
butterfly mode β (shown in supplementary material37). From
those, parameters of R and R̄ were computed in a standard
way, i.e., S0, S1, and S2 states of DPM were optimized (the
constrained optimization with fixed values of torsional angle
corresponding to the T mode was employed for S2), then the

TABLE II. Inter-monomer vibrational parameters as found from B3LYP/cc-
pVTZ calculations on S0, S1, and S2 states of diphenylmethane.

ωS0 (ωg.s.) ωS1 (ω−) ωS2 (ω+)
Assignment (cm−1) (cm−1) (cm−1) bS1 (b−) bS2 (b+)

T̄ 22.5 38.3 ...a −0.02 −0.06
T 38.5 47.9 35.2 0.60 0.60
β 68.1 62.0 67.5 −1.0 1.2
R̄ 191 192 105 0.0 0.0
R 225 202 157 −0.62 −0.08

aNo real-value frequency could be obtained.

displacements between the ground and the first and second ex-
cited state geometries were found on the basis of the ground
state vibrations.

Due to an anharmonic nature of the other three modes
and extreme sensitivity of parameters to the level of theory
employed, their parameters were obtained from PES calcula-
tions. Namely, potential energy slices were constructed along
normal mode vectors of each mode starting from the S1 state
geometry and employing 0.002 Å

√
amu displacement incre-

ments in either direction of the vibrational vector. TD-DFT
B3LYP/cc-pVTZ calculations were performed to find ener-
gies of S1 and S2 states at each of these geometries. For
each vibration, the S1 and S2 energies were fit to parabolas,
from which frequency and displacement parameters were ex-
tracted. As an example, plots of the energies and parabolic
fits for the T mode are shown in Fig. 7. However, while this
procedure improved agreement between experimental and
calculated values of the low-frequency modes compared to
the direct calculation of Hessians of the S1 and S2 states, it
still resulted in overestimated frequencies for all modes and
strongly overestimated displacement for the β mode. It should
be noted, however, that the β mode is governed by an inter-
play of covalent and non-covalent, in particular dispersion,
interactions between the aromatic rings, and as such is ex-
tremely sensitive to the level of theory.

In order to improve the agreement with the experimen-
tal spectra, some of the parameters for inter-monomer modes
were adjusted. The butterfly mode β that reveals very little
intensity in the experimental spectra was excluded from mod-
eling. The resulting set of inter-monomer parameters is pre-
sented in Table III.

Vertical splittings between the first and second elec-
tronic excited states of DPM were computed by a num-
ber of electronic structure methods, including TD-DFT with
various functionals (B3LYP, BP86,46, 47 and long-range and

TABLE III. Adjusted (fitted to experimental spectra) inter-monomer vibra-
tional parameters. Calculated values were kept where appropriate.

ωS0 (ωg.s.) ωS1 (ω−) ωS2 (ω+) Basis
Assignment (cm−1) (cm−1) (cm−1) bS1 (b−) bS2 (b+) functionsa

T̄ 10.0 23.0 10.0 −0.02 −0.06 8
T 20.0 28.3 20.0 1.40 0.0 12
R̄ 191 275 105 0.0 0.0 3
R 225 285 188 −0.55 −0.08 7

aNumber of vibrational basis functions used in modeling.
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TABLE IV. Vertical S1 − S2 splittings computed at the ground state opti-
mized geometry.a

Level of theory S1 − S2 splitting (cm−1)

EOM-CCSD/cc-pVDZ 430
ωB97X-D/cc-pVTZ 549
BP86/cc-pVTZ 539
B3LYP/cc-pVTZ 1069

aMP2/cc-pVTZ ground state geometry was used in these calculations.

dispersion corrected ωB97X-D (Ref. 48)), and equation-of-
motion coupled cluster with single and double excitations
method49–52 (EOM-CCSD) (see Table IV). Apparently, the
value of splitting is sensitive to the level of theory, with the
best estimates provided by EOM-CCSD and TD-DFT with
ωB97X-D. This results in the electronic coupling, taken as a
half of the splitting, in the range of 215 − 275 cm−1. Includ-
ing quenching factor due to high-frequency (weakly-coupled)
vibrational modes not explicitly included in the simulation
(see Table I) results in the effective electronic coupling

V
eff

AB = VAB

N∏
i=1

e
−b2

A,i
2 e

−b2
B,i
2 = VAB

N∏
i=1

e−b2
i , (36)
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FIG. 7. Potential energy surfaces of the symmetric torsion T mode in (a) the
second excited state, (b) the first excited state, and (c) the ground state. The
abscissa is the displacement from the optimized S1 geometry. Energy scales
in frames (a)–(c) are different because near the S1 minimum, the PES of the
S1 state is dominated by second order effects while PESs of the other two
states are dominated by first order effects.

where bA,i and bB,i are displacements for the ith mode on
monomer A and B, respectively. In the symmetric case, as
in DPM, bA,i = bB,i. Using the parameters in Table I, this re-
sults in an effective coupling in the range of 103 − 132 cm−1.
The coupling constant used for modeling DPM spectra was
taken as 155.8 cm−1. All simulated peaks were modeled by
Gaussians with a standard deviation of 1 cm−1.

B. DPM spectra

Using simulated parameters for intra-monomer vibra-
tional modes (Table I), partly fitted parameters for inter-
monomer vibrational modes (Table III), and effective cou-
pling constant VAB = 155.8 cm−1, theoretical spectra for
DPM were computed as shown in Fig. 8. Comparison of the
experimental and theoretical low-frequency absorption spec-
tra (Fig. 8(a)) shows a quantitative agreement both in peak
positions and intensities. In particularly, one can clearly rec-
ognize a progression along the torsional mode T, with peaks
at 27, 54, and 81 cm−1. The peak at 43 cm−1 is the second vi-
brational state of T̄ (i.e., T̄ 2), while the first vibrational quanta
are not present. This is because the intensity in the T̄ mode
is originated due to a frequency change rather than a dis-
placement between the electronic states. Therefore, only even
quanta of this mode gain non-zero intensity. Small displace-
ment along the T̄ mode ensures that the electronic transition
dipole moment that is formally dependent on this mode stays
constant and the Condon approximation (Eqs. (34) and (35))
is valid.

As follows from decomposition of the absorption
spectrum into symmetric and antisymmetric components
(Fig. 8(b)), the origin of the second excited state appears at
about 123 cm−1, in agreement with experimental assignment.
The intensity of S2 origin is well reproduced by a S1/S2 TDM
ratio of 2.08 : 1, which is in close agreement with the 1.98 : 1
ratio computed at the ωB97X-D/cc-pVTZ level of theory.

Analysis of the emission spectrum from the S1 origin
(Fig. 8(c)) shows that the peak at 63 cm−1, missing in the sim-
ulated spectrum, is due to the β mode that was excluded from
simulations, as mentioned above. Another inter-monomer
vibration, R, reveals itself in an intense line at 221 cm−1. This
peak is well reproduced by the ab inito computations, with
only a minor correction in the displacement parameter. All
intra-monomer modes, 6a0

1 , 6b0
1, and 10

1, are reasonably well
described by ab initio calculations, with frequency discrepan-
cies not exceeding 30 cm−1. The 111

0 vibration with frequency
748 cm−1 was not included in the calculation due to a lack of
intensity in the S2 emission spectrum (Fig. 8(d)). There is also
a nice agreement between theory and experiment in the high-
frequency peaks due to intra-monomer vibrations in the emis-
sion spectrum of the S2 origin (Fig. 8(d)). It is very encourag-
ing that the model spectrum accurately predicts the change in
intensity of vibronic bands in the S1 and S2 emission spectra,
even though there is no parameter that directly controls that
intensity ratio.

The obviously missing part of the modeled S2 emission
spectrum is the so called “clump” emission around 100 cm−1.
As proposed by Zwier and co-workers, these bands are not
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FIG. 8. DPM spectra produced from parameters in Tables I and III with an electronic coupling constant of 155.8 cm−1. Comparison of the calculated (red) and
experimental (black) absorption spectra is shown in (a). Breakdown of the calculated spectrum by the electronic state, with the red trace representing the S1
(anti-symmetric) state and the blue trace representing the S2 (symmetric) state in (b). (c) and (d) Comparisons of the calculated (red) and experimental (black)
emission spectra from the S1 and S2 origins, respectively.

vibronic progressions off the S2 state but emissions from the
S1 vibrational bands that gain their intensity due to the en-
ergetic proximity to the S2 origin.29 Indeed, the simulation
produces two vibronic S1 states (with very low intensity)
within ±10 cm−1 of the S2 origin. One of them is mainly
composed of T 3T̄ 3 hot band, and another one is a mixture
of T 5T̄ and T 6T̄ . We mimicked the “clump” emission spec-
trum by producing emission spectra from these two vibronic
states and adding them in equal proportions, and fitting the in-
tensity of the combined spectra to the experimental “clump”
emission. The resulting spectrum is provided in Fig. 9. The
modeled “clump” spectrum qualitatively reproduces the ex-
perimental emission in the region 0−200 cm−1, with a low-
intensity region from 0−80 cm−1 followed by a clump of
peaks. Thus, our results are in accord with assignments sug-
gested by Zwier.29

V. CONCLUSIONS

The vibronic model has been extended to treat asymmet-
ric molecules and inter-chromophore vibrational modes. Sev-
eral vibrational modes can be considered simultaneously by

0 250 500 750 1000

Relative Wavenumbers (cm−1)
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ity

FIG. 9. S2 “clump” emission spectra. The calculated spectrum (in red) is
produced by adding S2 emission spectrum as in Fig. 8(d) with emissions from
energetically close S1 vibrational states. Experiential spectrum is in black.

means of Lanczos diagonalization of the sparse Hamiltonian
matrix. Considered model spectra provide detailed analysis
of the theory, including effects of simultaneous modeling of
several modes and effects of asymmetries in different kinds in
intra- and inter-monomer vibrations.

Modeling of the vibronic spectra of DPM demonstrates
applicability of the developed model to real-life bichro-
mophores. It is found that obtaining accurate parameters
for the FG model may be challenging, especially parame-
ters for the low-frequency inter-monomer modes that require
computations of optimal geometries and vibrational frequen-
cies of a bichromophore. However, inclusion of the inter-
monomer modes is essential for modeling spectra of flexi-
ble bichromophores. Using the computed parameters for the
intra-monomer modes and partly fit parameters for the inter-
monomer modes, the experimental absorption and emission
spectra of DPM were successfully reproduced. Additionally,
a qualitative modeling of the clump emission spectrum was
provided, even though a more rigorous theoretical framework
may be needed in order to provide physically meaningful
rather than fit representation of this region.

Future work will include applications of the developed
model to asymmetrically deuterated diphenylmethane and
other related asymmetrically substituted bichromophores, as
well as extensions of the vibronic model to electronic asym-
metries and tri- and multi-chromophore complexes.
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