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Objectives:
1. Develop a simple and 

intuitive mathematical 

framework for describing dimer 

sum and difference states.

2. Extend to biopolymers: the 

nonlinear optical properties of 

proteins.

3. Generalization to coupling 

between dissimilar dimers and 

multimers. 

Garth J. Simpson
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Note: Citations to the contents of these slides should reference 

the following textbook:

Simpson, Garth J. (2017) Nonlinear Optical Polarization 

Analysis in Chemistry and Biology (Cambridge 

University Press, ISBN 978-0-521-51908-3).
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In general, the wavefunctions in a coupled dimer of two 

identical chromophores will mix to form sum and 

difference combinations.
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The NLO properties of each mixed state are given by 

the sum and difference tensors.
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Garth J. Simpson

Vector addition is 

straightforward for 

the sum and 

difference states.

Matrix addition is not 

as trivial, but simple 

numerically. Easy to 

rationalize in 

hindsight, though

Tensor addition can be 

done either by the 

combination of  and 
from above, or by 

combinations of the full 

b(2) tensors.
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 ' a b S b b +  R R

-R is the full 2727 rotation matrix 

generated from the Kronecker product 

of three 33 rotation matrices (see 

Coordinate Transformations) 

-S is the symmetry matrix, populating 

the set of 27 elements within b(2) from 

the subset of four unique, nonzero 

values.

a b
Monomer

bxxx 1.9

bxzz -1.6

bzxx 11.9

bzzz -10.8

Quantum calc of 

fully coupled system

Prediction based on 

monomer addition

Summation of A and B states
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From inspection of the character 

table for a molecule with C2

symmetry, the transitions are 

either of A or B symmetry. For 

SHG, the resonant 

hyperpolarizability is given by;  

 2n nSb    

Based on the symmetry 

requirements of the transition 

moment and TPA matrix, the 

contributions to b from each 

exciton state can be separated.A
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Garth J. Simpson

The monomer contributions are projected in 

the coordinate system of the dimer/polymer 

prior to summation. An -helix has 3.6 

residues per turn, effectively corresponding 

to 18-fold rotational symmetry. In practice, 

the hardest part about generating the 

dimer/polymer tensor is keeping track of the 

changes in reference frame (see lecture on 

Coordinate Transformations). 
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Garth J. Simpson

Coherent summation
(nonresonant and/or 

weakly coupled limit)

In the absence of energy splitting between the excited states of 

the helix, the hyperpolarizability is estimated by the coherent 

summation of each amide contribution. 
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Strong Coupling

(DE > ħG

Weak Coupling

(DE << ħG

DE

ħG

Garth J. Simpson

E-state

A1-state

Degenerate 

sum

The 1-photon allowed transitions will be either of A1 or 

E symmetry.
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• Provides an initial estimate for the NLO properties of extended structures 

at minimal computational cost. 

• Equally applicable for both vibrational SFG and electronic SHG. 

• In the simplest implementation for proteins, each amide is assumed to be 

identical. Differences (e.g., for aromatic amino acids) can result in splittings

of the exciton states in manners not easily recoverable by the simple 

symmetry-additive approach (see later discussion of coupling bertween

dissimilar chromophores).

• Quantitative reliability of the symmetry additive approach depends on the 

ability to describe exciton states using the monomer states as a basis. 

• For extended conjugation or interactions involving multiple excited 

electronic states, the symmetry additive approach may prove problematic. 

Garth J. Simpson
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Objectives:
1. Develop a simple and 

intuitive mathematical 

framework for describing dimer 

sum and difference states.

3. Generalization to coupling 

between dissimilar dimers and 

multimers. 
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Note: Citations to the contents of these slides should reference 

the following textbook:

Simpson, Garth J. (2017) Nonlinear Optical Polarization 

Analysis in Chemistry and Biology (Cambridge 

University Press, ISBN 978-0-521-51908-3).



Coupling can arise from any number of intermolecular interactions. For free-

space dipole-dipole coupling, the off-diagonal coupling energies can be 

calculated explicitly. 

In the equation above,  refers to the transition moments in the dimer 

reference frame and rAB the vector connecting the origins of the two dipoles. 

For large separations between dipoles, the coupling approaches zero. 
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In dimer coupling between dissimilar monomers A and B, the sum / 

difference states will have unequal contributions from each monomer, 

one looking more like A with some B character and vice versa. The 

fraction of each wavefunction contributing to the coupled states is 

generated from diagonalizing the Hamiltonian to construct the new 

stationary states of the coupled system.

A AB

AB B

H
 

 

 
  
 
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3 5
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AB
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r r

r r

  




  
  - 

 
 
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In the case of a 22 matrix, expressions for the eigenvalues and 

corresponding eigenvectors can be written analytically.

A AB A
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The eigenvalues yield the 

energies of the sum and difference 

states.

The normalized eigenvectors yield 

the fractions each monomer 

contributes to the sum and 

difference states.
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In the limit of identical monomers with EA = EB, we should recover the 

simple sum and difference for the eigenvectors describing the linear 

combinations.
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Absolute sign of the 

eigenvector is irrelevant.

Sure enough, the sum 

and difference states 

emerge.
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This coupling model can be easily extended to include multiple coupling 

interactions in extended structures.

0
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12 2 23
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13 23 3

H

  
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 
 
 
 
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  Full set of eigenvalues for 

the matrix H.

0

n  Transition energy for the 

uncoupled chromophore n.

S 
Matrix of column 

eigenvectors.

1

D S HS 

-

 
Diagonal matrix of 

eigenvalues.

The elements of S contain the relative contributions of each monomer to 

the stationary states emerging upon incorporating couplings. Only 

couplings between physically adjacent monomers are typically included.
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Summary

1. For identical monomers, coupling can be treated handily by summation 

followed by separation based on symmetry within the dimer.

2. A similar separation approach can be performed for biopolymers and 

secondary structural motifs. Summation followed by division into different 

symmetry-allowed elements reliably recovers the NLO properties of 

extended polymeric structures.

3. Creating a Hamiltonian that includes inter-chromophore coupling 

allows generalization for describing the NLO tensors of states produced 

from coupling between dissimilar monomers.  This general approach 

converges properly to the simple sum and difference for identical 

monomers and offers greater overall flexibility. Furthermore, the energies 

of the different resulting eigenstates are directly recovered provided a 

good model for the coupling strengths is available.

Garth J. Simpson


