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One of the most challenging problems in protein structure predic-
tion is improvement of homology models (structures within 1–3 Å
C� rmsd of the native structure), also known as the protein
structure refinement problem. It has been shown that improve-
ment could be achieved using in vacuo energy minimization with
molecular mechanics and statistically derived continuously differ-
entiable hybrid knowledge-based (KB) potential functions. Glob-
ular proteins, however, fold and function in aqueous solution in
vivo and in vitro. In this work, we study the role of solvent in
protein structure refinement. Molecular dynamics in explicit sol-
vent and energy minimization in both explicit and implicit solvent
were performed on a set of 75 native proteins to test the various
energy potentials. A more stringent test for refinement was
performed on 729 near-native decoys for each native protein. We
use a powerfully convergent energy minimization method to show
that implicit solvent (GBSA) provides greater improvement for
some proteins than the KB potential: 24 of 75 proteins showing an
average improvement of >20% in C� rmsd from the native struc-
ture with GBSA, compared to just 7 proteins with KB. Molecular
dynamics in explicit solvent moved the structures further away
from their native conformation than the initial, unrefined decoys.
Implicit solvent gives rise to a deep, smooth potential energy
attractor basin that pulls toward the native structure.

energy minimization � implicit solvent � knowledge-based �
molecular dynamics � explicit solvent

Experimental determination of protein structures is very
expensive, costing U.S. $250,000 in 2000 (1) and $66,000

today (2) and can be a notoriously difficult task, especially for
membrane proteins. With the continuing exponential growth of
genome sequence data, there is an increasing need for methods
that accurately compute the high-resolution native structure of
a protein, for use in biological applications that include virtual
ligand screening (3), structure-based protein function prediction
(4) and structure-based drug design (5). Homology or template
based modeling has been the most successful method for protein
structure prediction in the critical assessment of protein struc-
ture prediction (CASP) experiments (6, 7). The power of this
technique progressively increases as ever more structures are
solved by world-wide structural genomics initiatives (8, 9).
Nevertheless, obtaining a model with the same accuracy as a
crystal structure is still an unsolved problem: structure refine-
ment of a rough model (within 1–3 Å rmsd) to bring it closer to
the native structure remains a major challenge (6, 10). Work on
structure refinement has been ongoing for many decades, start-
ing from the first Molecular Mechanics (MM) energy minimi-
zation (11, 12) and continuing to a recent study with knowledge-
based (KB) statistically derived potentials (13). During this
period many different potentials and a variety of simulation
methodologies such as energy minimization, molecular dynam-
ics, and replica exchange Monte Carlo have been used for
structure refinement (14–20), but no method has emerged as a
clear winner.

As protein molecules function in aqueous solution and crystals
contain large amounts of water (21–23); it is appropriate to model

the water environment for high resolution refinement of protein
structures using explicit, implicit, or hybrid models. The most
realistic way to include solvent effects is to immerse the protein in
a periodic box of explicit water molecules and simulate the motion
of the system by molecular dynamics (MD) as first done by Levitt
and Sharon (24). Unfortunately, atomic motion inherent in MD
introduces statistical noise that can only be removed by averaging
over the many conformations generated to get a final refined
structure. Solvent effects can also be included implicitly, where
water is represented as a continuous medium and the effect of the
solvent is represented by additional terms in the potential energy
function of the protein. Because there are no explicit water mole-
cules, energy minimization can be used in place of MD and there
is no need to average over many conformations.

The many different ways to include solvent effects have been
reviewed in (25, 26). Such methods extend from the early accessible
surface areas (ASA) model by Lee and Richards (27), to the widely
used generalized born surface area (GBSA) model (28, 29) and
more recently to the screened coulomb potential implicit solvation
model (30, 31). Even though implicit solvent models are less
physically realistic than use of explicit solvent, their greater com-
putational efficiency makes them an attractive choice for refine-
ment. MD has been used for refinement but with limited success
(14–17), although more recently better results was observed for
refinement with spatial restraints (18–20). Such successes have been
reported for a few isolated cases; as the methodologies can be
computationally demanding, it is difficult to apply them broadly.
Clearly, one needs to consider computationally less demanding
refinement protocols involving minimization with MM and KB
force fields that include implicit solvation.

In this work we test the role of solvent on protein structure
refinement using energy minimization and MD on an extensive
test set of 75 native proteins, each with 729 near-native decoys.
This follows on from previous work (13), which used in vacuo
energy minimization to compare the performance of various
MM potentials such as optimized potential for liquid simulations
(OPLS)-AA, AMBER99, GROMOS96, and ENCAD with a
statistically derived KB potential. They found that the KB
potential performed best of all and refined almost all proteins
toward the native structure; AMBER99 was second-best, per-
forming better than the other MM potentials, which generally
moved the decoys away from the native state. The KB potentials
include the effect of solvent implicitly, in that the distribution of
distances between atoms in protein crystals is effected by the
water in the unit cell.

We model implicit solvent, using energy minimization with the
GBSA implicit solvent model (29), as implemented in Tinker 3.9
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(32) with the all-atom OPLS (OPLS-AA) force field (33). We
also model explicit water molecules, using MD simulation done
with the SPC water model (34), and the OPLS-AA force field
(35) as implemented in Gromacs (36–38). We used the same
stringent testing criterion for refinement as before (13) for better
comparison between simulations in solvent and in vacuo.
Namely, a good refinement protocol must not perturb the native
state, and at the same time must move decoys structures closer
to the native state.

We find that Tinker energy minimization with implicit solvent
performs better than KB energy minimization in that it moved the
decoys much closer to the native state. Gromacs MD with explicit
solvent performs much less well, generally moving decoys away
from the native state. Visualizing the potential energy surface near
the native state helps explain these differences in behavior.

Results
Energy Minimization of Native Structure. Energy minimization was
run on all 75 native proteins in implicit and explicit solvent. These
results were compared to in vacuo energy minimization, using the
KB potential (13). In all cases, we used the weighted C� rmsd
(wRMS) as a measure of deviation from the native structure (see
Materials and Methods) to compensate for flexibility of loops and
chain termini (Fig. 1). For all 75 native proteins, the mean wRMS
value (see Fig. S1) was 0.89 � 0.36 Å for GBSA implicit solvent,
0.38 � 0.14 Å for KB, and 0.14 � 0.01 Å for OPLS bulk explicit solvent.
Although it may seem that bulk explicit solvent is working best as
it perturbs the native structure least, this is not true. Energy
minimization fails to move away from the native structure because
the bulk explicit solvent acts like ice and greatly restricts movement.
This example indicates why energy minimization from the native
structure cannot be used to assess potentials: complete lack of

convergence would appear to be perfect behavior with a wRMS
value of zero. It justifies our much more extensive tests.

Energy Minimization of Decoys. As a much more rigorous test of the
refinement protocol, energy minimization was run on all of the
729 decoys of each of the 75 proteins (see SI Text), using the
convergent limited-memory Broyden–Fletcher–Goldfarb–
Shanno algorithm or l-BFGS (39). Clearly, methods that can move
decoys toward the native state are better than those that simply do
not perturb that state. The mean wRMS for all 729 decoys of one
protein is denoted by �wRMS�; the mean wRMS for all decoys of
all 75 proteins is denoted by ��wRMS��. We measure the average
amount of refinement of decoys from the native state, using the
percentage change (PC) defined as PC � 100 � (�wRMSfinal� �
�wRMSinitial�)/�wRMSinitial�, where �wRMSinitial� and �wRMSfinal�
are the initial and final value of �wRMS�.

For all initial decoys the value of ��wRMSinitial�� was 1.08 �
0.14 Å. For all final decoys the value of ��wRMSfinal�� was 1.078
Å for OPLS explicit solvent minimization, 1.020 Å for GBSA
implicit solvent minimization and 0.960 Å for KB minimization. Fig.
1 shows the PC values for all 75 proteins. GBSA generally outper-
forms KB whereas OPLS moves decoys very little and performs
worst (again, we do not expect much movement in minimization
within explicit solvent). In the best cases GBSA gives a much more
negative �PC� value than KB: compare �55.1% � 24.6% for 1kpta
with GBSA to �33.2% � 19.6% for 1nkd with KB.

Assessing Decoys Using wRMS and GDT-HA. As the rmsd value is
sensitive to large shifts of a few atoms of a molecule, we use the
wRMS and global distance test (GDT) score for a more robust
measure of structural similarity measure (see Materials and Meth-
ods). We computed high accuracy GDT scores (GDT-HA) (42) for

Fig. 1. Showing the PC values averaged over the 729 decoys for each of the 75 proteins’ energy minimization runs with KB in Encad (40, 41), GBSA implicit solvent
in Tinker (32) and OPLS explicit solvent in Gromacs (36–38). The 75 proteins are arranged in decreasing order of improvement for the KB potential. A negative
value of PC corresponds to improvement in the wRMS value of the energy minimized structure compared with that of the starting structure. Best overall
improvement is for KB with a mean overall PC (�PC�) of �11.56% compared with �4.0% for GBSA and �0.2% for OPLS. Of the 46 proteins improved by GBSA,
24 had a PC value better than �20%, compared with just 7 proteins with KB. Overall, GBSA performs better than KB for 30 of the 75 proteins. However, GBSA
moved 29 proteins away from the native state, whereas KB moved just 3. The drawing beside the chart are colored by the B-factor (blue for a low value and red
for a high value) to show the greater flexibility of loops and chain termini that is compensated by wRMS.
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all decoys minimized with the KB and GBSA potentials. When
GDT-HA equals 1, all residues of a decoy must match the native
structure to better than 0.5Å rmsd. A set of 6 proteins having large
negative PC values with both GBSA and KB were selected for
comparison (Fig. 2A). Here, the measure of improvement used is
the difference between GDT-HA scores for final minimized and
the initial unminimized decoy (GDT-HAfinal � GDT-HAinitial) for
all 729 decoys averaged over binned GDT-HAinitial values (Fig. 2).
For both GBSA and KB, greater improvement is seen for decoys
with smaller values of GDT-HAinitial, showing that decoys further
from the native structure are improved more.

For proteins with good PC values (large, negative), the GDT-HA
improvement with GBSA is higher than with KB suggesting a better
match to native. Also, the maximum improvement in GDT-HA of
0.3 is observed for GBSA, which is higher than the maximum
improvement in KB of 0.2. In Fig. 2B, 1pne, a good case with GBSA,
shows a better match to the native structure for GBSA as the
GDT-HA curve for GBSA is significantly above KB for lower
values of GDT-HAinitial. Moreover, the PC value of �36.7% �
21.7% for GBSA is also better than the value of �12.5% � 5.2%
observed for KB, confirming wRMS as a good structural similarity

measure. For 1nkd, a good case with KB, the GDT-HA curve for
KB is not significantly higher than GBSA (Fig. 2C) and both GBSA
and KB improve the structure equally well for higher values of
GDT-HAinitial (Figs. S3 and S4). Nevertheless, 1nkd has a PC value
of �33.2% �19.6% with KB, which is better than the value of
�19.2% � 23.2% for GBSA. Moreover, the minimum value of
GDT-HAinitial for 1nkd is 0.7, which is �0.5 for 1pne. Thus, similar
improvement with GDT-HA is seen for good cases of GBSA and
KB when most residues match well (high GDT-HAinitial value) but
GBSA outperforms KB when low fraction of residues match the
native with high accuracy.

Molecular Dynamics vs. Energy Minimizations of Decoys. As MD is
computationally expensive, we selected a subset of 20 of the 75
proteins, chosen to minimize bias with a mix of PC values for KB
energy minimization. The selected proteins were: 1ail, 1bkra,
1c1ka��1, 1dsl, 1ge8a02, 1gvda, 1h99a1, 1ift, 1ift���2, 1lvfa, 1lwba,
1mf7a, 1mgta1, 1ntea, 1o0xa��1, 1pdo, 1qhva, 1tml���2, 1whi and
4euga0. MD was run for 200 ps on all 729 decoys of each of these
20 proteins (see SI Text). With a total simulation time of 2,916 ns,
this represents a large increase in computational resources com-
pared with energy minimization. The mean initial wRMS for all
decoys of these 20 proteins was 1.02 � 0.15 Å, which was not too
different from the value of 1.08 � 0.14 Å for all 75 proteins. Fig. 3
compares MD with energy minimization with KB and GBSA.

We observe that KB minimization gives most improvement over
all these 20 proteins with �PC� value of �9.6% compared with
	7.14% with GBSA. However, GBSA improved 9 of 20 proteins
with a �PC� value of �18.74% compared with �10.75% for 19
proteins with KB (see plot in Fig. 3A). There is almost no change
for OPLS explicit solvent MD at 0 ps, with ��wRMS�� of 1.01 Å;
these structures are a result of the preparatory energy minimization
in the presence of explicit solvent and move very little. Specifically,
for explicit water, the �PC� value at 0 ps was �0.32% for all 20
proteins with an improvement of �1.32% for 10 proteins. Unfor-
tunately, additional MD moves the structure far away from the
native (see Fig. 3A). The �PC� value for all proteins at 100 ps was
21.30% with ��wRMS�� of 1.22 Å, which is much worse than the
�PC� value after preparatory energy minimization of �0.32%.
More simulation makes the situation worse: at 200 ps the �PC� value
is 29.76% with final ��wRMS�� of 1.31 Å. Thus, on average,
decoys move away from native as the MD trajectory progresses
from 100 to 200 ps (see Fig. S2). In contrast, 4 of 20 proteins
improved with MD, in that the decoys moved closer to the native
state. These are 1lwba, 1whi, 1bkra and 1ift with a �PC� value of
�15.41% at 100 ps and �13.05% at 200 ps. Even in these ‘‘good’’
cases most improvement occurs in the first 100 ps and the situation
deteriorates with additional MD (see Fig. S2).

Movement of Decoys on GBSA Potential Energy Surface. The basic
assumption for all of the refinement methodologies described here
is that the native structure occurs at a minimum of the potential
energy and is surrounded by a smooth attractor basin. How does
solvent influence the downhill energy path from a decoy to the
native state? Fig. 4 shows the near-native potential surface for
GBSA energy minimization. For good cases with GBSA (1kpta,
1ln4a, and 1o0xa), the native state is located at a well-defined
minimum of the potential energy surface (pink disk in Fig. 4).
Energy minimization moves toward the native state and results in
a low wRMS value; there is a clear attractor basin, which is most
apparent for 1kpta, where the final energy minimized decoys cluster
together and come very close to the native state. For these good
cases, GBSA solvation gives rise to a well-defined energy basin with
the native structure at its minimum; initial decoys on hills sur-
rounding the basin move toward the native state upon minimiza-
tion. The topography of the energy surface limits the improvement
possible for a particular method. This is shown for the bad cases
with GBSA (1ge8a01, 1h99a1, and 1pdo), where the native struc-

Fig. 2. Comparison of the GDT-HA scores for energy minimization with KB
(solid) and GBSA (dashed). (A) The change in GDT-HA between final minimized
structure and the initial decoy GDT-HAfinal � GDT-HAinitial is plotted against
GDT-HAinitial for all 729 decoys of each of the 6 proteins that show large
negative percentage change (PC) for the KB and GBSA potentials. Values of
GDT-HAfinal � GDT-HAinitial are averaged over GDT-HAinitial bins of width 0.1.
A higher value of GDT-HAfinal � GDT-HAinitial indicates an improvement in the
decoy (gets closer to the native structure). Overall �GDT-HAfinal � GDT-HAinitial�
is higher for GBSA indicating that this method improves the decoy structure
more than KB. (B) Showing 1pne, a good case with GBSA, that is less good with
KB. The native structure of 1pne is shown in gray, the best decoy minimized
with KB in red, and the best decoy minimized with GBSA in purple. GBSA gives
a better match to the native structure than does KB. (C) Showing 1nkd, a good
case with KB. The lowest GDT-HAinitial value is better (
0.7) than for 1pne
(
0.5). For 1nkd, GBSA and KB do equally well.
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ture is not in the major energy basin containing all energy mini-
mized decoys for 1ge8a01 (Fig. 4). For 1h99a1 and 1pdo, the native
is located in a valley surrounded by one or more hills separating it
from the major energy basin. For these bad cases, the nature of the
energy surface causes large shifts from the native structure upon
minimization. Often energy minimization moves from the initial
decoys to a region far from the native state but with similar energy
values as the native state. For bad cases, the region in which
minimized decoys cluster is much larger than it is in the good cases,
which often show a compact cluster.

Discussion
Improvement upon Minimization with GBSA Implicit Solvent. Energy
minimization in GBSA implicit solvent yields the largest negative
PC and performs refinement better than both KB energy minimi-
zation and MD in explicit solvent. Moreover, GBSA energy min-
imized decoys correctly identify the native basin by clustering
together, as shown by the good cases in Fig. 4. An X-ray structure
is not perfectly accurate and it is useful to estimate when a
near-native structure cannot be distinguished from the actual native

state. Two studies (43, 44) have estimated the ‘‘accuracy limit’’ of
the crystal structures, i.e., the maximum coordinate deviation after
superposition of structures of the same protein determined exper-
imentally in different crystal packing arrangements. These were
estimated to be between 0.80 Å cRMS (44) and 0.95 Å (43) rmsd
for heavy atoms. Thus, we can assume that a model within 0.8 Å
rmsd is indistinguishable from the native state. For a very favorable
case with GBSA minimization (1kpta), the PC value is �55.1% �
24.6%, �wRMSinitial� is 1.15 Å and �wRMSfinal� is 0.51 Å, which is
indistinguishable from the native state. A value of �wRMSfinal� �0.8
Å was observed for 18 proteins by GBSA energy minimization and
12 proteins by KB energy minimization. Moreover, GBSA outper-
forms KB when tested on the near-native decoys, which were energy
minimized, using the ENCAD potential (40) to remove any bad
contacts due to the decoy generation procedure (see SI Text, and
Figs. S3 and S4). Clearly minimization with GBSA implicit solvent
is an excellent refinement method.

Along with the good examples that show large improvement with
GBSA, there are some very bad cases where decoys move far away
from the native state upon minimization. What are the reasons for
these bad cases? Is it a failure of the minimization method or of the
potential function? Because GBSA minimization can cause large
movements toward the native state, we are convinced that Tinker
3.9 uses a very good minimization protocol. Performance seems to
depend on the accuracy with which GBSA implicit solvent mimics
the solvent present in the crystals. For the good cases in Fig. 4 we
see that the energy basin is smooth and has the native state at the
minimum. For the bad cases in Fig. 4 we see a flat energy landscape
where no correlation exists between the energy and the distance to

Fig. 3. Showing MD of decoys in explicit solvent compared to energy
minimization with the GBSA and KB potentials. (A) The PC values (y axis) are
shown for the sampled set of 20 proteins, sorted in ascending order and
plotted against their rank in the sort. Note, that the indicator at rank 1 does
not necessarily reference the same protein for every condition. Negative
values of PC correspond to improvement of the structure. For the 20 proteins,
KB gives the largest number of improved proteins. Some proteins run with
GBSA have better PC values than for KB, whereas others do worse. There is
almost no change for MD at 0 ps and additional MD moves the structure away
from the native, in that the 200-ps curve is always above those of 100 ps and
0 ps. (B) Diagram of 1lwba showing most improvement for OPLS explicit
solvent MD. Red, high-value B-factor; blue, low-value B-factor. (C) Diagram of
1lwba showing that, after 100 ps of MD (orange), the decoys moved closer to
the native structure (gray) with a PC value of �23.2% � 25.8% compared with
�20.2% � 27.9% at 200 ps (blue). (D) Diagram of 1h99a1, which shows least
improvement for OPLS explicit solvent MD, colored by B-factor with high
values in red and low value in blue. (E) Diagram of 1h99a1 shows how MD
moves the structure away from the native structure (gray) as time progresses,
with PC value of 75.3% � 36.5% at 100 ps (orange) compared with 98.4% �
40.3% at 200 ps (blue). Note the flexibility of the chain termini.

Fig. 4. Showing directed movement on the potential energy surface for
GBSA energy minimization. The green points mark the positions of the initial
decoy structures, the red points mark the positions of the final energy mini-
mized structures, and the line connecting them indicates the movement.
These contoured projections of multidimensional energy surface are made by
selecting a random subset of 30 decoys before and after minimization includ-
ing the native structure (big pink disk) to construct a 61 � 61 matrix of pairwise
wRMS value. The energy contours are filled with color that varies from blue for
low energy to red for high energy. In this plot, points close on paper are
generally also similar with a small rmsd value, whereas points far apart on
paper are different with a large rmsd value. Good and bad cases are selected
using the PC values for each of the protein shown in parenthesis. The good
cases show an attractor basin; seen most clearly for 1kpta. For the bad cases,
the arrangement of the hills and valleys separates the native structure from
the major energy basin where all of the decoys end up after energy minimi-
zation. Multidimensional scaling is done using Graphviz to get the clearest 2D
representation of the 61-dimensional space defined by the wRMS matrix. We
generate the contour plots using the potential energy at each point and
MATLAB’s 4-point smoothing.
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the native state. Such bad cases seem to occur when the protein
chain has long loops and chain termini with high B-factors
(1ge8a01, 1h99a1 and 1pdo in Fig. 1). We believe that a more
accurate representation of the energy surface is needed for these
bad cases with GBSA. It is also possible that crystal contacts affect
the position of these chain segments. It seems clear that GBSA
implicit solvation removes the ruggedness around the native state
by giving rise to a smooth energy basin in good cases or a flat energy
landscapes in bad cases.

Molecular Dynamics in Explicit Solvent Moves Away from Native. For
the subset of 20 of 75 proteins simulated using MD in explicit
solvent, only 4 proteins were refined (PC � 0) by MD compared to
9 with GBSA and 19 with KB energy minimization. For all 20
proteins, the mean PC value increased from �0.32% to 21.30%
from 0 ps to 100 ps of MD; worsening to 29.76% was observed from
100 ps to 200 ps (Fig. 3A). Additional MD simulations of 10 ns in
explicit solvent also moves the decoys away from the native struc-
ture (see SI Text, Fig. S5, and Table S1). This does not prove that
MD tends to deform the native state; with sufficient averaging over
long runs the native state might be reached, as shown for few
isolated cases (14–17) where the refined structures were 
2 Å rmsd
from native. MD is a very popular method used to describe
pathways of folding and unfolding. This technique is fundamentally
different from energy minimization, in that MD introduces random

noise and can get stuck in a minimum, which could be far from the
native state. Given infinite time, it could find the native state
provided it was in a sufficiently deep energy basin. We conclude
that use of MD with periodic boxes of explicit water is not a good
refinement method in that it is out-performed by both Tinker
GBSA implicit solvent and Encad KB minimization.

It has recently been shown that MD does not help discriminate
the native state from its decoys, in that the correlation between
energy and rmsd vanishes after MD simulation with AMBER and
a GB potential (45). Other recent work used replica exchange
sampling with CHARMM22/GBSW potential to refine homology
modeling targets with spatial restraints; it worked well but it is
unclear whether this would have happened without the restraints
(20). The use of accurate potentials with the native state as a global
minimum is a necessary but not sufficient condition for extensive
sampling methods to work for refinement. MD simulation is
strongly dependent on random thermal perturbations involved in
heating and we expect it to move all over a flat energy surface (Fig.
5). In addition, it seems that the potential surface used in MD is very
rugged as can be seen by the energy minimized decoys (pink dots)
in Fig. 5 (a plethora of local minima around the initial decoys). It
seems that we need better sampling or significantly more computer
time for MD to move out of these local minima.

Nature of Energy Surfaces for Various Potentials. Our 2D visualiza-
tion of the energy surface for a representative set of decoys gives

Fig. 5. Comparing the directed movement on the potential energy surface for energy minimization with KB and GBSA and MD with OPLS in explicit solvent.
The starting decoy structures are green points and the native structure is shown as a cyan disk. For KB and GBSA, the final energy minimized decoys are red points.
For OPLS explicit MD, the pink points are the energy minimized structure at 0 ps, the blue points are the decoys at 100 ps and the red points are the decoys at
200 ps. These projections of the multidimensional energy surface are made using a random subset of 30 decoys for each protein. For KB and GBSA energy
minimization, a 61 � 61 matrix of pairwise wRMS values is used (30 initial decoys, 30 corresponding energy minimized decoys, and the native structure). For OPLS
explicit MD a 121 � 121 matrix is used (30 initial starting decoys; 30 corresponding decoys at 0 ps, 100 ps, and 200 ps, respectively; and the native structure). Good
cases with KB energy minimization (1lvfa), GBSA energy minimization (1tml���2) and OPLS explicit MD (1lwba) are selected using the PC values for each of the
protein (shown in parenthesis). For each of these 3 proteins, we compare directed movement on the energy surface caused by energy minimization with KB and
GBSA and MD with OPLS. An attractor basin is seen for KB and GBSA energy minimization for all 3 proteins, but only with GBSA do the final decoys come very close
to each other and to the native structure. For KB energy minimization of 1tml���2 and 1lwba, the energy surface contains many local minima near the native state
preventing it from being reached; in both these cases a clear attractive basin is seen with GBSA. For the best case with OPLS explicit MD (1lwba), initial simulation moves
the protein closer to the native structure but more simulation (100 to 200 ps) moves away again. For the less good cases with OPLS explicit MD (1lvfa and 1tml���2)
simulation moves the structure all over the energy surface with the 200-ps points (red), father apart from the native structure than the 100-ps points (blue) or the initial
decoy points (green).
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a clear picture of the nature of the near-native potential energy
surface. The arrangement of hills and valleys around the native
state limits the extent of refinement. The energy surface for KB
potential is more rugged than GBSA, but most ruggedness is
seen with explicit solvent (red points for KB and pink and blue
points for OPLS explicit solvent in Fig. 5). For KB energy
minimization the decoys gets stuck before reaching the native
state minimum, which limits refinement. An ideal potential for
refinement would have a smooth basin-shaped energy surface
with the native state of the protein at a minimum. Such an energy
surface is clearly seen for the good cases with the GBSA implicit
model in Fig. 4. For the bad cases with GBSA the energy basin
is not compact; it has a flat energy landscape with no correlation
between energy and the distance to the native state. It is possible
that better modeling of nonpolar solvation and charge effects
would overcome the problem of flat landscapes. It might also
indicate parts of the protein that are not well-defined in the
absence of the crystal lattice.

Materials and Methods
Weighted C� rmsd and High Accuracy GDT. Normally protein structural devia-
tion from the native state is measured by the rmsd of coordinates after
optimum rigid body superposition of all atoms. This measure can over-

emphasize deviations in chain termini or surface loops, which are often more
flexible than the rest of the protein as seen by their large B-factors in X-ray
structures (Fig. 1). Use of wRMS compensates for this flexibility by down-
weighting the flexible residues identified by fewer contacts. It uses the far
contact count value averaged over 5 adjacent residues centered on the residue
of interest as that residue’s weight. The far contact count is the number of
contacts between atoms i and j such that the respective residues are further
than 3 apart along the sequence. A contact occurs when the accessible surface
area between atoms i and j is �0. For the proteins we analyze, the contact
counts vary from 0.0 for the most exposed residues to 7.2 for the most buried
residues. A simpler distance-based definition of contact would likely give the
same results but we used the list of contacts as provided by Encad (40, 41). The
wRMS value is calculated by a standard weighted coordinate superposition
method (46) [we did not use the Kabsch method (U3BEST) (47). The GDT-HA
is used to measure the similarity to the native state. The GDT method (48)
computes the maximum percentage of noncontiguous residues with C� rmsd
from native state (cRMS) values �0.5, 1, 2, and 4 Å, respectively, and then
averages these 4 percentages. The term ’’HA‘‘ refers to high-accuracy with
cRMS threshold given above; normal GDT uses thresholds of 1, 2, 4, and 8 Å.
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