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Abstract: Ebola virus disease (EVD) is extremely virulent with an estimated mortality rate of up
to 90%. However, the state-of-the-art treatment for EVD is limited to quarantine and supportive
care. The 2014 Ebola epidemic in West Africa, the largest in history, is believed to have caused
more than 11,000 fatalities. The countries worst affected are also among the poorest in the world.
Given the complexities, time, and resources required for a novel drug development, finding efficient
drug discovery pathways is going to be crucial in the fight against future outbreaks. We have
developed a Computational Analysis of Novel Drug Opportunities (CANDO) platform based on
the hypothesis that drugs function by interacting with multiple protein targets to create a molecular
interaction signature that can be exploited for rapid therapeutic repurposing and discovery. We used
the CANDO platform to identify and rank FDA-approved drug candidates that bind and inhibit all
proteins encoded by the genomes of five different Ebola virus strains. Top ranking drug candidates
for EVD treatment generated by CANDO were compared to in vitro screening studies against Ebola
virus-like particles (VLPs) by Kouznetsova et al. and genetically engineered Ebola virus and cell
viability studies by Johansen et al. to identify drug overlaps between the in virtuale and in vitro
studies as putative treatments for future EVD outbreaks. Our results indicate that integrating
computational docking predictions on a proteomic scale with results from in vitro screening studies
may be used to select and prioritize compounds for further in vivo and clinical testing. This approach
will significantly reduce the lead time, risk, cost, and resources required to determine efficacious
therapies against future EVD outbreaks.

Keywords: drug repurposing and discovery; multitarget docking; compound–proteome
interaction; candock

1. Introduction

The 2014 Ebola epidemic was caused by a divergent strain of the Zaire Ebola Virus [1] and is
believed to have affected more than 28,000 individuals globally, with an estimated mortality of 74%
in confirmed Ebola cases [2]. The mainstay of EBV prevention and treatment is infection control
precautions and supportive care to the affected individual(s) in order to maintain cardiovascular
function while their immune system mobilizes an adaptive response. Considering the complexity [3]
and cost [4] of developing a new drug combined with the fact that countries worst affected were also
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among the poorest in the world, finding an alternate cheaper route for future EVD outbreak treatments
is of paramount importance.

Traditional approaches to drug discovery are highly specific to single targets (molecules and
indications), focusing on a limited set of interactions between individual protein targets and small
molecule compounds, but applying the resulting treatments universally to all patients. The goal
generally is to target an essential protein responsible for pathogenesis so as to completely inhibit its
function, and then determine its toxicity or side effect profile for human use. Almost all current drugs
have been developed by this approach. However, the number of novel drugs being discovered every
year has been reduced to a handful. Currently, less than 50 new drugs are approved each year, and most
of them are analogues to other existing drugs or other patent workarounds [5]. The estimated average
costs for developing a novel drug and bringing it to market can be up to $2.6 billion [6]. Thus, there
is a dearth of novel drug development, which is time- and cost-prohibitive [7–10], particularly for
rapidly emerging indications such as divergent strain EVD outbreaks or neglected indications such as
orphan diseases [11].

One solution is to repurpose and reposition existing drugs that are relatively benign in terms of
side effects for new indications [11–19]. We were one of the first to propose shotgun drug repurposing
for malaria based on computational multitarget docking with dynamics [15]. Since then, we have
validated our predictive models numerous times [9,16–18,20–22]. This repurposing can be made
more accurate by considering variations (mutations) in proteins encoded by individual genomes.
Systematic exploration of drug repurposing opportunities is hindered by extensive competition in the
pharmaceutical industry. We utilize this repurposing paradigm along with a computational platform
we have developed that evaluates relationships between compound–proteome interaction signatures
to predict genome- and indication-specific drug regimens for particular individuals in a shotgun and
holistic manner (i.e., against all indications simultaneously). To assess and improve the accuracy of
our platform, we collaborate with experimental investigators for preclinical and clinical validation of
our top ranking drug candidates (see Figure 1). The experimental results obtained are integrated back
into the modeling platform to iteratively improve its accuracy.
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derived from Protein Data Bank (PDB) structures depicting Ebola virus glycoprotein, matrix protein, 
nucleoprotein, and nucleocapsid proteins (PDB identifiers 3csy, 4ldd, 4qb0 and 2i8b, 3vne, 3fke 
respectively). 

Our polyphmarcological approach also has utility in overcoming the development of the drug-
resistant strains of pathogens. Evidence has been accumulating to suggest a role for underlying 
multiple pathways acting in a disease-specific manner in response to a synthetic agent, to cause 
specific mutations for drug resistance [23]. This synthetic lethality and resistance may be overcome 
by designing drugs to work in a disease-specific polypharmacological manner by taking into account 

Figure 1. The Computational Analysis of Novel Drug Opportunities (CANDO) platform as applied
to five Ebola proteomes. (A) General version of the platform used to determine drug behavior
and similarity by performing a virtual screen to predict interactions between “all” known drugs
and “all” protein structures; (B) CANDO platform as applied to Ebola, where the known drugs are
docked to structures of five Ebola proteomes to identify the strongest multitarget inhibitors. Credit:
Vignettes derived from Protein Data Bank (PDB) structures depicting Ebola virus glycoprotein, matrix
protein, nucleoprotein, and nucleocapsid proteins (PDB identifiers 3csy, 4ldd, 4qb0 and 2i8b, 3vne,
3fke respectively).

Our polyphmarcological approach also has utility in overcoming the development of the
drug-resistant strains of pathogens. Evidence has been accumulating to suggest a role for underlying
multiple pathways acting in a disease-specific manner in response to a synthetic agent, to cause specific
mutations for drug resistance [23]. This synthetic lethality and resistance may be overcome by designing
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drugs to work in a disease-specific polypharmacological manner by taking into account an interactome
of multiple disease pathways and drug interactions. Using computational screening to assess multitarget
binding and inhibition, our platform relies on an interaction signature of how well a compound interacts
with a library of protein structures that are considered representative of the (current) structural universe,
compared with how that individual compound interacts with a specific protein. As a result, multiple
drugs with a therapeutic effect towards a disease process can be identified. Multiple drugs used together
(polypharmacy) will reduce the occurrence of drug resistance since the simultaneous occurrence of
multiple mutations that are resistant to a drug combination are exponentially less prevalent [24,25].
Polypharmacy may strengthen the effect, leading to the requirement for decreased therapeutic doses of
individual compounds, so that less efficacious and slightly more toxic compounds can be used safely
and synergistically to achieve the desired efficacy profile.

In this work, we integrate computational docking predictions done on a proteomic scale with
results from in vitro screening studies against EVD to select and prioritize compounds for further
in vivo and clinical testing.

2. Results

Table 1 lists selected top consensus multitarget drug candidate predictions against Ebola
generated by the CANDO platform that have not yet been validated at the bench or in clinical
trials. These compounds may represent potential therapeutic agents to be further investigated for
in vitro and in vivo efficacy using Collaborative Cross mice [26]. Prospective in vitro validation for
the top 10–100 ranked compounds at the bench (or combinations thereof) is necessary to achieve the
highest likelihood of success. A comparative analysis showed that our top ranked drug candidates
overlapped with 22 out of 53 (~42%) drugs identified by Kouznetsova et al. [27] (Table 2) and 24 out of
80 (30%) “FDA approved actives” identified by Johansen et al. [28] (Table 3) towards treatment of EVD.
A total of 9 candidates were common between all three studies (Tables 2 and 3).

In addition to the drugs listed in Tables 2 and 3, predictions made by the CANDO platform
had 8 overlaps (~8%) when compared to a list of 95 active compounds identified by Kouznetsova
et al. with an IC50 of 10 to 30 µM, selectivity index less than 10 fold, or not US FDA approved for
human use. These include astemizole, carvedilol, clocapramine, desloratadine, ebastine, fluspirilene,
mesoridazine, and pamicogrel. Similarly, our predictions had 6 overlaps (7%) when compared to a list
of 90 active compounds listed by Johansen et al. as not US FDA approved. These include alverine,
astemizole, diethylstilbestrol, homochlorcyclizine, lomerizine, and tibolone. Finally, our predictions
had 7 overlaps (astemizole, atovaquone, azacitidine, clemastine, clomifene, lomerizine, and sertraline)
when compared to a list of 30 compounds (US FDA approved and not approved) that were prioritized
by Johansen et al. as having antiviral activity in both Vero E6 and human HepG2 cell lines. One of the
drug candidates common to all three studies (sertraline) resulted in statistically significant survival
benefits from treatments of infected mice done by Johansen et al. [28].

Table 1. Selected top ranked drug candidates against Ebola generated by the CANDO platform.

Compound(s) Interaction Score Consensus Score (min) Protein Target Identifiers

enfuvirtide 2.0 7 GP2, VP35, 1ebo-F
vancomycin, bleomycin 2.0 10 GP1,2, pre-sGP, SGP, SsGP

octreotide, lanreotide, somatostatin 2.0 10 GP1,2, pre-sGP, SGP, SsGP
ubidecarenone (CoQ10) 1.6 7 GP1,2, GP2, VP24, VP35, VP40, 1ebo-F

unoprostone 1.3 10 GP1,2, VP35, VP24, 1ebo-F

The name of the compound, a measure of its binding strength or interaction score (range 0-2), its frequency
of occurrence or consensus score, and the Uniprot short names or PDB identifiers of the protein targets
that it binds to are given. The protein targets are GP2—envelope glycoprotein; VP35—polymerase
cofactor VP35; 1ebo-F—membrane-fusion subunit from envelope glycoprotein GP2; pre-sGP—pre-small
secreted glycoprotein; sGP—secreted glycoprotein; SsGP—super small secreted glycoprotein; and VP24—
membrane-associated protein VP24. A combination of drugs that have broad specificity and/or are derived
from disparate functional classes (for example: enfuvirtide and ubidecarenone (CoQ10) AND vancomycin OR
octreotide/lanreotide/somatostatin) may be the most promising combinations to pursue for further preclinical
and clinical validation.
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Table 2. Overlap between drug candidates identified by the CANDO platform and those identified by Kouznetsova et al. [27].

Compound(s) Interaction Score Consensus Score Approved Indication Mode of Action

Niclosamide * 1.897 3 helminthic infestation inhibits parasite metabolism
Sertraline * 1.897 1 depression, anxiety selective serotonin receptor inhibitor
Clomifene * 1.897 1 anovulation, oligoovulation selective estrogen receptor modulator
Alverine 1.897 1 gastrointestinal muscle spasms parasympathetic nervous system modulator

Aprindine 1.897 1 cardiac arrhythmia sodium channel inhibitor
Mebendazole * 1.897 1 helminthic infestation tubulin destabilizer

Salmeterol 1.890 2 asthma beta 2 adrenergic receptor agonist
Topotecan 1.823 1 ovarian and lung cancers DNA topoisomerase I inhibitor

Deslanoside * 1.377 10 cardiac arrhythmia sodium-potassium channel blocker
Propafenone 1.298 10 cardiac arrhythmia sodium channel blocker

Digoxin * 1.067 1 cardiac arrhythmia sodium-potassium channel blocker
Proglumetacin 1.058 1 non-steroidal anti-inflammatory drug cyclooxygenase-1 inhibitor
Posaconazole 1.023 3 fungal infection (aspergillus and candida) membrane bound enzyme inhibitor

Raloxifene * 0.843 2 osteoporosis and breast cancer prevention selective estrogen receptor modulator
Clarithromycin 0.741 2 bacterial infections protein synthesis inhibitor

Clemastine * 0.741 1 allergies H1 histamine receptor inhibitor
Colchicine 0.741 1 gout, pericarditis microtubule inhibitor
Tamoxifen * 0.741 1 estrogen receptor positive breast cancer Selective estrogen receptor modulator
Thiothixene 0.741 1 psychotic disorders, e.g., schizophrenia dopamine antagonist

Daunorubicin 0.714 1 hematologic dyscrasia (acute lymphocytic leukemia, acute myeloid leukemia) DNA topoisomerase II inhibitor
Dronedarone 0.722 1 cardiac arrhythmia potassium channel blocker

Vincristine 0.707 1 hematologic dyscrasia (acute lymphocytic leukemia, acute myeloid leukemia) microtubule inhibitor

* Drugs also identified by Johansen et al. [28].
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Table 3. Overlap between drug candidates generated by the CANDO platform and those identified by Johansen et al. [28] as FDA approved actives.

Compound(s) Interaction Score Consensus Score Approved Indication Mode of Action

Niclosamide * 1.897 3 helminthic infestation inhibits parasite metabolism
Quinestrol 1.897 3 hormone replacement therapy synthetic steroidal estrogen receptor agonist
Sertraline * 1.897 1 depression, anxiety selective serotonin receptor inhibitor
Clomifene * 1.897 1 anovulation, oligoovulation selective estrogen receptor modulator

Propoxyphene 1.897 1 mild to moderate pain opiate receptor binder
Atovaquone 1.897 1 pneumocystis Pneumonia dihydroorotate dehydrogenase inhibitor
Azelastine 1.897 1 allergic rhinitis H1 histamine receptor inhibitor
Danazol 1.897 1 endometriosis androgen receptor competitive inhibitor

Mebendazole * 1.897 1 helminthic infestation tubulin destabilizer
Hydroxyprogesterone 1.823 2 preterm labor steroidal progesterone receptor agonist

Deslanoside * 1.377 10 cardiac arrhythmia sodium-potassium channel blocker
Digoxin * 1.067 1 cardiac arrhythmia sodium-potassium channel blocker
Ritonavir 1.057 2 HIV infection protease inhibitor

Raloxifene * 0.843 2 osteoporosis and breast cancer prevention selective estrogen receptor modulator
Ciclesonide 0.843 1 asthma, allergic rhinitis glucocorticoid receptor agonist
Clemastine * 0.741 1 allergies H1 histamine receptor inhibitor
Podofilox 0.741 1 skin warts caused by Human papilloma virus tubulin polymerization inhibitor

Tamoxifen * 0.741 1 estrogen receptor + breast cancer selective estrogen receptor modulator
Desloratadine 0.741 1 allergies H1 histamine receptor inhibitor
Methdilazine 0.741 1 allergy symptoms, antiemetic H1 histamine receptor antagonist

Chlorcyclizine 0.741 1 allergy symptoms, antiemetic H1 histamine receptor antagonist
Azacitidine 0.712 1 myelodysplastic syndrome DNA methyl transferase inhibitor
Terconazole 0.711 1 fungal infection ERG11/CYP51 inhibitor

Bromocriptine 0.707 1 pituitary tumors, Parkinson’s disease dopamine receptor agonist

* Drugs also identified by Kouznetsova et al. [27].
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Figure 2 illustrates the binding mode of two of the top drug candidates (ubidecarenone and
unoprostone) to one of the common target structures (membrane-fusion subunit from envelope
glycoprotein GP2, PDB identifier 1ebo, chain F) generated using our hierarchical fragment-based
docking with dynamics software, CANDOCK. While this illustration enables us to rationalize
the behavior of these two compounds against this particular target, we emphasize that the
polypharmacological drug candidates [23] predicted by the CANDO platform are holistic in nature and
do not rely on any single interaction to determine its overall efficacy (i.e., the interactions in aggregate
determine efficacy). The comparative analyses between our top drug candidates against EVD and
those obtained from the studies by Kouznetsova et al. and Johansen et al., as shown in Tables 2 and 3
along with additional information on the approved indications for the known drugs and their modes
of action, are discussed further below.
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Figure 2. Binding modes of unoprostone and ubidecarenone to the membrane-fusion subunit
from the Ebola virus envelope glycoprotein, GP2 (PDB identifier 1ebo, chain F). (A) Binding site
residues (stick representation) predicted by COFACTOR by comparing binding motifs to a library
of the PDB ligand-bound structures; (B) Search space for CANDOCK to dock fragments of small
molecule compounds that are reconstructed while incorporating flexibility of both small molecule
and the protein; (C) Docked conformation of uniprostone bound to the region of the fusion peptides
forming disulfide-bonded loop that is homologous to an immunosuppressive sequence in retroviral
glycoproteins. Uniprostone is shown as spheres (top) along with its interaction to the protein surface
up to 10 Å (bottom); (D) Docked conformation of ubidecarenone bound to coiled coil region near the
C-terminal end that acts as the membrane anchor. Ubidecarenone is shown as spheres (top) along with
its interaction to the protein surface of the coiled coil region up to 10 Å (bottom). Together, these two
molecules likely disrupt the conserved disulfide-bonded loop and the linker region that function as a
hinge, transferring information from the GP1 receptor binding to trigger a conformational change in
GP2, thereby disrupting the membrane fusion event.
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3. Discussion

Kouznetsova et al. [27] used an in vitro high-throughput screening assay to identify 53
FDA-approved drugs that block Ebola virus-like particles (VLPs) entry into cells. Johansen et al. [28]
used enhanced green fluorescent protein (eGFP) activity in genetically engineered Ebola virus and
cell viability studies to identify 80 FDA-approved compounds with anti-Ebola virus activity from a
library of 2600 biologically active molecules. In addition, Johansen et al. prioritized 30 compounds for
confirmation of antiviral activity from two in vitro assays from a total of 170 (US-FDA approved and
non-approved) active compounds.

While both efforts move towards identifying possible treatments for EVD by screening existing
drugs, there are several issues (including non-conformity in library of compounds evaluated,
the selection of targets, the cell assays used, and a lack of mechanistic detail) that may limit future
success for similar outbreaks. For example, Kouznetsova et al. [27] excluded certain drug categories
prior to in vitro screening, including immunosuppressants, veterinary use compounds, and approved
topical agents. CANDO predicted compounds from these categories to possess potential anti-EVD
activity based on multitargeted inhibition of proteins from the five Ebola proteomes; however, unless
preclinical vetting indicated a strong preference for their use, they would not be considered as top drug
candidates against Ebola. Furthermore, Kouznetsova et al. [27] determined potential drugs using VLPs,
resulting in entry or membrane fusion inhibitors that directly or indirectly block entry/fusion, interfere
with glycoprotein (GP) and matrix proteins (VP24 or VP40), interact with host molecules that are
involved in the fusion process, or any combination of these. The use of VLP-based assays to determine
putative drugs may result in false positives, as GP, VP24, and VP40 are known to exhibit cell-specific
behavior. The use of the HeLa cell line is also potentially problematic due to inherent variability and
known chromothripsis [29] that may have a profound effect on viral replication. We propose the use of
Huh7 cell lines as a more robust choice for screening EVD since hepatic cells are known targets for
Ebola infection in vivo [30–32].

Analyzing the overlap between candidate drugs against EVD based on the Johansen et al. study
and those generated by CANDO (Table 3), we observe that: Five drugs possess affinity to the H1
histamine receptor (antagonism) and are used for relatively similar clinical indications. Six drugs
are hormonal (four estrogen, one androgen, one glucocorticoid) receptor modulators that are used to
treat a variety of clinical conditions such as hormone replacement therapy, reactive airway disease.
One drug is a serotonin receptor inhibitor used to treat depression and anxiety and another one is a
dopamine receptor agonist used to treat pituitary tumors and Parkinson’s disease. Two drugs work
by disrupting sodium-potassium transmembrane transport in the myocardium and are used to treat
cardiac arrhythmias. Finally, two drugs work by disrupting the tubulin structure during cell division
and are used to treat parasites and virus (HPV warts)-related conditions.

Analyzing the overlap between candidate drug against EVD based on the Kouznetsova et al.
study and those generated by CANDO (Table 2), we observe the following: Five drugs act upon
the cardiac myocyte cell membrane (two sodium channel blockers, two sodium-potassium channel
blockers, and one potassium channel blocker) and are used to treat various cardiac arrhythmias.
Two drugs affect the activity of DNA topoisomerase (I and II) and are used as chemotherapeutic
agents. Three drugs work as selective estrogen receptor modulators and one drug is a selective
serotonin receptor inhibitor and are used correspondingly. Finally, two drugs work by disrupting
the tubulin structure during cell division and are used to treat parasites, inflammation, and related
clinical scenarios.

Analyzing the nine drug candidates common to all three (CANDO, Kouznetsova et al., and
Johannsen et al.; indicated by italics in Tables 2 and 3) studies, we observe that there was one H1
histamine receptor blocker (out of five), three estrogen receptor modulator (three of six), one tubulin
destabilizer, one serotonin receptor inhibitor, and two cardiac membrane channel blockers (out of five
such candidates with the same mode of action across the three studies). More generally, these analyses
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indicate that compounds or drugs with these mechanisms of action are likely to be efficacious against
EVD than others.

The putative drug candidates against EVD were selected using a consensus approach that has
not yet been rigorously benchmarked and analyzed, in contrast to the CANDO signature comparison
and ranking approach [18,22,23]. In addition, there are other issues not considered by CANDO that
may affect its accuracy, including but not limited to considering only protein structure (as opposed to
DNA and RNA) targets, not handling post-translational modifications explicitly, and not integrating
dynamic information such as expression (copy number) data to evaluate the most biologically
relevant proteomes.

Our preliminary results here in terms of the overlap between our study and those of
Kouznetsova et al. [27] and Johansen et al. [28] indicates promise in using our overall approach to
selecting efficacious drugs that are effective in vivo (for example, sertraline resulted in statistically
significant survival benefits from treatments of infected mice done by Johansen et al.). However, the
preclinical and clinical protocols to evaluate these drug candidates will need to be refined keeping
these limitations in mind, especially since CANDO is designed to work by compound–proteome
signature comparisons, and finding hits against small viral proteomes may necessitate a modified
approach tailored to specific indications.

4. Materials and Methods

We have developed the Computational Analysis of Novel Drug Opportunities (CANDO) platform
based on the hypothesis that drugs function by interacting with multiple protein targets to create
a molecular interaction signature that can be exploited for therapeutic repurposing and discovery.
The large number of methods, protocols, and pipelines that comprise this integrated platform are
described in detail elsewhere [18,22,23].

We compiled a library of 3733 compounds that are human ingestible with established side effects
(FDA-approved drugs), followed by a hierarchical fragment-based multitarget docking with dynamics
screen against a large (48,278) library of experimentally determined and modeled protein structures to
construct compound–proteome interaction matrices that were then analyzed to determine similarity in
drug behavior. Initially, a structure modeling and docking pipeline is used to model the structures of
all proteins whose structures are not available in the Protein Data Bank (PDB) [33]. The rough poses
of compound–proteome interactions are determined using chem- and bioinformatics methods and
hierarchically refined using fragment-based docking with dynamics simulations of all the atoms in the
system (currently implemented by the CANDOCK software), which we have shown previously to be
necessary for the accurate calculation of binding energies [34,35]. The integrated modeling pipeline
uses HHBLITS [36], ITASSER [37,38], and KoBaMIN [39–41] for protein modeling, refinement, and
dynamics, and COFACTOR [42] for the identification of ligand binding sites. The protocols used
for modeling the Ebola proteomes and the generation of the Ebola compound–proteome interaction
matrices, along with the details of the protein structure modeling, binding site identification, parameter
selection and optimization, compound–proteome interaction-signature generation and comparison,
compound ranking, and accuracy calculation are exactly as described in the methods section of [22].
The CANDO platform is agnostic to the docking or interaction determination method used, and recent
comparative studies conducted by us indicate that using other publicly available methods for docking
also produce similar outcomes with varying benchmarking accuracies (unpublished). This is further
supported by our successful initial shotgun multitarget drug repurposing studies that used a different
docking with dynamics protocol from what is currently used by the CANDO platform, namely
Autodock for docking and NAMD for dynamics simulation [15,16].

The proteomic signature similarity of drugs is then used to rank putative drug candidates for
all indications in a shotgun manner. We have used the CANDO platform to generate putative drug
candidate rankings for all 2030 indications with at least one approved drug and to perform rigorous
benchmarking for 1439 indications with two or more approved drugs. Benchmarking performance
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varies from 12%–40% depending on the number of top ranking drug candidates and indications
considered (in contrast to high-throughput and random screening rates of 0.2%). We conducted
thirteen prospective validation studies covering ten diseases (including dengue, dental caries, diabetes,
hepatitis B, herpes, lupus, malaria, and tuberculosis), with 58/163 (~35%) drugs showing better activity
than the standard clinical-use drug [18].

Figure 1 illustrates the application of the CANDO repurposing platform to generate putative
drug candidates predicted to inhibit multiple protein targets encoded by the genomes of five Ebola
virus strains: Zaire ebolavirus, Sudan ebolavirus, Taï Forest ebolavirus, Bundibugyo ebolavirus, and Reston
ebolavirus (R. ebolavirus is not infective to humans) [4]. The structures of all the proteins from different
strains available in the PDB were used, (e.g., 1ebo-F). All other structures in different viral strains
were modeled and the interactions generated using the pipeline described above. The drug–protein
interactions were ranked according to their corresponding scores (ranging from 0–2) and filtered using
a specific cutoff to eliminate those with a low score. The interaction scores were calculated exactly as
described in the methods section of [22] and are a pseudo measure corresponding to binding strength,
with higher scores indicating stronger interactions. Cutoffs for this score are determined based on
parameterization of the platform to known drug–compound interactions from the PDB.

The remaining top ranked candidates were further clustered to determine the consensus score,
which represents the frequency of occurrence of each compound interacting with different protein
targets (since a compound may interact with multiple proteins from different strains) as shown in
Table 1. We integrated the top ranked putative drug candidates with in vitro hits previously identified
in bench studies [27,28] to identify common leads that may be pursued in vivo and in clinical trials.
Putative drug candidates with high interaction score (>= 1.1 cutoff ) and high consensus score (Table 1)
and in vitro screening overlaps (Tables 2 and 3) are suggested as putative treatments for future
EVD outbreaks.

5. Conclusions

Aside from top ranking drug candidates generated by the CANDO platform which have not yet
been experimentally validated in vitro, there are 22 compounds that overlap between CANDO and
drugs identified by Kouznetsova et al. [27], with 10 drugs with high scoring interactions (Table 2).
Similarly, there are 24 compounds that overlap between CANDO and FDA approved drugs listed by
Johansen et al. [28] study, with 11 drugs with high scoring interactions (Table 3). This demonstrates that
computational methods can accurately and efficiently identify potential leads for further evaluation
individually or as drug combinations, inhibiting different protein targets to devise potent therapies
against EVD. Future work would include experimentally evaluating the suggested combination
therapy in vitro and, if successful, moving to Phase I clinical trials.
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