1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny Yd-HIN

NATIG,

o
R HE

s sy,
D

10

NS

NIH Public Access

Author Manuscript

Published in final edited form as:
Proteins. 2014 September ; 82(9): 1850-1868. doi:10.1002/prot.24538.

WeFold: A Coopetition for Protein Structure Prediction

George A. Khoury!, Adam Liwo?, Firas Khatib3#, Hongyi Zhou?, Gaurav Chopra®®¢, Jaume
Bacardit’, Leandro O. Bortot8, Rodrigo A. Faccioli®, Xin Deng9, Yi Hell, Pawel Krupa?11,
Jilong Li0, Magdalena A. Mozolewska?11, Adam K. Sieradzan?, James Smadbeck?,
Tomasz Wirecki?11, Seth Cooper!2, Jeff Flatten12, Kefan Xul?, David Baker3, Jianlin
Chengl9, Alexandre C. B. Delbem?, Christodoulos A. Floudas!, Chen Keasarl3, Michael
Levitt®, Zoran Popovi¢12, Harold A. Scheragall, Jeffrey Skolnick?, Silvia N. Crivellil4, and
Foldit Players!®

1Department of Chemical and Biological Engineering, Princeton University, USA ?Faculty of
Chemistry, University of Gdansk, Poland 2Department of Biochemistry, University of Washington,
USA “Center for the Study of Systems Biology, School of Biology, Georgia Institute of
Technology, USA ®Department of Structural Biology, School of Medicine, Stanford University,
USA fDiabetes Center, School of Medicine, University of California San Francisco (UCSF), USA
’School of Computing Science, Newcastle University, United Kingdom 8Laboratory of Biological
Physics, Faculty of Pharmaceutical Sciences at Ribeirdo Preto, University of Sdo Paulo, Brazil
%Institute of Mathematical and Computer Sciences, University of Sdo Paulo, Brazil 1°Department
of Computer Science, University of Missouri, USA Baker Laboratory of Chemistry and Chemical
Biology, Cornell University, Ithaca, NY 14853-1301, USA ?Center for Game Science,
Department of Computer Science & Engineering, University of Washington, USA 13Departments
of Computer Science and Life Sciences, Ben Gurion University of the Negev, Israel 1*Department
of Computer Science, University of California, Davis, USA SWorldwide

Abstract

The protein structure prediction problem continues to elude scientists. Despite the introduction of
many methods, only modest gains were made over the last decade for certain classes of prediction
targets. To address this challenge, a social-media based worldwide collaborative effort, named
WeFold, was undertaken by thirteen labs. During the collaboration, the labs were simultaneously
competing with each other. Here, we present the first attempt at “coopetition” in scientific
research applied to the protein structure prediction and refinement problems. The coopetition was
possible by allowing the participating labs to contribute different components of their protein
structure prediction pipelines and create new hybrid pipelines that they tested during CASP10.
This manuscript describes both successes and areas needing improvement as identified throughout
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the first WeFold experiment and discusses the efforts that are underway to advance this initiative.
A footprint of all contributions and structures are publicly accessible at http://www.wefold.org.
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Introduction

The complexity of current scientific research requires broad and open collaboration among
researchers. Recently, the scope of these collaborations has expanded significantly to
include individuals with no expertise in the specific field, known as citizen scientists. A
noteworthy example of this approach uses computer games to engage participants. Launched
in May 2008, Foldit is the first computer game designed to harness the natural human ability
to recognize the 3D shape of proteins. More than 300,000 people have participated to date
producing significant resultsl. These projects illustrate a shift in how scientists collaborate,
as well as in the relationship between science and society.

A different sociological approach to tackle science is CASP2 (Critical Assessment of
techniques for protein Structure Prediction). Started in 1994 by Moult et al.3, CASP is a
community-wide, worldwide experiment to assess and advance the protein structure
prediction field by helping identify where efforts should be directed®. CASP, which recently
completed its 10t experiment®, has challenged computational scientists to accurately and
consistently predict protein structures using only the sequence of amino acids of soon to be
or newly experimentally determined but unpublished structures. More recently, it has
introduced other categories such as refinement6-8 that challenges participants to improve the
accuracy of a given protein model by submitting 5 new models.

During the CASP season, which occurs every other summer, each participating group
applies a series of methods (some publicly shared, others secretly guarded) to the prediction
pipeline and submits models for more than 100 different protein sequences or targets. After
the experiment is over, the true experimental structures are published, the submitted models
are examined by independent assessors, and the results are discussed in a subsequent
meeting. Consecutive editions of CASP have shown substantial improvements in the
category of “easy” proteins where high sequence similarity to known proteins in the Protein
Data Bank exists and such information is used to predict protein structures*:19, However,
no single group has yet been able to consistently predict the structure of “hard” proteins with
even moderate accuracy. Reviews on structure prediction in protein folding include those by
Zhang!!, Dill and MacCallum!2, Khoury et al.}3, and Floudas!*. CASP was not designed as
a competition and participants are encouraged to focus on new ways of addressing the
problem. However, although not intended, this ranking induces an atmosphere that is
inherently competitivel®. Because of the success of CASP, similar experiments were
started16-19, CASP remains the most-participated one among these to date with 95 manual
prediction groups and 122 prediction servers submitting models in CASP102.
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An approach that has not been tried in a scientific context until recently is “coopetition,”
which refers to cooperative competition. Coopetition is a common business practice.
Companies sometimes engage their competitors in their product development process. Their
goal is to create products of higher quality/extended functionality than the original products,
resulting in an increased competitive advantage. The WeFold experiment is the first attempt
at using coopetition, both open collaboration and competition among research scientists and
citizen scientists, by generating methods that combine elements of the participating teams.
WeFold took place during the CASP10° experiment with the goal of shaking up the field of
protein structure prediction. It brought together thirteen labs worldwide (see Supplementary
Table S1), ranging from purely bioinformatics to physics-based approaches that, for the first
time, collaborated and competed in search for methodologies that are better than their
individual parts. The size of the collaboration was unprecedented in the history of CASP,
with participants contributing a superset of almost 8.8 million structures to WeFold from
which a small fraction were submitted to CASP10°. This paper describes the WeFold
experiment. It analyzes the performance of the combined methods with respect to their base
methods in the context of blind structure predictions during CASP10°, describes the
challenges faced, and reports those which still remain. The lessons learned from this
experiment could be useful to other coopetition efforts that may be attempted in the context
of other CASP-like competitions.

Materials and Methods

A unique aspect of the WeFold experiment is that the mechanism for the collaboration was
largely unknown until the CASP10° experiment started. Therefore, on the first day of
CASP105, WeFold participants logged into the WeFold gateway to discuss how to best
combine the different components they were contributing to the project. Five branches
resulted from that discussion. Their names and group numbers in CASP10° are: wfFUIK
(149), wfFUGT (260), wfCPUNK (287), WeFold Branch (101), and WeFoldMix (441). The
first three branches were named based on the first letter of their component methods.
wfCPUNK and WeFold Branch were applied to the prediction of human tertiary structure
prediction targets whereas wfFUIK, wfFUGT, and WeFoldMix applied to both human
tertiary structure prediction and refinement targets. Neither branch competed as a server.
There were 46 human targets (53 total, of which 7 were cancelled) and 27 refinement targets
(28 total, of which 1 was cancelled). Figure 1 illustrates the organization of the different
branches. Please refer to Supplementary Material for a description of the science gateway.

The wfFUIK branch

This branch starts with a set of structures produced by Foldit2° players and then applies a
selection process based on state-of-the-art computational methods. It was applied to the
prediction of 15 human and 23 refinement CASP10° targets, which are all of the targets
attempted by Foldit. Team members from the contributing labs adapted their methods to
work within the context of this branch. For example, some methods that were originally
designed to operate on smaller datasets had to be modified to work on the large sets of
Foldit-generated structures. Other methods had to be adapted to handle systems containing
structural symmetry as these systems were attempted by Foldit.
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Supplementary Figure S1 represents the combined methodology. (A) Foldit2? players
generate an ensemble of protein models on the order of 10° models per target. (B) Structural
filtering is performed to eliminate very similar structures (RMSD < cutoff), those with
unrealistic solvent accessible surface areas?!(SASA), and those lacking secondary structure
elements. This yields an enriched set consisting of 103-104 structures, called the Unique/
Filtered set. (C) The iterative traveling salesman based clustering algorithm, ICON?2 is used
to select less than 100 models representing the entire conformational space, and the lowest
energy structures based on the Rosetta?3 and dDFIRE24 energy functions are added to that
set. (D) These models are refined using a knowledge-based potential followed by stereo-
chemical correction implemented in the KoBaMIN2>-27 server. (E) Finally, GOAP?8,
Rosetta?3, dDFIRE24, and APOLLO,2 are used to rank the models, leading to a consensus.

The wfFUGT branch

Like wfFUIK, this branch starts with a set of models produced by Foldit then deviates from
wfFUIK from step (C) on. It was applied to the prediction of 13 out of the 15 human targets
attempted by Foldit and 17 out of the 21 refinement targets attempted by Foldit in CASP10°.
The replica exchange Monte Carlo simulations that are part of this branch’s pipeline
(described below) were computationally expensive and for some targets the generation of
Foldit models, followed by the filtering step did not allow for enough time for this pipeline
to complete. The wfFUGT branch tests combining sampling by Foldit players with filtering
algorithms, model selection by the knowledge-based potential GOAP, and the TASSER30:31
refinement protocol. Starting from the Unique/Filtered structures, GOAPZ28 selects the top 30
models from the enriched set. TASSER3Z next refines the selected models. TASSER is
primarily developed for refining template models built upon PDB structures found by
threading methods. Here, it is applied to Foldit-generated structures. First, it extracts
distance and contact restraints based on consensus conformations of the 30 selected
structures. Then, it starts from the 30 structures and moves them to satisfy the distance and
contact restraints using replica exchange Monte Carlo simulation33 in a Ca representation.
Low energy trajectories are outputted at fixed step intervals. At the end of the simulation,
these trajectories are clustered using SPICKER34. Submitted models are the top cluster
centroids with rebuilt main-chain and side-chain atoms.

The wfCPUNK branch

This branch is an ab initio/free modeling branch that combines secondary structure, beta
sheet topology, and contact predictions with the sampling capabilities of coarse-grained
replica-exchange molecular dynamics, when templates are unavailable. 1t was applied to the
prediction of 21 small to moderately-sized targets due to the extreme computational cost
involved. Of those 21 targets, only 4 belonged in the free modeling category. First, coarse-
grained simulations with the UNRES force field35-39 (www.unres.pl) are employed to carry
out Multiplexed Replica Exchange Molecular Dynamics (MREMD)0. Dihedral-angle and
distance restraints are imposed on the virtual-bond dihedral angles between the consecutive
a-carbon (Ca) atoms and virtual side-chain distances. The restraints are obtained using a
consensus-based method, CONCORD?! for secondary-structure prediction, a novel
optimization-based approach, BeST#2, for beta-sheet topology prediction, and a physics-
based method of inter-residue contact prediction®3:44,
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For each protein, 64 MREMD trajectories are run at 32 different temperatures (2 trajectories
per temperature). The last 12,800 snapshots (200 snapshots per trajectory), where each
snapshot is saved every 20,000 conformations, are taken for further analysis, which is
carried out by using the weighted-histogram-analysis method (WHAM)*°. This method is
used to calculate the relative probability of each conformation from the last portion of the
MREMD?38 simulation and to calculate the heat-capacity curve and other thermodynamic
and ensemble-averaged properties. Then, the conformations are clustered at the selected
temperature, which is equal to T,,-10K, where T, is the position of the major heat-capacity
peak. Five clusters with lowest free energies are chosen as prediction candidates. The
conformations closest to the respective average structures corresponding to the found
clusters are converted to all-atom structures#647 and their energy is minimized using the
KoBaMIN server?’.

The WeFold branch

This branch was applied to the prediction of 43 human CASP10° targets. It starts with all
models from all CASP servers and WeFold methods and assesses them using the APOLLO
model quality assessment prediction method. APOLLO?? first filters out illegal characters
and chain-break characters in the models predicted for a target. Next, it performs a full
pairwise comparison between these models by calculating GDT_TS scores between a model
and all other models using the TM-Score*® program. The mean pairwise GDT_TS between a
model and all other models is used as the predicted GDT_TS of the model. Subsequently,
TASSER32 is employed to refine the top 30 selected models. First, TASSER extracts
distance and contact restraints based on consensus conformations of the 30 selected
structures. Then, it starts from the 30 structures and moves them to satisfy the distance and
contact restraints using replica-exchange Monte Carlo simulations33 in a Ca representation.
Low energy trajectories are output at fixed step intervals. At the end of simulation, these
trajectories are clustered using SPICKER34. Models selected for submission were the top
cluster centroids with rebuilt main-chain and side-chain atoms.

The WeFoldMix branch

This branch was created by a new group that did not participate in CASP10° by itself, and
was applied only to the prediction of 5 human and 1 refinement CASP10° targets due to the
extreme cost of performing replica-exchange molecular dynamics simulations and
parallelization inefficiencies due to low atom/processor ratios when using implicit solvent. It
starts with a small set of high-quality models collaboratively generated and ranked. Each
model is energy minimized using the steepest descent method°. Initially, no constraints are
applied to the protein; in the second step all covalent bonds are constrained with the LINCS
algorithm®0. Simulations are performed using GROMACS 4.5.54° with the AMBER99SB-
ILDN5! forcefield and the GBSA52 implicit solvent model. Replica-exchange molecular
dynamics (REMD) is employed to overcome the conformational trapping of the structures in
local potential energy minima by diffusion in temperature space. A total of 8 simultaneous
simulations (replicas), are performed in the temperature range of 298-473K and are allowed
to exchange each 5 ps according to the Metropolis criterion®3. The observed average
exchange probability was 0.2.
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After 1-3 ns of REMD, the 298K -trajectory portion reaches convergence and is used for
cluster analysis using a single linkage algorithm. Each cluster centroid is submitted to the
previously described two-step energy minimization process and each minimized cluster
centroid is ranked based on several structural and energetic metrics. These metrics include
potential energy, number of intra-protein hydrogen bonds, and SASA. The structures with
the best consensus metrics are submitted.

Selection strategy employed by the four Foldit-based teams during CASP10

Here we describe the selection process used by the FOLDIT team, as well as the three teams
associated with it. This serves to explain the different performance of the wfFUIK and
wfFUGT teams compared to FOLDIT.

Quality and ranking of Foldit models by the FOLDIT team is determined by the Rosetta full-
atom energy23. For each CASP target, the lowest Rosetta energy Foldit prediction for each
individual Foldit player is kept, in an attempt to select a conformationally diverse set of
FOLDIT submissions out of the top-ranked Foldit predictions. Since Foldit allows players to
form teams for cooperative gameplay—and share solutions with teammates—the top-ranked
predictions were often very similar to one another for players on the same team. This was
generally not the case when comparing the top prediction across different teams (or players
who are not part of any team), therefore the selection strategy during CASP10° for the
FOLDIT team was to examine the lowest Rosetta energy Foldit prediction generated by each
individual team (players without a team were considered their own team). The five CASP
submissions for the FOLDIT team were selected by manually inspecting these representative
solutions from each team, and selecting a conformationally diverse set of predictions by
visual inspection. This was the same selection strategy used for FOLDIT submissions during
CASP9°4,

Before the start of CASP10°, three Foldit-based teams (Anthropic Dreams, Contenders, and
Void Crushers) requested the ability to select and submit their own CASP submissions from
a pool of their own team's solutions. Each of these three teams was provided with two top-
ranked predictions for each of the players on their Foldit team: the lowest Rosetta energy
solution each player generated on their own, and the lowest energy solution that player
worked on by sharing with the rest of their team. As Foldit does not allow different teams to
share solutions with one another, these three CASP10° teams were completely independent
from one another, and also independent of the submissions by FOLDIT.

Metrics Used in Analysis

The global distance test total score (GDT_TS5®) is approximately the percentage of residues
that are located in the correct position12. It has become a standard evaluation measure in
CASP56 for determining the accuracy of a structure, preferred over the common root-mean
squared deviation (RMSD) metric. GDT_HA®' is a finer metric, which uses tighter Ca,
distance cutoffs.

GDT_TS and GDT_HA are calculated using the TM-Score*8 program. Both of these metrics
can be presented on a zero to one basis or alternatively as a percentage. The higher the value
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is, the more similar the prediction is to the true structure. GDT_TS is used throughout this
paper except for when we refer to the refinement assessors as they used GDT_HA.

The thirteen labs participating in the WeFold initiative were arranged into five branches,
each representing five independent protein structure prediction methods that combine
different components from their contributing group. Three of the branches produced one
remarkable result each and two of these results were featured by the assessors in the
refinement® and free modeling®® categories. However, none of them produced consistently
good results. In this section, we discuss the strengths and potential of these branches, as well
as their weaknesses. We also discuss the strengths and weaknesses of the WeFold
experiment as a whole. Our assessments are based on the CASP official results and
assessments available at http://predictioncenter.org/CASP10.

What Went Right in the Collaborative Protein Folding Pipelines

The wfCPUNK Branch—The wfCPUNK branch aimed to address free modeling targets.
These targets are among the hardest with poor to no sequence identity in the “twilight
zone”? and thus lack a determinable structural template. Of the four free modeling targets
attempted by wfCPUNK, it achieved its best performance for target T0740_D1, yielding a
high-scoring model according to the cumulative plot of a-carbon accuracy as shown in
Figure 2. This result is attributed to the ab initio contacts predicted as part of the pipeline,
which were used in wfCPUNK and not used by the other methods undergoing UNRES
sampling (i.e., Cornell-Gdansk and KIAS-Gdansk). In fact, the helix-helix contact
predictions*3:44 that were contributed by the FLOUDAS group and used as restraints in the
UNRES simulations made a difference in the sampled space. Figure 3 shows the predicted
contacts superposed on the experimental structure, the best model (Model 4) from the
wfCPUNK group, and the best model from the Cornell-Gdansk group (Model 3). It can be
seen that the restraints made the C-terminal a-helix bent and packed against one of the
middle a-helices. Unlike the experimental structure, this a-helix is straight in the Cornell-
Gdansk Model 3.

The most accurate prediction for this target according to GDT_TS was 38.87 and it was
produced by RaptorX-Roll. The GDT_TS of the wfCPUNK prediction was 32.10. However,
from Figure 2 it can be seen that the percent of residues within a distance cutoff line for the
wfCPUNK Model 4 clearly extends to the right beyond that for any other model, albeit this
happens only after the 5A distance threshold. This feature arises from the middle resolution
of the UNRES force field, which reproduces well the overall topology of protein folds and
supersecondary structure/domain packing but does not reproduce finer details of protein
folds. It should be noted that the same feature of GDT_TS plots was observed for UNRES-
predicted structures of T0668 and T0684-D20. For another target, T0663, the UNRES
prediction was not among those top ones as far as the GDT_TS plots were concerned;
however, UNRES was one of the only two approaches that predicted the correct topology of
domain packing and this prediction was, therefore, featured by the CASP assessors.
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Table | presents the GDT_TS values for the predictions by wfCPUNK and its component
methods, as well as other groups using the component methods. wfCPUNK was able to
outperform both the Cornell-Gdansk and KIAS-Gdansk teams in three of four targets, and
FLOUDAS in two out of four targets. These results, although not statistically significant,
highlight the potential benefits of combining methods for the prediction of free modeling
targets.

The wfFUIK Branch Applied to Refinement Predictions—According to the
refinement category assessors, the large majority of the fifty groups that competed in
CASP10° failed to improve the quality of the starting models and even the successful groups
were able to make only modest improvements. Only very few methods could consistently
refine the targets. Noteworthy examples are FEIG20:61 (positive AGDT_HA for 24 targets),
Seok®2 (positive AGDT_HA for 16 targets) and KnowMIN (positive AGDT_HA for 15
targets)®. As the assessors pointed out®, wfFUIK improved GDT-HA significantly less
frequently than the FEIG and Seok groups (i.e. wfFUIK improved GDT-HA for 5 targets),
but its models improved GDT_HA by the largest amount, with the same being true for the
MolProbity (MP) scores®3 (MP is the MolProbity score that combines the log-scaled counts
of all-atom steric clashes, atypical rotamer conformations and unfavorable backbone torsion
angles in each prediction). Also, FEIG, Mufold, and wfFUIK are the top groups at side-
chain positioning. These conclusions reached by the assessors are reflected in Table 11,
which uses GDT_TS (the comparative measurement used throughout this paper).

To illustrate the potential additive benefits of the wfFUIK pipeline, Figure 4 shows a
walkthrough of the contributions of each step of the wfFUIK method to the refinement of
target TR722. First, (A) the starting structure was given to Foldit players. There were two
Foldit runs; one run treating the structure as a monomer and another run treating it as a
symmetric dimer. In total, the players produced 256,776 structures. A filtering step was
performed on both the monomeric and symmetric set, leaving a Unique/Filtered set of
20,488 monomers and 30,855 symmetric structures, which comprised 20% of the total
number of structures generated. They are represented by grey dots in each plot in Figure 4.
The starting structure is shown as a red color “X” and had a GDT_TS of 58.0. The structures
that would be selected by naively taking the one with lowest Rosetta energy for both the
monomer and symmetric dimer are shown as pink squares. (B) From the Unique/Filtered set,
those structures that are the cluster medoids selected by ICON?2, as well as the lowest
energy structures from Rosetta?3 and dDFIRE?# are highlighted in blue. Several structures
from this population are already more accurate than the structures generated in the previous
step. Next, (C) the structures that resulted from step B were further refined using
KoBaMINZ and are shown as cyan dots. After this step, a higher fraction of structures has
improved GDT_TS’s relative to the step B structures. The cyan dots, generally located down
and to the right relative to the dark blue pre-KoBaMIN population, indicate that KoBaMIN
structures are refined with lower energies and improved GDT_TS’s. (D) The structures
submitted in blind prediction are shown in pink stars. Those structures were selected
according to a number of energy and quality-assessment metrics and to be diverse from each
other.
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Figure 5A shows the best model out of the five submitted, which garnered a GDT_TS of
65.95 (the top Model 1 prediction for this target came from one contributing group,
FLOUDAS, yielding a GDT_TS of 63.19). The best wfFUIK model achieved the “peak-
performance” in terms of AGDT_TS for TR722; that is, it was the #1 most refined structure
according to AGDT_TS considering all the models submitted for this target by all groups. It
was the #3 most refined structure according to AGDT_TS among all refinement targets
considering all the models submitted by all groups (see Table I1) and it was featured by the
CASP10° assessors in the refinement category for being one of three models where large
increases in GDT_HA were observed®.

The average GDT_TS of blind predictions for this target from all CASP10° participants was
52.9+7.5, indicating that wfFUIK’s best blind prediction outperformed the rest of the
predictions by more than one standard deviation. This model is ranked 93 out of 51,343
models contained in the Unique/Filtered set, which is comparable to the top 2% of structures
produced by the Foldit players. There are even better structures in the Unique/Filtered set
that were not chosen (please refer to section What Went Wrong in the Collaborative
Pipelines for a detailed analysis). Significantly, the best structure contained in the filtered set
had a GDT_TS of 71.26, which if selected would have outperformed the average prediction
by over 2 standard deviations. The strategy employed by Foldit to use both monomeric and
symmetric dimer prediction runs increased the chance of a successful prediction. This
example shows that coupling the human players’ abilities to refine the proteins with the
subsequent clustering, refinement, and scoring methods in the wfFUIK protocol can make it
possible to successfully select models among the very best from the remarkably large
population of structures produced by Foldit. More importantly, TR722 is not the only target
for which wfFUIK produced models that were more accurate than the starting one as shown
in Table II.

However, the wfFUIK branch did not achieve consistently good results. In the section
“What Went Wrong in the Collaborative Pipelines,” we investigate the step-by-step results
of wfFUIK applied to other CASP10° targets and show that although the structural accuracy
remains, it was the last step that consistently failed to select the best models that had been
produced by the previous steps.

The wfFUGT Branch Applied to Refinement Predictions—This branch, which is
also based on Foldit, did not do as well as wfFUIK. Nevertheless, it produced a noteworthy
model for refinement target TR705. In fact, the wfFUGT branch improved the starting
GDT_TS of TR705 from 64.84 to 70.052. This blind prediction, which was the best
submitted for this target considering only Model 1 and ranked 5" when considering all
models, is shown in Figure 5B (green), along with the native (black) and starting (red)
structure. Next, we compare the performances of wfFUGT and wfFUIK to their base method
Foldit.

Overall Comparison of wfFUIK and wfFUGT to Base Method FOLDIT for
Refinement Targets: There were six independent teams that began with structures
produced by Foldit players: FOLDIT, Anthropic Dreams, Contenders, VVoid Crushers,
wfFUIK and wfFUGT. Anthropic Dreams, Contenders, and VVoid Crushers were created and
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run by the Foldit players themselves (see Methods). Table 11 shows the top 15 best per-target
improvements in GDT_TS during CASP10° considering the 5 models predicted by all
methods. This table shows that Anthropic Dreams, VVoid Crushers, and the WeFold wfFUIK
branch submitted the three best per-target improvements in GDT_TS over the starting
models for the refinement category at CASP10°. Also noteworthy is that wfFUIK is the
FOLDIT-based group with the largest number of positive AGDT_TS.

Figure 6 shows a head-to-head comparison of the refinement models submitted to CASP10°
using the wfFUIK and wfFUGT methods to those submitted by the base method FOLDIT
considering the best of 5 models. This figure is based on the data shown in Table 11 which
provides a comparison of the best refinement structures submitted in CASP10° from Foldit-
derived branches versus all predictions submitted by all groups. Specifically, the Foldit-
derived models are compared against the mean of the GDT_TS values for all models
submitted for each target. This table also provides the standard deviation for each target.
wfFUIK submitted more accurate predictions than FOLDIT by GDT_TS in a large majority
(74%) of all of the refinement targets attempted by both teams. On the other hand, the
wfFUGT method outperformed FOLDIT in 53% of those cases. This indicates that wfFUIK
is a better refinement strategy than wfFUGT, and its improved performance is due to the
multi-step selection process used in the method. Furthermore, we performed a one-sided t-
test comparing the best predictions by FOLDIT to those by wfFUIK, and wfFUGT. The P-
value between FOLDIT and wfFUIK is 0.031, indicating a statistically significant
improvement. Conversely, the P-value between FOLDIT and wfFUGT is 0.317.

Although the wfFUIK branch amplified the refinement relative to the base method FOLDIT,
many of the submitted models did not refine the structures relative to the start. Thus,
although it achieved AGDT_HA > 0 in 5 of the 23 targets attempted® and placed among the
top 10 ranked groups where Model 1 AGDT_HA was positive8, overall it ranked below the
naive method of doing nothing to the input structure according to the score used by the
CASP105 refinement assessors, which includes deviations of GDT_HA, RMSD, and other
metrics®. This result may not be surprising as the method components have not been
optimized to maximize performance given the output from each stage of the prediction
pipeline. Optimization of the stages in each WeFold branch to maximize performance
relative to the input from the previous stage(s) may lead to improved performance of the
branches in the future. Nevertheless, these results show that the wfFUIK pipeline did
consistently outperform its base method FOLDIT even without prior optimization.

The WeFold Branch: Figure 7 shows the performance of the WeFold branch in absolute
comparison to all Model predictions, and in relative comparison to the top Model
predictions by all groups and all methods. The absolute performance is assessed based on
the Z-score of the GDT_TS of the best model submitted by WeFold relative to all
predictions by all groups and methods. We calculated the Z-score of each target as

(BestWeFoldPrediction

apr. s — Mapr. TS)

Z — score=
, where Ugpt T5and apt Ts

denote the mean and standard dewatlons of the GDT_TS values for all Models submitted to
CASP10° for that particular target. The relative comparison is based on the ratio between the
GDT _TS score of the best WeFold prediction and the best GDT_TS achieved by all groups
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BestWeFoldPrediction
for each target, calculated as 0 Best=—F = er S < 100 The weFold

branch performed comparably (11 targets) or better (12 targcé]i)sT)_tﬁ;n TASSER (one of its
base methods) in 53% of the attempted targets as shown in Table V. This table provides a
comparison of best structures submitted in CASP10? for tertiary structure prediction by
WeFold branches and their component methods to the best and average predictions
submitted by all groups. The best prediction for each target among these methods is bolded.
In some cases such as T0676, T0O700, TO735, and T0744, the WeFold branch did
substantially better than TASSER in terms of both GDT_TS and overall ranking (Table IV).
The reason for the difference between WeFold and TASSER (human group) is due to the
difference between the model selection methods, i.e., APOLLO (used by WeFold) and
GOAP (used by TASSER). When consensus information was useful, APOLLO performed
better than GOAP and, consequently, WeFold performed better than TASSER. Overall
though, TASSER significantly outperformed the WeFold branch “winning” 17 targets in the
cross-comparison, with a one-sided P-value of 0.032 (Table V). This result indicates that
WeFold branch has substantial room for improvement.

What Went Wrong in the Collaborative Pipelines

In this section we discuss the main reasons why the collaborative effort did not do as well as
expected given the combination of methods. In some cases such as wfCPUNK and
WeFoldMix, the branches did not attempt enough targets to make any statistically
significant conclusion. In other cases such as wfFUIK and wfFUGT we present a detailed
analysis that shows the reason why the collaborative branch failed to produce more positive
results.

Problems Identified in the wfCPUNK Branch Applied to Human Free Modeling
Targets—This branch submitted only 4 free-modeling targets. This low number of
submissions is due to both the uncertainty with which targets are deemed as “Free
Modeling™ prior to their prediction and the high computational cost of performing MREMD
calculations which is aggravated by the limited computational resources available. Going
forward, the branch plans to explore the use of a consensus from different contact prediction
methods rather than the results from a single method to increase its chances for success.

Problems Identified in the wfFUIK and wfFUGT Branches Applied to Human
Tertiary Structure Prediction Targets—We observed a stark difference between the
performance of the WeFold and FOLDIT methods for tertiary structure prediction targets
and refinement targets, and these differences can be explained by discrepancies between the
input data. In CASP10°, Foldit had two runs, called puzzles, for tertiary structure prediction
targets. In the first run (Run 1) players are only given the sequences of the target and several
alignments to proteins determined by fold recognition methods. In this run, the players can
modify the alignments and must determine how to connect the regions that are not well
aligned, and have full responsibility for the folding pathway of the proteins. These were the
Foldit predictions that were shared with the various WeFold branches. In the second run
(Run 2), players are given a number of starting models generated by servers that have
performed well in previous CASP experiments. Thus, in Run 2, folding was somewhat akin
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to a refinement problem. Often, these initially provided structures are well predicted and are
trapped in deep local minima, so subsequent refinement was unable to substantially change
the initial structures. It was observed that the structures generated by Run 2 more often
yielded lower energy (higher in-game scores) than the structures generated by Run 1, and
thus they were usually the final models submitted by the FOLDIT team. Because the server
predictions used for Run 2 were not publicly released until six days after the server deadline
for each CASP10° target, there was not enough time to send these Run 2 Foldit predictions
through the WeFold pipelines (often these Run 2 Foldit puzzles would close the day before
the CASP10° target deadline). As a result, it is unfortunately not possible to draw any fair
meaningful comparisons between wfFUIK, wfFUGT, and FOLDIT in tertiary structure
prediction. Reflecting on the design of the experiment, this is one area that should be
improved upon for the next CASP so that the methods could be directly compared.

Problems Identified in the wfFUIK Branch Applied to Refinement Predictions
—Although the wfFUIK method net improved upon its base method FOLDIT, like most
refinement methods, wfFUIK suffered from two problems: (1) degrading of the starting
model and (2) final model selection. This is not surprising given that the starting structures
which are already accurate predictions have been driven into deep local minima. In order to
analyze the effects of each component method in the pipeline and show where it failed, we
performed a step-by-step analysis of the data starting from the Unique/Filtered set (the U
step in wfFUIK) for a subset of 13 randomly selected refinement targets. We use this subset
to demonstrate the difficulties in selection as a proof by contradiction.

It is noteworthy to mention that the step-by-step analysis of the performance is very time
consuming as it requires evaluating tens to hundreds of thousands of protein models created
by the Foldit players for each target. Therefore, we chose a random subset consisting of half
of the total number of refinement targets attempted by this branch.

Figure 8A demonstrates critical weak points of the method and the results of this analysis.
First, the Foldit players were able to refine the initial structure in 12/13 of these targets. In
6/13 targets, the most refined structure in the Unique/Filtered set (pink) has a GDT_TS
value that is greater than or equal to the best submitted by any group in CASP10° (light
blue) by an appreciable margin. Table V shows the best GDT_TS value at each step of the
wfFUIK branch (columns) for each of the 13 targets (rows) considered in this test. The last 2
rows show the accumulated GDT_TS values (} GDT_TS) over the 13 targets, as well as the
difference (AYGDT _TS) between the YGDT _TS for any column and the YGDT _TS for the
column corresponding to the starting structures. If the best structure in the Foldit+Unique
column could be selected then the total improvement by GDT_TS would be +52.38, which
is in line with the very best from each single method submitted to CASP10° of +53.17 (last
column). Unfortunately, none of the selection procedures used by FOLDIT (described in the
Methods section) or the WeFold branches were able to select these models.

Despite the ranking problems, the wfFUIK method overall did much better than the naive
approach of taking the lowest energy structure from a single energy function such as
dDFIRE?4 or Rosetta?3. Choosing dDFIRE?4 or Rosetta?3 as a selection strategy would
yield a AYGDT_TS of —133.69 and —120.24 for these 13 targets (see Table V), which
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represent a GDT_TS degradation of 14% and 12% respectively. The ICON step in wfFUIK
selected on average a subset of 23 structures. In 11/13 targets, this subset included structures
with a higher GDT_TS value than the lowest energy dDFIRE or Rosetta structure.
Therefore, the ICON step achieves an improvement of 104.45 GDT_TS points over the
lowest energy dDFIRE and 91 GDT_TS points over the lowest energy Rosetta conformers, a
10% improvement over the naive method.

KoBaMIN was able to refine the best structures contained in the ICON set in 10/13 targets,
thus contributing small, but consistent gains in GDT_TS in the pipeline. Each step (Foldit,
Unique, ICON, KoBaMIN) worked together to identify candidate structures that were often
better than the lowest energy of a single metric alone. Unfortunately, the last step of the
wfFUIK method, which ranked the subset of KoBaMIN-refined structures and selected the 5
models for submission failed to pick the best structures in 7/13 targets (dark blue).

Besides the weakness identified at the final ranking step of the pipeline, another problem in
wfFUIK was associated to the small size of the Unique/Filtered set. An ideal selection
procedure would be able to enrich the probability of selecting among the most refined
structures from the massive number of conformers available. In the Unique/Filtered set,
there were only 6/13 targets where there were more than 10 structures that were refined
relative to the starting GDT_TS. In 6 of the remaining 7 targets, there were 3 or less better
structures than the starting structure. To our knowledge, there is no current method capable
of picking those structures among the thousands in the Unique/Filtered sets (average of
15,836 conformers) and hundreds of thousands in the unfiltered set (Supplementary Table
S2). The method as it currently stands was unable to consistently select from the small pools
of refined models among the significantly larger set of total models contained in the Unique/
Filtered sets, as demonstrated by this subset of targets. These results suggest the filtering
step (the “U” step in wfFUIK) may have been too stringent for these sets that contain many
very similar structures. Based on the challenges observed, we believe a refinement strategy
capable of addressing the selection of the best model among a large pool of candidate
models would be of utility.

What Went Right and What Went Wrong Beyond the Pipelines

The WeFold experiment showed that part of the protein structure prediction community is
ready to collaborate at a larger-scale. More importantly, the WeFold experiment showed that
such collaboration can produce the following results, which include:

1. A cyber-infrastructure that facilitates frequent, open discussions among researchers
and allows the creation of hybrid pipelines composed of state-of-the-art methods
thus leveraging their strengths at a scale that had not been tried before.

2. Resources to share and process extremely large data files and databases and to
execute computationally expensive codes.

3. The creation of pipelines by the contributing labs themselves. Having the experts
contributing their developed methods in their best way possible presumably is
better than the alternative approach of a single lab/person attempting to utilize all of
the methods in isolation without any guidance of how to best use them. The
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collaborative approach also allowed for the ability to adapt sub-methods to work in
the setting of WeFold within a reasonable amount of time, since the individual
groups are the experts to modify the source code of their own methods. Adaptation
of the source codes developed by diverse groups, so that they can work together,
may have proven difficult and time-consuming for a single group.

The generation of a vast number of decoys. Almost 9 million decoys were
contributed by the different groups as shown in Supplemental Table S2. This is
over 170 times the number of models submitted to CASP10°. If curated, these
structures could be very useful for designing, training, and improving energy and
scoring functions, which as we have just shown, have difficulty in selecting top
models among an ensemble of very similar decoys.

A unique opportunity for students and young researchers to interact on a daily basis
with researchers from other labs, to share their models, and to learn new methods
and uses that they can then share with their lab members.

Data and discussions which are all publicly available and searchable.

Although the WeFold experiment produced enough evidence to warrant its continuation, it
did not produce enough good results to categorically claim success. Some of the issues that
stood in the way to success include:

1.

Only 13% of the manual groups registered for CASP10° participated in the
experiment. The project needs to scale up to increase the chances for success. The
higher the number of components contributed, the higher the chances to create the
ideal combination of methods that perfectly complement each other.

The gateway is overly restrictive and is based on an approach that does not scale
up. All gateway users have to apply for and get NERSC accounts even if they do
not need to use the NERSC computers. NERSC can only issue accounts to those
users that are affiliated to a trusted institution.

The gateway lacks a workflow feature that permits users to quickly assemble
pipelines. Members of a lab contributing a component to any of the pipelines
needed to run that component and then pass the output to the next lab contributing
the next component in the pipeline. This method of operation made it impossible to
quickly optimize and benchmark the new pipelines. It also made the execution of
the pipelines very time consuming. Thus, the hybrid methods were created during
the first days of CASP10° and there was no time to optimize their components to
work within the new pipeline. For example, the ICON component of the wfFUIK
branch was originally designed by the Floudas lab to deal with the hundreds to
thousands of structures generated by their own pipeline. Therefore, it needed to be
adapted to work with hundreds of thousands of structures in the wfFUIK pipeline.
Because there was no time for adapting the algorithm or parallelizing the code, a
preprocessing step had to be included in wfFUIK in order to filter out structures
before using ICON. This filtering solution step may have been too stringent for the
refinement targets as the models generated are usually very similar but there was no
time to change the procedure.
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4. The gateway lacks a feature that allows users to run their individual codes and
collaboratively create pipelines directly via the gateway. Therefore, users could not
use the gateway as a launching platform to run their codes and their collaborators
could not see the status of those runs.
Discussion

Successful blind prediction of a protein's structure requires the correct identification of its
secondary structure, the best template and sequence alignment, the accurate prediction of
contacts, the accurate prediction of the B-sheet topology, broad sampling, and selection
among the populations of structures generated!3. Each one of these problems is extremely
complex and no single lab, no matter how big its resources, has found the optimal solution
to all of them. Therefore, we strongly believe that success will come by combining methods
and expertise from the different labs, organizations, and individuals that have a stake at
solving this problem.

The WeFold experiment was created to realize this potential. WeFold is a social-network-
based experiment that comprises both a platform that provides a cyber-infrastructure (high
performance computing, science gateway, and advanced networking) and a community of
committed individuals that strongly believe in collaboration to advance science. WeFold
brought together junior and seasoned scientists from thirteen labs around the world. Prior to
WeFold these groups used their own prediction methods to compete against each other
during CASP. WeFold enabled them to compete and collaborate within the same venue;
therefore, coopetition accurately describes this interaction. A science coopetition of this
magnitude that takes advantage of both expert and citizen scientists from around the world is
unprecedented. The execution of such an ambitious project is not straightforward and it is
important to determine what needs to be done to warrant its continuity and success.

The WeFold pipelines are a combination of components, which are part of state-of-the-art
methods that have been optimized and benchmarked and so, outperforming them was a
difficult task. Nevertheless, the WeFold experiment shows that it is possible for a
collaborative method to outperform its base method. For example, the combination of
UNRES with the contact predictions of Floudas group and the KobaMIN from the Levitt
group for the prediction of Target TO740 led to a model that was closer to the experimental
one that those produced by UNRES alone; and the combination of Foldit with a multi-step
process consisting of filtering, clustering, refinement, and selection could identify improved
models among the hundreds of thousands of models created by players in more cases than
Foldit alone. However, the improvements were not consistent across base methods and
prediction categories and in certain cases it was not possible to perform a fair comparison
due to discrepancies between the input data used by the WeFold branches and the base
methods. Hence, it is too early in this collaborative approach to science to yield any larger
conclusions. Nevertheless, the results shown here warrant its continuity and highlight the
areas in need of improvement. It is also evident that new and different collaborative methods
must be tried in future WeFold experiments to maximize the chances of finding the ideal
combination of methods that optimally complement each other. For example, it may be
interesting for scientific value and for the community in general to create pipelines that
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combine the very top structure prediction method(s) and the very top refinement methods.
These methods themselves are automated pipelines and may be amenable to combination.
Conclusion

The implementation of a coopetitive effort is not a trivial task. Therefore, we decided to
tackle it step-wise. First, we had to gauge the community to determine if there was enough
interest for a collaborative project of this scope. Fortunately, we realized that at least part of
it was ready. Second, we had to develop a prototype infrastructure with the essential features
to support such collaboration. We determined that the basic features needed to start were
password-protected online discussions and sharing of files and we implemented such
prototype. We also obtained the resources that were essential to run the expensive codes and
store the files. Using these tools, the community created new hybrid pipelines, contributed
an overwhelming number of models and even shared their final models which were ranked
by different techniques. The project has recently initiated its next phase and efforts are
currently underway on the following fronts:

Science gateway

Pipelines

We are collaborating with members of the Science Gateway Institute (http://
sciencegateways.org) to develop a new science gateway using cutting-edge technologies®4.
This gateway will provide users with the tools to collaborate at a larger-scale, as well as to
assemble pipelines, run codes, manage large data, and selectively share information with
other groups or with the public.

The community has identified some critical areas that need improvement as described in this
work. Efforts are underway to optimize and fine-tune these methods tested during CASP10°
with the goal to further enhance their combined predictive ability. These efforts include a
hierarchical clustering method to efficiently and effectively select representatives from the
large set of protein structures and a scoring function that takes advantage of machine
learning techniques and the massive amount of structural data generated during the WeFold
experiment that is now publically available.

Reach out to the community beyond CASP

Our goal to engage the large community is very ambitious but again, we plan to accomplish
this gradually. We will create a database of WeFold decoys that will be available for
downloading and querying, as well as its associated metadata that include protein-like
features such as those proposed and successfully used for selecting models (Chen Keasar,
Personal Communication). We have initiated discussions with members of the machine
learning community and will present the scoring function challenge to them during an
upcoming workshop.

The barriers to access the gateway must be lowered to allow the expansion of the WeFold
community. In this new approach to doing science, ideas can come from anywhere, talents
can come from everywhere, and we need to ensure that WeFold provides an environment
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where people have the opportunity to express their ideas, to bring their best contribution,
and to merge those ideas and contributions into methodologies that accelerate innovation
and push the protein folding field forward.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Visual depiction of the five WeFold branches collaboratively formed and tested during

CASP10. wfFUIK and wfFUGT both began with structures generated by human players in
the online multiplayer game Foldit. Foldit allows players to fold proteins independently on
their home computers, as well as share their predictions with other players around the world.
Foldit players are also able to fold structures by hand using the XBOX Kinect (http://fold.it/
portal/node/993534) as well as with the Leap Motion (http://fold.it/portal/node/995117).
These generated structures were subsequently clustered, scored, and refined. wWfCPUNK is
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an ab initio branch combining secondary structure prediction, beta-sheet topology
prediction, contact prediction, coarse-grained replica-exchange molecular dynamics, and
clustering. WeFold Branch and WeFold Mix began with the structures generated by the
other branches and/or from servers participating in CASP10.
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Figure 2.
WFCPUNK (black lines) outperformed all individual components and all other groups and

methods for Free Modeling target T0740_D1. The model produced by wfCPUNK is shown
in the inset with a rainbow color, aligned with the native shown in black. The average
prediction among all groups for this target had a GDT_TS of 21.68+4.55. Interestingly, the
individual groups contributing to the method also outperform the average in a statistically
significant fashion, with the combined method outperforming the individual methods. This
figure was adapted from a GDT_TS plot generated on the CASP10 website, with
permission?.
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Figure 3.
Illustration of the ab initio predicted helix-helix contacts*344 implemented as restraints in

UNRES sampling superposed on the experimental structure of T0740. The restraints are
superposed on the experimental structure (A), the best model (model 4) from the wfCPUNK
group (B), and the best model (model 3) from the Cornell-Gdansk group (C). The restrained
parts of the molecule that belong to the same sets of restraints are marked with the same
color, from blue to red from the N-to the C-terminus. It can be seen that the restraints
marked with orange color made the C-terminal a-helix, which is straight in the Cornell-
Gdansk model, bend. The restraints marked with red color made the C-terminal a-helix pack
with the long middle a-helix, similar to the packing in the experimental structure. This
figure was created using PyMOL5.
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Figure 4.
Iustrative walkthrough of wfFUIK pipeline for the blind prediction of refinement target

TR722 in CASP10. (A) The starting structure was given to Foldit players, who produced
256,776 structures. A filtering procedure is applied to remove unlikely candidate structures.
20,488 monomers and 30,855 symmetric structures remained after filtering, shown as grey
dots in each plot. The starting structure, shown as a red cross and highlighted as a red dotted
line, had a GDT_TS of 0.58. The structures that would be chosen by naively selecting the
ones with the lowest Rosetta energy for both the monomer and symmetric dimer are shown
as pink squares. (B) From the Unique/Filtered set, structures that were the cluster medoids
selected by ICON, as well as lowest energy Rosetta and dDFIRE structures are highlighted
in blue. (C) Structures produced after running the previous set through KoBaMIN are shown
as cyan dots. (D) Structures submitted in blind prediction are shown as pink stars. The

GDT _TS is shown here normalized on a zero to one basis.
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Refined
Native

Figure 5.
(A) Comparison of native structure (black) and refined structure (green) produced by

wfFUIK branch for TR722. The refined structure using this protocol had a GDT_TS of
65.95, whereas the starting model (red) had a GDT_TS of 58.0. This structure is a dimer and
adopts a coiled-coil fold. (B) lllustration of best Model 1 prediction produced by any method
in CASP10 to improve the metric GDT_TS for target TR705. The WeFold method wfFUGT
achieved this improvement, increasing the starting GDT_TS from 64.84 to 70.05. The loops
in the upper-right region of the Figure, as well as in the bottom left were the regions where
the most refinement occurred. TR705 adopts a f-sandwich fold. These examples highlight
significant improvements in refinement for proteins containing only a-helices and p-sheets.
This figure was created using PyMOL®5.
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Comparison of improvements in Foldit models by WeFold methods. (A) In wfFUIK, 74% of
structures were better refinements than the best structure submitted by FOLDIT. (B) Using
wFfFUGT, 53% of structures were better refinements than the best structure submitted by
FOLDIT. The improvements are indicated by the differential bars in white from the base

bars in red.
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Figure 7.
(A) Absolute and (B) relative performance of the WeFold branch on the 43 human targets

attempted. The absolute performance is assessed based on the Z-score of the GDT_TS of the
best model submitted by WeFold relative to all other predictions by all groups and methods
for each target. The relative comparison is based on the ratio between the GDT_TS score of
the best WeFold prediction and the best GDT_TS achieved by all groups for each target. In
both cases, longer positive bars in the y-direction represent better performance.
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Figure 8.
(A) Breakdown of the effect of each step in the wfFUIK pipeline in order to identify

individual contributions to the pipeline, as well as areas needing further attention. The y-axis
is normalized to show the ratio of the GDT_TS of the corresponding model to the GDT_TS
of the starting model so that it can be compared across targets. The legend shows the lowest
energy dDFIRE structure (black) in the Unique/Filtered set, lowest energy Rosetta structure
from all Foldit conformations (red), best GDT_TS contained in the ICON+Lowest E Rosetta
+Lowest E dDFIRE step of the pipeline (green), best GDT_TS contained after those
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structures are refined by KoBaMIN (yellow), best blind prediction of 5 submitted in
CASP10 (dark blue), highest GDT_TS structure contained in the Foldit Unique/Filtered set
(pink), and the best GDT_TS structure submitted to CASP10 by any team (light blue). (B)
Enrichment of candidate conformers by wfFUIK compared to candidate conformers in the
Unique/Filtered set. Shown are the probabilities of selecting a better structure than the start
in the Unique/Filtered set compared to the enriched probability when choosing from the
final set of wfFUIK models.
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Table |

GDT _TS values for the top prediction by wfCPUNK compared to other groups contributing to wfCPUNK for
Free Modeling targets.

Target | wfCPUNK | Cornell-Gdansk | KIAS-Gdansk | FLOUDAS
TO740 321 25.48 24.03 30.81
TO734 15.57 14.74 12.97 12.97
TO741 12.8 14.8 14.8 13
T0666™ 23.47 19.72 18.61 23.89

Structure was submitted late in CASP competition and was not evaluated by the assessors. CASP10 discussions and results pertaining this target
can be found at http://www.wefold.org.
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Top 15 best per-target improvements in GDT_TS made by any team considering all 5 models submitted and

the number of targets for which each team improved the original model.

Group Target Best GDT_TS Number of targets for which
Improvement per target AGDT_TS>0

Anthropic_Dreams | TR671 10.51 3
Void_Crushers TR663 8.06 5
wfFUIK TR722 7.87 6
Schroderlab TR705 6.51 7

FEIG TR723 6.30 23
Schroderlab TR704 5.85

FOLDIT TR710 5.15 3

Seok TR681 4.84 16
BAKER TR696 4.50 8

FEIG TR738 4.42

FEIG TR662 4.33

FEIG TR750 3.71

FRESS_server TR754 3.67 6
Mufold-R TR720 3.03 6
Pcons-net TR644 2.84 1

Foldit-based methods are highlighted in yellow.
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