INTRODUCTION TO ENZYMES

- Enzymes are usually proteins (some RNA)
- In general, names end with suffix “ase”
- Enzymes are catalysts
 - increase the rate of a reaction
 - not consumed by the reaction
 - act repeatedly to increase the rate of reactions
 - Enzymes are often very “specific” – promote only 1 particular reaction
 - Reactants also called “substrates” of enzyme

<table>
<thead>
<tr>
<th>catalyst</th>
<th>rate enhancement</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-enzymatic (Pd)</td>
<td>10^2-10^4 fold</td>
</tr>
<tr>
<td>enzymatic</td>
<td>up to 10^{20} fold</td>
</tr>
</tbody>
</table>

- How much is 10^{20} fold?

<table>
<thead>
<tr>
<th>catalyst</th>
<th>time for reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>1 second</td>
</tr>
<tr>
<td>no</td>
<td>3×10^{12} years</td>
</tr>
</tbody>
</table>

- 3×10^{12} years is 500 times the age of the earth!

Carbonic Anhydrase

Tissues ➔

$$\text{CO}_2 + \text{H}_2\text{O} \rightleftharpoons \text{HCO}_3^- + \text{H}^+$$

Lungs and Kidney

10^7 rate enhancement

Facilitates the transfer of carbon dioxide from tissues to blood and from blood to alveolar air

Many enzyme names end in –ase
Enzymes are necessary for life to exist – otherwise reactions would occur too slowly for a metabolizing organism.

Why Enzymes?

- Accelerate and control the rates of vitally important biochemical reactions
- Greater reaction specificity
- Milder reaction conditions
- Capacity for regulation
- Enzymes are the agents of metabolic function.
- Metabolites have many potential pathways
- Enzymes make the desired one most favorable

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Half-Time (uncatalyzed)</th>
<th>Uncatalyzed Rate (s^{-1})</th>
<th>Catalyzed Rate (s^{-1})</th>
<th>Rate Enhancement (catalyzed rate/uncatalyzed rate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orotidine-5'-monophosphate decarboxylase</td>
<td>78,000,000 years</td>
<td>2.8×10^{-16}</td>
<td>39</td>
<td>1.4×10^7</td>
</tr>
<tr>
<td>Staphylococcal nuclease</td>
<td>130,000 years</td>
<td>1.7×10^{-13}</td>
<td>95</td>
<td>5.6×10^{14}</td>
</tr>
<tr>
<td>Adenosine deaminase</td>
<td>120 years</td>
<td>1.8×10^{-10}</td>
<td>370</td>
<td>2.1×10^9</td>
</tr>
<tr>
<td>Chymotrypsin</td>
<td>20 years</td>
<td>1.0×10^{-9}</td>
<td>190</td>
<td>1.7×10^9</td>
</tr>
<tr>
<td>Triose phosphate isomerase</td>
<td>1.9 years</td>
<td>4.3×10^{-6}</td>
<td>4,300</td>
<td>1.0×10^9</td>
</tr>
<tr>
<td>Chorismate mutase</td>
<td>7.4 hours</td>
<td>2.6×10^{-3}</td>
<td>50</td>
<td>1.9×10^9</td>
</tr>
<tr>
<td>Carbonic anhydrase</td>
<td>5 seconds</td>
<td>1.3×10^{-1}</td>
<td>1,000,000</td>
<td>7.7×10^4</td>
</tr>
</tbody>
</table>

The half-times of very slow reactions were estimated by extrapolating from measurements made at very high temperatures. [Data mostly from Radejczak, R., and Wolfenden, R., Science 267, 90–93 (1995).]

© John Wiley & Sons, Inc. All rights reserved.

- Enzymes are necessary for life to exist – otherwise reactions would occur too slowly for a metabolizing organism.
- Enzymes DO NOT change the equilibrium constant of a reaction (accelerates the rates of the forward and reverse reactions equally)
- Enzymes DO NOT alter the standard free energy change, (ΔG°) of a reaction
 1. ΔG° = amount of energy consumed or liberated in the reaction
 2. Quantity that determines if a reaction is energetically favorable.
3. Reaction is thermodynamically favorable or SPONTANEOUS if ΔG° is negative.
 (Note: Spontaneous does NOT mean instantaneous; energy must be supplied to START a reaction which then proceeds with a release of energy)

4. i.e. Enzymes DO NOT change thermodynamics (can’t make a reaction spontaneous)

- Enzymes DO decrease the activation energy of a reaction ($\Delta G^\circ\ddagger$)
 1. Activation Energy is the energy required to start a reaction.
 2. Related to rate: Less energy needed to start the reaction, the faster it’ll go
 3. Enzymes DO increase the rate of reactions that are otherwise possible by DECREASING the activation energy of a reaction
 4. Lowering the E_a increases the rate constant, k, and thereby increases the rate of the reaction

Activation Energy Diagrams:

Supply energy by pushing a rock up a hill so that it can slide down the other side, releasing energy.

Think of activation energy as the BARRIER required to make a product.

Most stable product is the one with the lowest energy.

Most reactions require a “push” to get them started! “Push” is called “energy of activation” for reaction - Also represented by E_A
Legend:

(A) A barrier dam is lowered to represent enzyme catalysis. The green ball represents a potential enzyme substrate (compound X) that is bouncing up and down in energy level due to constant encounters with waves (an analogy for the thermal bombardment of the substrate with the surrounding water molecules). When the barrier (activation energy) is lowered significantly, it allows the energetically favorable movement of the ball (the substrate) downhill. (B) The four walls of the box represent the activation energy barriers for four different chemical reactions that are all energetically favorable, in the sense that the products are at lower energy levels than the substrates. In the left-hand box, none of these reactions occurs because even the largest waves are not large enough to surmount any of the energy barriers. In the right-hand box, enzyme catalysis lowers the activation energy for reaction number 1 only; now the jostling of the waves allows passage of the molecule over this energy barrier only, inducing reaction 1.

For a chemical or enzymatic reaction, it is no different!
• A catalyst lowers E_a by providing a different mechanism & different pathway, for the reaction through a new, lower energy pathway.

Weak Interactions Between Enzyme and Substrate are Optimized in the Transition State

- Binding energy (ΔG_B)---free energy released in forming multiple weak bonds and interactions between an enzyme and its substrate
- Ensures favorable formation of the ES complex, but not too favorable
- Binding energy is used to lower the activation energy barrier
Transition State:
 a. Old bonds break and new ones form.
 b. Substance is neither substrate nor product
 c. Unstable short lived species with an equal probability of going forward or backward.
 d. Strained intermediate

- See visually how \(\Delta G^\circ \) would be **negative** \(\Rightarrow \) overall DECREASE in potential free energy = SPONTANEOUS! Not instantaneous…

ENZYMES work by LOWERING the activation energy: a greater fraction of molecules can cross the lower barrier and react to form product – just like ball on waves.

In the diagram:
- Lowers the energy of the transition state and activation energy (both forward and reverse!)
- Increases the rate – since less energy is needed to start the reaction, the faster it will proceed.
- Increases the rate of both forward and reverse reactions.
- Enzyme does NOT change the energy of the reactants (substrates) or products - \(\Delta G^\circ \) constant
- Free Energy Value for products is lower than value for reactants (substrates) – Reaction is thermodynamically favorable but needs a push!

How does an enzyme lower the activation energy?
Often by holding reactant molecules in a position where they react more readily. Shape of enzyme allows reactants to fit into a specific place – called the “**active site**” of an enzyme
Uses energy gained by binding substrate. (More later…..)

Catalysis

Enzymes poise all the reactants in an arrangement that allows the reaction to proceed more rapidly than it would otherwise.
ENZYMES II

- Enzymes physically interact with their substrates to effect catalysis

\[E + S \leftrightarrow ES \leftrightarrow ES^\ast \rightarrow EP \leftrightarrow E + P \]

where...

- \(E \) = enzyme
- \(ES \) = enzyme/substrate complex
- \(ES^\ast \) = enzyme/transition state complex
- \(EP \) = enzyme/product complex
- \(P \) = product

- Substrates bind to the enzyme’s active site
 - pocket in the enzyme
 - Binding site = where substrate binds; area that holds substrate in place via non-covalent interactions
 - Catalytic site = where reaction takes place

THE PLAYERS:

First Step: Enzyme binds to substrate molecule to form an enzyme – substrate complex

\[E + S \leftrightarrow ES \]

\[E \quad + \quad S \quad \rightarrow \quad ES \]
Second Step: Formation of the transition state complex where the bound substance is neither product nor reactant - ES ↔ ES*
Note Change!! ES ≠ ES*

Third Step: Formation of the enzyme – product complex
ES* → EP

Fourth Step: Release of product
EP ↔ E + P

Once product is released, enzyme is unchanged and can carry out another reaction – only one at a time!
Enzyme Catalysis

Enzymes are proteins that provide a 3D surface for catalysis

Enzymatic cleavage of Sucrose:

Once product is released, enzyme is available to accept another substrate molecule.

Enzyme can only work on one substrate molecule at a time and is NOT changed during the reaction.
FIRST STEP: SUBSTRATE BINDING

ACTIVE SITE: Pocket in the enzyme where substrates bind and catalytic reaction occurs

- Has SPECIFICITY – can discriminate among possible substrate molecules
 1. Others recognize a functional group (Group specificity)
 2. Some only recognize one type of molecule (e.g. D vs L isomers) (Absolute specificity)

- Active site is a relatively small 3-D region within the enzyme
 1. As we saw, typically a small cleft or crevice on a large protein

- Substrates bind in active site by weak non-covalent interactions
 A. hydrogen bonding
 B. hydrophobic interactions
 C. ionic interactions

- The interactions hold the substrate in the proper orientation for most effective catalysis

- The ENERGY derived from these interactions = “BINDING ENERGY”

- Using this energy, enzymes both lower the activation energy and stabilize the transition state complex (ES*). Each non-covalent interaction provides energy to stabilize the transition state.
TWO MODELS FOR ENZYME/SUBSTRATE INTERACTIONS:

1. **Lock and Key Model:**
 A. Substrate (key) fits into a perfectly shaped space in the enzyme (lock)
 B. As we’ve said, there is lots of similarity between the shape of the enzyme and the shape of the substrate
 C. Highly stereospecific
 D. Implies a very RIGID inflexible active site
 E. Site is preformed and rigid

2. **Induced Fit Model** *(Hand in Glove analogy)*
 A. Takes into account the flexibility of proteins
 B. A substrate fits into a general shape in the enzyme, causing the enzyme to change shape (conformation); close but not perfect fit of E + S
 C. Change in protein configuration leads to a near perfect fit of substrate with enzyme
Glucose binding to hexokinase: Note Conformational Change in Enzyme

D. When substrate is completely held in active site, it takes on characteristics of the TRANSITION STATE for the reaction

(Non-covalent interactions between the enzyme and substrate change the 3-D structure of the active site, conforming the shape of the active site to the shape of the substrate in its transition state conformation \((E + S \rightleftharpoons ES^*)\)

i. Enzyme puts substrate in correct ORIENTATION to make the reaction proceed

ii. Enzyme substrate in close PROXIMITY to groups on the enzyme necessary for catalysis—

1. Catalysis is begun by amino acids making up the active site of the enzyme; R groups are usually crucial in catalysis.
Enzymes Lower the Activation Energy of the Reaction

How does an enzyme lower E_a?

By Stabilizing the Transition State!

- **Puts molecules in close proximity to react**
 - increases the local concentration of reactants)

- **Puts molecules in correct orientation**
 - Reactants are not only near each other on enzyme, they're oriented in optimal position to react, making it possible to always collide in the correct orientation.

Proximity & Orientation

iii. Called “transition state theory”

1. Enhances the formation of and stabilize the highly energetic transition state
2. Transition state binds more tightly that substrate or product

- **Enzyme binds tightly to the transition state species (i.e. substrates that have been strained toward the structures of the product!**

 i. Binding energy helps reach and stabilize the transition state \rightarrow lowers activation energy \rightarrow increases rate!

- **Transition state stabilization accomplished through close complementarity in shape and charge between the active site and the transition state.**

 Reaction proceeds – bonds are broken and new ones formed, transforming $S \rightarrow P$

 Following catalysis, the product(s) no longer fits the active site and is released

 A. Many drugs that act as inhibitors of an enzyme are designed to resemble the substrate transition state.
Transition-State Analog Enzyme Model

The binding of the substrate results in the distortion of the substrate and enzyme in ways that makes the chemical reaction easier.

Enzyme active sites are complementary not to the substrate per se, but to the transition state through which substrates pass as they are converted into products during an enzymatic reaction.

Enzymes bind the transition state structure more tightly than the substrate.

Enzymatic Hydrolysis of Sucrose

Glucose part of molecule Fructose part of molecule

\[\text{Sucrose} + \text{H}_2\text{O} \rightarrow \text{Glucose} + \text{Fructose} \]

Also see http://www.boyerbiochem.com – Interactive Animations: Enzyme Specificity

Induced Fit Model and Enzyme Videos:

http://www.youtube.com/watch?v=z8lG8X9ZvxQ&feature=PlayList&p=399E40B58925C7BF&index=0&playnext=1

http://www.5min.com/Video/Enzyme-Action-The-Induced-Fit-Model-150616169