To calculate the pH of an aqueous solution you need to know the concentration of the hydronium ion in moles per liter (molarity). The pH is then calculated using the expression:
pH = - log [H3O+].
Example: Find the pH of a 0.0025 M HCl solution. The HCl is a strong acid and is 100% ionized in water. The hydronium ion concentration is 0.0025 M. Thus:
pH = - log (0.0025) = - ( - 2.60) = 2.60
The hydronium ion concentration can be found from the pH by the reverse of the mathematical operation employed to find the pH.
[H3O+] = 10-pH or [H3O+] = antilog (- pH)
Example: What is the hydronium ion concentration in a solution that has a pH of 8.34?
To calculate the pOH of a solution you need to know the concentration of the hydroxide ion in moles per liter (molarity). The pOH is then calculated using the expression:
pOH = - log [OH-]
Example: What is the pOH of a solution that has a hydroxide ion concentration of 4.82 x 10-5 M?
pOH = - log [4.82 x 10-5] = - ( - 4.32) = 4.32
Calculating the Hydroxide Ion Concentration from pOH
The hydroxide ion concentration can be found from the pOH by the reverse mathematical operation employed to find the pOH.
[OH-] = 10-pOH or [OH-] = antilog ( - pOH)
Example: What is the hydroxide ion concentration in a solution that has a pOH of 5.70?
5.70 = - log [OH-]
-5.70 = log[OH-]
[OH-] = 10-5.70 = 2.00 x 10-6 M
On a calculator calculate 10-5.70, or "inverse" log (- 5.70).
Relationship Between pH and pOH
The pH and pOH of a water solution at 25oC are related by the following equation.
pH + pOH = 14
If either the pH or the pOH of a solution is known, the other can be quickly calculated.
Example: A solution has a pOH of 11.76. What is the pH of this solution?
pH = 14 - pOH = 14 - 11.76 = 2.24
The pKa is calculated using the expression:
pKa = - log (Ka)
where "Ka" is the equilibrium constant for the ionization of the acid.
Example: What is the pKa of acetic acid, if Ka for acetic acid is 1.78 x 10-5?
pKa = - log (1.78 x 10-5) = - ( - 4.75) = 4.75
The Ka for an acid is calculated from the pKa by performing the reverse of the mathematical operation used to find pKa.
Ka = 10-pKa or Ka = antilog ( - pKa)
Example: Calculate the value of the ionization constant for the ammonium ion, Ka, if the pKa is 9.74.
9.74 = - log (Ka)
-9.74 = log (Ka)
Ka = 10-9.74 = 1.82 x 10-10
On a calculator calculate 10-9.74, or "inverse" log ( - 9.74).
The pKb is calculated using the expression:
pKb = - log (Kb)
where Kb is the equilibrium constant for the ionization of a base.
Example: What is the pKb for methyl amine, if the value of Kb for methyl amine is 4.4 x 10-4?
pKb = - log (4.4 x 10-4) = - ( - 3.36) = 3.36
The Kb for an acid is calculated from the pKb by performing the reverse of the mathematical operation used to find pKb.
Kb = 10-pKb or Kb = antilog ( - pKb)
Example: Calculate the value of the ionization constant, Kb, for aniline if the pKb is 9.38.
9.38 = - log (Kb)
-9.38 = log (Kb)
Kb = 10-9.38 = 4.17 x 10-10
On a calculator calculate 10-9.38, or "inverse" log ( - 9.38).