Bomb Calorimetry

- constant volume
- often used for combustion reactions
- heat released by reaction is absorbed by calorimeter contents
- need heat capacity of calorimeter
- \(q_{\text{cal}} = -q_{\text{rxn}} = q_{\text{bomb}} + q_{\text{water}} \)

Example 4

When 0.187 g of benzene, \(\text{C}_6\text{H}_6 \), is burned in a bomb calorimeter, the surrounding water bath rises in temperature by 7.48\(^\circ\text{C}\). Assuming that the bath contains 250.0 g of water and that the calorimeter has a heat capacity of 4.90 kJ/\(^\circ\text{C}\), calculate the energy change for the combustion of benzene in kJ/g.

\[
\text{C}_6\text{H}_6(\ell) + \frac{15}{2}\text{O}_2(g) \rightarrow 6 \text{CO}_2(g) + 3 \text{H}_2\text{O}(\ell)
\]

\(q_{\text{cal}} = (4.90 \text{ kJ/}^\circ\text{C})(7.48^\circ\text{C}) = 36.7 \text{ kJ} \)

\(q_{\text{cal}} = -q_{\text{rxn}} = -36.7 \text{ kJ} / 0.187 \text{ g C}_6\text{H}_6 = -196 \text{ kJ/g} \)

\(q_p = \Delta E = -196 \text{ kJ/g} \)

Energy and Enthalpy

Most physical and chemical changes take place at constant pressure

- Heat transferred at constant \(P \) - enthalpy (H)
 - Can only measure \(\Delta H \)
 - \(\Delta H = H_{\text{final}} - H_{\text{initial}} = q_p \)
 - sign of \(\Delta H \) indicates direction of heat transfer
Energy and Enthalpy

- Melting and freezing
 - Quantity of thermal energy that must be transferred to a solid to cause melting - heat of fusion \((q_{\text{fusion}}) \)
 - Quantity of thermal energy that must be transferred from a solid to cause freezing - heat of freezing \((q_{\text{freezing}}) \)
 - \(q_{\text{fusion}} = -q_{\text{freezing}} \)
 - heat of fusion of ice = 333 J/g at 0°C
Enthalpy and Phase Changes

• Vaporization and condensation
 – Similarly: $q_{\text{vaporization}} = -q_{\text{condensation}}$
 – heat of vaporization of water = 2260 J/g at 100°C
 – 333 J of heat can melt 1.00 g ice at 0°C but it will boil only:

$$333 \text{ J} \times \left(\frac{1.00 \text{ g}}{2260 \text{ J}}\right) = 0.147 \text{ g water}$$

Enthalpy and Phase Changes

$$\begin{align*}
\text{H}_2\text{O} (l) & \rightarrow \text{H}_2\text{O} (g) \quad \text{endothermic} \\
\text{H}_2\text{O} (s) & \rightarrow \text{H}_2\text{O} (l) \\
\text{H}_2\text{O} (g) & \rightarrow \text{H}_2\text{O} (l) \\
\text{H}_2\text{O} (l) & \rightarrow \text{H}_2\text{O} (s) \quad \text{exothermic}
\end{align*}$$

State Functions

• Value of a state function is independent of path taken to get to state - depends only on present state of system
• Internal energy is state function
State Functions

- q and w not state functions

Enthalpy and PV Work

H - state function
q - not a state function

$\Delta E = q + w$
$\Delta H = q$

How do internal energy and enthalpy differ?

Answer: work

Enthalpy and PV Work

$P \rightarrow E / A$
$P \rightarrow E / A$

Cross-sectional area $= A$

Initial state
Final state
Example 5

A gas is confined to a cylinder under constant atmospheric pressure. When the gas undergoes a particular chemical reaction, it releases 89 kJ of heat to its surroundings and does 36 kJ of PV work on its surroundings. What are the values of ΔH and ΔE for this process?

$q = -89 \text{ kJ} \quad w = -36 \text{ kJ}$

@ constant pressure:

$\Delta H = q_p = -89 \text{ kJ}$

$\Delta E = \Delta H + w = -89 \text{ kJ} - 36 \text{ kJ} = -125 \text{ kJ}$

Thermochemical Equations

$\Delta H = H_{\text{final}} - H_{\text{initial}} = H_{\text{(products)}} - H_{\text{(reactants)}}$

ΔH_{rxn} = enthalpy or heat of reaction

$2 \text{ H}_2 (g) + \text{ O}_2 (g) \rightarrow 2 \text{ H}_2\text{O} (l) \quad \Delta H^\circ = -571.66 \text{ kJ}$

coefficients of equation represent # of moles of reactants and products producing this energy change

Thermochemical Equations

ΔH°

- standard enthalpy change
- defined as enthalpy change at 1 bar pressure and 25°C
“Rules” of Enthalpy

- Enthalpy is an extensive property. The magnitude of ∆H depends on amounts of reactants consumed.
- Enthalpy change of a reaction is equal in magnitude but opposite in sign to ∆H for the reverse reaction.
- Enthalpy change for a reaction depends on the states of the reactants and products.

Example 6

Hydrogen peroxide can decompose to water and oxygen by the reaction:

\[2 \text{H}_2\text{O}_2(\ell) \rightarrow \text{2H}_2\text{O}(\ell) + \text{O}_2(g) \]

Calculate the value of q when 5.00 g of \(\text{H}_2\text{O}_2(\ell) \) decomposes.

Example 7

Consider the following reaction, which occurs at room temperature and pressure:

\[2 \text{Cl}(\ell) \rightarrow \text{Cl}_2(\ell) \]

\(\Delta H = -243.4 \text{ kJ} \)

Which has the higher enthalpy under these conditions, \(\text{Cl}_2 \) or \(\text{Cl} \)?

Example 6

Hydrogen peroxide can decompose to water and oxygen by the reaction:

\[2 \text{H}_2\text{O}_2(\ell) \rightarrow \text{2H}_2\text{O}(\ell) + \text{O}_2(g) \]

Calculate the value of q when 5.00 g of \(\text{H}_2\text{O}_2(\ell) \) decomposes.

Example 7

Consider the following reaction, which occurs at room temperature and pressure:

\[2 \text{Cl}(\ell) \rightarrow \text{Cl}_2(\ell) \]

\(\Delta H = -243.4 \text{ kJ} \)

Which has the higher enthalpy under these conditions, \(\text{Cl}_2 \) or \(\text{Cl} \)?
Example 8

When solutions containing silver ions and chloride ions are mixed, silver chloride precipitates:

\[\text{Ag}^+ (\text{aq}) + \text{Cl}^- (\text{aq}) \rightarrow \text{AgCl} (s) \quad \Delta H = -65.5 \text{ kJ} \]

(a) Calculate \(\Delta H \) for the formation of 0.200 mol of AgCl by this reaction.

\[\Delta H = \left(0.200 \text{ mol AgCl} \right) \left(\frac{-65.5 \text{ kJ}}{1 \text{ mol AgCl}} \right) = -13.1 \text{ kJ} \]

Example 8 (cont’d)

\[\text{Ag}^+ (\text{aq}) + \text{Cl}^- (\text{aq}) \rightarrow \text{AgCl} (s) \quad \Delta H = -65.5 \text{ kJ} \]

(b) Calculate \(\Delta H \) when 0.350 mmol AgCl dissolves in water.

\[\text{AgCl} (s) \rightarrow \text{Ag}^+ (\text{aq}) + \text{Cl}^- (\text{aq}) \quad \Delta H = +65.5 \text{ kJ} \]

\[\Delta H = \left(0.350 \times 10^{-3} \text{ mol AgCl} \right) \left(\frac{+65.5 \text{ kJ}}{1 \text{ mol AgCl}} \right) = 0.0229 \text{ kJ} = 22.9 \text{ J} \]

Bond Enthalpies

- during chemical reaction bonds are broken and made
- breaking bonds requires energy input (endothermic)
- formation of bonds releases energy (exothermic)
- weaker bonds broken and stronger bonds formed
Hess’s Law

- we can calculate ΔH for a reaction using ΔHs for other known reactions
- ΔH is a state function - result is same no matter how we arrive at the final state
- Hess’s Law - if a reaction is carried out in a series of steps, ΔH for overall reaction is equal to sum of ΔHs for steps

\[
\begin{align*}
C(s) + O_2(g) & \rightarrow CO_2(g) \quad \Delta H = -393.5 \text{ kJ} \\
CO(g) + 1/2 O_2(g) & \rightarrow CO_2(g) \quad \Delta H = -283.0 \text{ kJ} \\
\text{What is } \Delta H \text{ for } C(s) + 1/2 O_2(g) & \rightarrow CO(g) \text{ ???} \\
C(s) + O_2(g) & \rightarrow CO(g) \quad \Delta H = -393.5 \text{ kJ} \\
CO(g) + 1/2 O_2(g) & \rightarrow CO_2(g) \quad \Delta H = +283.0 \text{ kJ} \\
C(s) + 1/2 O_2(g) & \rightarrow CO(g) \quad \Delta H = -110.5 \text{ kJ}
\end{align*}
\]

Example 9

Calculate ΔH for the conversion of S to SO_3 given the following equations:

\[
\begin{align*}
S(s) + O_2(g) & \rightarrow SO_2(g) \quad \Delta H = -296.8 \text{ kJ} \\
SO_2(g) + 1/2 O_2(g) & \rightarrow SO_3(g) \quad \Delta H = +98.9 \text{ kJ} \\
\text{want } S(s) & \rightarrow SO_3(g) \\
S(s) + O_2(g) & \rightarrow SO_2(g) \quad \Delta H = -296.8 \text{ kJ} \\
SO_2(g) + 1/2 O_2(g) & \rightarrow SO_3(g) \quad \Delta H = +98.9 \text{ kJ} \\
S(s) + 3/2 O_2(g) & \rightarrow SO_3(g) \quad \Delta H = -395.7 \text{ kJ}
\end{align*}
\]
Enthalpies of Formation

- tables of enthalpies (ΔH_{vap}, ΔH_{fus}, etc.)
- ΔH_f - enthalpy of formation of a compound from its constituent elements.
- magnitude of ΔH - condition dependent
- standard state - state of substance in pure form at 1 bar and 25°C
- ΔH_f° - change in enthalpy for reaction that forms 1 mol of compound from its elements (all in standard state)
- ΔH_f° of most stable form of any element is 0

CO_2: $\text{C (graphite)} + \text{O}_2 (g) \rightarrow \text{CO}_2 (g) \quad \Delta H_f^\circ = -393.5 \text{ kJ/mol}$

Calculating $\Delta H_{\text{rxn}}^\circ$ from ΔH_f°

- we can use ΔH_f° values to calculate $\Delta H_{\text{rxn}}^\circ$ for any reaction
- $\Delta H_{\text{rxn}}^\circ = \sum [n \Delta H_f^\circ \text{(products)}] - \sum [n \Delta H_f^\circ \text{(reactants)}]$

 $\text{C}_6\text{H}_6 (l) + 15/2 \text{O}_2 (g) \rightarrow 6 \text{CO}_2 (g) + 3 \text{H}_2\text{O} (l)$

 $\Delta H_{\text{rxn}}^\circ = [(6 \text{ mol})(-393.5 \text{ kJ/mol}) + (3 \text{ mol})(-285.83 \text{ kJ/mol})]
 - [(1 \text{ mol})(49.0 \text{ kJ/mol}) + (15/2 \text{ mol})(0 \text{ kJ/mol})]$

 $\Delta H_{\text{rxn}}^\circ = -3267 \text{ kJ/mol}$

Example 10

Styrene (C_8H_8), the precursor of polystyrene polymers, has a standard heat of combustion of -4395.2 kJ/mol. Write a balanced equation for the combustion reaction and calculate ΔH_f° for styrene (in kJ/mol).

$\Delta H_f^\circ \text{(CO}_2) = -393.5 \text{ kJ/mol}$

$\Delta H_f^\circ \text{(H}_2\text{O}) = -285.8 \text{ kJ/mol}$

$\text{C}_8\text{H}_8 (l) + 10 \text{ O}_2 (g) \rightarrow 8 \text{ CO}_2 (g) + 4 \text{ H}_2\text{O} (l)$

$\Delta H_{\text{rxn}}^\circ = -4395.2 \text{ kJ/mol} = [(8 \text{ mol})(-393.5 \text{ kJ/mol}) + (4 \text{ mol})(-285.8)]
 - [(1 \text{ mol})(49.0 \text{ kJ/mol}) + (10/2 \text{ mol})(0 \text{ kJ/mol})]$

$\Delta H_f^\circ \text{(C}_8\text{H}_8) = 104.0 \text{ kJ/mol}$