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ABSTRACT

This dissertation contains four projects: transforming electronic structure Hamiltonian

to approximating Ising-type Hamiltonian to enable electronic structure calculations by quan-

tum annealing, quantum-assisted restricted Boltzmann machine for electronic structure cal-

culations, hybrid quantum classical neural network for calculating ground state energies of

molecules and qubit coupled cluster single and double excitations variational quantum eigen-

solver for electronic structure. In chapter 1 we present a general introduction of quantum

computer, including a brief introduction of two quantum computing model: gate model and

quantum annealing model. We also give a general review about electronic structure calcula-

tions on quantum computer. In chapter 2, we show an approximating mapping between the

electronic structure Hamiltonian and the Ising Hamiltonian. The whole mapping is enabled

by first enlarging the qubits space to transform the electronic structure Hamiltonian to a

diagonal Hamiltonian. Then introduce ancilla qubits to transform the diagonal Hamiltonian

to an Ising-type Hamiltonian. We also design an algorithm to use the transformed Hamilto-

nian to obtain the approximating ground energy of the original Hamiltonian. The numerical

simulation results of the transformed Hamiltonian for H2, He2, HeH+, and LiH molecules

match the exact numerical calculations of the original Hamiltonian. This demonstrates that

one can map the molecular Hamiltonian to an Ising-type Hamiltonian which could easily be

implemented on currently available quantum hardware. In chapter 3, we report a hybrid

quantum algorithm employing a restricted Boltzmann machine to obtain accurate molec-

ular potential energy surfaces. By exploiting a quantum algorithm to help optimize the

underlying objective function, we obtained an efficient procedure for the calculation of the

electronic ground state energy for a small molecule system. Our approach achieves high

accuracy for the ground state energy for H2, LiH, H2O at a specific location on its potential

energy surface with a finite basis set. With the future availability of larger-scale quantum

computers, quantum machine learning techniques are set to become powerful tools to ob-

tain accurate values for electronic structures. In chapter 4, we present a hybrid quantum

classical neural network that can be trained to perform electronic structure calculation and

generate potential energy curves of simple molecules. The method is based on the combina-
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tion of parameterized quantum circuit and measurements. With unsupervised training, the

neural network can generate electronic potential energy curves based on training at certain

bond lengths. To demonstrate the power of the proposed new method, we present results

of using the quantum-classical hybrid neural network to calculate ground state potential

energy curves of simple molecules such as H2, LiH and BeH2. The results are very accurate

and the approach could potentially be used to generate complex molecular potential energy

surfaces. In chapter 5, we introduce a new variational quantum eigensolver (VQE) ansatz

based on the particle preserving exchange gate to achieve qubit excitations. The proposed

VQE ansatz has gate complexity up-bounded to O(n4) where n is the number of qubits of

the Hamiltonian. Numerical results of simple molecular systems such as BeH2, H2O, N2, H4

and H6 using the proposed VQE ansatz gives very accurate results within errors about 10−3

Hartree.
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1. INTRODUCTION

Quantum computation has been first proposed by Feyman in 1982 [  1 ]. Unlike classical

computer, quantum computer utilizes properties of quantum mechanics, for example, su-

perposition and entanglement, to achieve possible speed up compared to classical computer.

Researches on quantum computation mainly focus on developing new feasible quantum com-

puters as well as designing quantum algorithms. In this chapter, we first give a brief review

on quantum computation, including quantum bit and two most common quantum comput-

ing model – gate model and adiabatic model. Furthermore, one popular research direction

of quantum computation is solving quantum physics and quantum chemistry problems, es-

pecially electronic structure calculations, on quantum computer. In this chapter, we also

give a brief review about approaches to enable electronic structure calculations on quantum

computer, including transformations to map the electronic structure problems on quantum

computer as well as quantum algorithms to solve electronic structure problems.

1.1 Quantum Computation

1.1.1 Quantum Bit

The elementary computation unit for quantum computation is the quantum bit or the

qubit, which is analogous to the bit of classical computation. Unlike the classical bit, which

can solely be in one of two states, qubit can be in the superposition of two states represented

by a complex vector |ψ〉 = α|0〉 +β|1〉 with the two complex-valued coefficients α and β and

|α|2 + |β|2 = 1. The state of the qubit can also be written as a 1 × 2 vector as below.

|ψ〉 =

α
β


When do measurements on the qubit above, the probability of getting final measured state

of the qubit as |0〉 is |α|2 and getting final state of the qubit as |1〉 is |β|2. Furthermore,

the multiple qubits state can be represented by the weighted summation of tensor prod-

ucts of single qubit states as |Ψ〉 = ∑
i ci|Ψi〉 where |Ψi〉 can be written as |ψi

1ψ
i
2...ψ

i
n〉 and

|ψi
1ψ

i
2...ψ

i
n〉 = |ψi

1〉 ⊗ |ψi
2〉... ⊗ |ψi

n〉 for |ψi
j〉 ∈ {|0〉, |1〉} is the tensor product of single qubit

13



states. Because of the superposition property of the qubit, quantum computation can save

the resource of qubits when representing large data. For a vector with dimension N we only

need log2 N qubits to represent this vector. Reduced resources to represent data also show

the potential of speedup in quantum computing.

Furthermore, if the state of the the multiple qubits state can not be decomposed into a

single tensor product of single qubit states, the multiple qubits state is an entangled state.

For example, |01〉 = |0〉 ⊗ |1〉 is a untangled state while 1
2 |01〉 + 1

2 |10〉 is an entangled state.

1.1.2 Gate Model

One of the most common quantum computing model is the gate model, which is based

on elementary single and multiple qubits gates. In this section we will give a brief review on

elementary one and two qubits gates and how these quantum gates can be used to construct

universal quantum computation.

Single Qubit Gate

Analogous to classical computer, which uses wires and logic gates to perform computa-

tion, gate model quantum computer also uses qubits and quantum gates to perform com-

putation. In classical computation, the wire holds the information and logic gates manip-

ulate the information on the wire. In quantum computation, qubit hold information and

quantum gates manipulate the information on the qubit. For example, consider a qubit

|ψ〉 = α|0〉 + β|1〉 and a X gate defined as:

X =

0 1

1 0


The state of qubit after X gate would be X|ψ〉 = α|1〉 + β|0〉. As the normalization rule

of the single qubit state in 1.1, we have |α|2 + |β|2 = 1 or the gate should be unitary. In

another word, for a single qubit gate U it must satisfy U †U = I so that we have 〈ψ|U †U |ψ〉 =

〈ψ|ψ〉 = 1 where U † is the adjoint matrix of U [ 2 ].

14



The elementary one qubit gates consisting of Pauli matrices (X, Y , Z), the Hardmard

gate (H), the phase gate (S) and π/8 gate (T ) [ 2 ]:

X =

0 1

1 0

 Y =

0 −i

i 0

 Z =

1 0

0 1



H = 1√
2

1 1

1 −1

 S =

1 0

0 i

 T =

1 0

0 ei π

4



Multiple Qubits Gate

Quantum gate is called multiple qubits gates when it manipulates multiple qubits at the

same time. However, all qubits gates manipulating more than two qubits can be decomposed

to products of single qubit and two qubits controlled operations gates [  2 ]. Thus here we

just talk about two qubits controlled operations gate. The most common qubits controlled

operation gate is controlled-NOT gate or CNOT gate. Considering two qubits |c〉 and |t〉 with

qubit |c〉 being the control qubit and qubit |t〉 being the target qubit, the CNOT gate works as

CNOT|c〉|t〉 = |c〉|c+ t〉 in term of computation basis [  2 ]. For example CNOT|1〉|1〉 = |1〉|0〉

while CNOT|0〉|1〉 = |0〉|1〉. The CNOT gate can be written as:

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


Moreover, there are advanced controlled gates called controlled-U gate or CU gate where

U is a arbitrary unitary single qubit gate. Considering two qubits |c〉 and |t〉 with qubit |c〉

being the control qubit and qubit |t〉 being the target qubit, CU gate works as CU|c〉|t〉 =

|c〉U c|t〉 in term of computation basis [ 2 ]. For example CU|1〉|t〉 = |1〉U |t〉 while CU|0〉|1〉 =

|0〉|1〉.
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Measurement

The final part of the quantum circuit is the measurement. Measurements will make the

superposition state collapse to measured basis. For a final state |φ〉 which can be written in

the superposition of measured basis {|ψi〉} as |φ〉 = ∑
i ai|ψi〉 where {ai} are complex number

and ∑
i |ai|2 = 1, the probability of final measurement result being |ψi〉 is |ai|2.

Furthermore, there are two important principles of measurement in quantum gate model.

Quantum measurements are performed intermediately sometimes during quantum circuit.

For example, the measurement result is used to do classically conditional controlled operation

on other qubits. The first principle is the principle of deferred measurement [  2 ]. As stated

in the reference [ 2 ], measurements can be done at the end of the quantum circuit instead of

an intermediate stage [  2 ]. As the principle states, if the measurement results are used to do

conditional controlled operations, this can be replaced by a quantum controlled-U gate.

Another principle of measurement is called principle of implicit measurement. [ 2 ]. As

stated in the reference [  2 ], any unmeasured qubits at the end of the quantum circuits can

be viewed as measured [  2 ]. Considering we have a quantum circuit of two qubits. At the

end of the quantum circuit, we only do measurements on the qubit 1. The statistics of

measurements of qubit 1 will only be determined by the reduced density matrix of qubit 1.

However, if we also do measurements on qubit 2, the measurement results will not affect the

statistics of measurements of qubit 1.

Universal Quantum Computation

To show the gate model with only elementary single qubit quantum gates as well as

CNOT gate is universal, here we show arbitrary quantum gates can be decomposed into the

product of elementary single qubit quantum gates and CNOT gate. Consider a universal

quantum gate on multiple qubits N , which can always be written as an unitary matrix with

dimension 2N . The first step of the decomposition is to decompose the 2N × 2N unitary

matrix into the product of the two-level unitary matrix [  2 ]. The next step is to decompose

the two-level unitary matrix into the product of elementary single qubit quantum gates and

CNOT gate. Gray code [ 2 ] shows that any two-level unitary matrix can be decomposed into
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the product of elementary single qubit gates and CNOT gates. Thus for any quantum gate it

can be decomposed into elementary quantum gate set or the the gate model with elementary

single qubit quantum gates as well as CNOT gate is universal.

1.1.3 Adiabatic Model

Another common quantum computation model is the adiabatic model proposed by Ed-

ward Farhi [  3 ] which is based on adiabatic theorem [ 4 ]. Considering a Hamiltonian H(s)

where s = t/T . t is the current time and T is the total evolution time. The eigenstates and

eigenvalues of H(s) can be written as |l, s〉 and E(l, s) [ 3 ]. l is the level of the eigenstate

and l = 0 represents the lowest eigenstate. If E(1, s) > E(0, s) holds for all 0 ≤ s ≤ 1 and

the system starts from |φ(0)〉 = |l = 0, s = 0〉 which is the ground state of H(0) at t = 0, we

have [ 3 ]:

lim
T→∞

|〈φ(T )|l = 0, s = 1〉| = 1 (1.1)

where |φ(T )〉 is the state of the system at t = T . The evolution time T has to satisfy:

T � ε

g2
min

(1.2)

where gmin = min0≤s≤1(E(1, s) − E(0, s)) and ε = max0≤s≤1 |〈l = 1, s|dH(s)
ds

|l = 0, s〉| [ 3 ].

1.2 Electronic Structure Calculations On Quantum Computer

To enable electronic structure calculation on the quantum computer, the first step is to

mapping current electronic structure problems to quantum computing model. The whole

procedure is enabled by second quantization to get a Hamiltonian in the format of creation

and annihilation operators. Then use the mapping between the creation and annihilation

operators and Pauli matrices to transform the Hamiltonian into the matrix format, which

can be utilized by quantum computation.
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1.2.1 Second Quantization

The first step of preparing the electronic structure Hamiltonian is to write down the

second quantization Hamiltonian. The state of the system can be written as the tensor

product of the state of each spin orbital, which can be occupied or not occupied. If the state

is |0〉, the corresponding spin orbital is not occupied. If the state is |1〉, the corresponding

spin orbital is occupied. Thus, the state of the system can be written as |fn...f1〉 where fi ∈

{0, 1}. The electronic structure Hamiltonian with Born-Oppenheimer approximation can be

expressed in the weighted summation of products of creation and annihilation operators a†
i

and ai as:

Ĥ = h0 +
∑
i,j
hija

†
i aj + 1

2
∑

i,j,k,l
hijkla

†
i a

†
jakal. (1.3)

h0 is the nuclear repulsion energy. The above coefficients hij and hijkl are one- and two-

electron integrals which can be computed by orbital integrals.

The next step is to use certain transformations as mapping between the operator repre-

sentation and Pauli matrices, {σx, σy, σz} as well as the identity matrix I. The transformed

molecular Hamiltonian takes the general form ∑
i ciPi where ci is the coefficient and Pi is the

tensor product of Pauli matrices, {σx, σy, σz} and the 2 × 2 identity matrix I.

1.2.2 Transform To Pauli Matrices Format

After the second quantization, the electronic structure Hamiltonian is written in the

format consisting of creation and annihilation operators. The next step is to map the creation

and annihilation operators into Pauli matrices so that the Hamiltonian can be unitized by

quantum computation. In the discussion throughout this dissertation, if not specifically

noted, the qubits are indexed starting from 1.

Jordan-Wigner Transformation

The most common transformation used in the quantum computation is Jordan-Wigner

transformation [  5 ], [ 6 ]. The idea of Jordan-Wigenr transformation is intuitive: Qubit j with

state |0〉 represents the corresponding spin orbital j is not occupied. Qubit j with state |1〉
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represents the corresponding spin orbital j is occupied. Jordan-Wigner transformation stores

the occupation information locally on each qubits and thus extra terms are needed for the

parity information. For a n-spin system, the Jordan-Wigner transformation for the operator

aj and a†
j are in the format as below [ 7 ]:

a†
j → 1

2(σj
x − iσj

y) ⊗j−1
i=1 σ

i
z

aj → 1
2(σj

x + iσj
y) ⊗j−1

i=1 σ
i
z

(1.4)

The problem is due to the non-locality of storing the parity information, the cost of parity

operator, ⊗j−1
i=1σ

i
z is O(n).

The Parity Transformation

Another common transformation used in the quantum computation is the parity trans-

formation. The qubit j is in the state of the summation of the occupations of spin orbital

from 1 to j module 2. In another word, the parity transformation stores the parity informa-

tion of the spin orbital with index less than or equal to j to qubit j. For a n spin system the

transformation of the operators a and a† are in the format as below [ 7 ]:

a†
j → 1

2(⊗n
i=j+1σ

i
x ⊗ σj

x ⊗ σj−1
z − i ⊗n

i=j+1 σ
i
x ⊗ σj

y)

aj → 1
2(⊗n

i=j+1σ
i
x ⊗ σj

x ⊗ σj−1
z + i ⊗n

i=j+1 σ
i
x ⊗ σj

y)
(1.5)

The problem is due to the non-locality of storing the occupation information, the cost of

occupation operator, ⊗n
i=j+1σ

i
x is O(n).

Bravyi-Kitaev Transformation

Bravyi-Kitaev transformation is a combination of the Jordan-Wigner transformation and

the parity transformation. The storage of the occupation information and the parity infor-

mation is balanced for better simulation efficiency [ 7 ], [ 8 ]. For the qubit with odd index, the

state of qubit represents the occupation the current spin orbital. For the qubit with even

index, the state of the qubit represents the parity of certain adjacent spin orbitals. For a even

index j, when log2 j is an integer, the qubit stores all parity of the spin orbitals with index
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less or equal to j, otherwise the qubit stores the spin orbital with index in the subdividing

binary set [ 9 ]. the For a n spin system the transformation of the operators a and a† are in

the format as below:

a†
j → 1

2(σU(j)
x ⊗ σj

x ⊗ σP (j)
z − iσU(j)

x ⊗ σj
y ⊗ σP (j)

z )

aj → 1
2(σU(j)

x ⊗ σj
x ⊗ σP (j)

z + iσU(j)
x ⊗ σj

y ⊗ σP (j)
z )

(1.6)

U(j) and P (j) represent the update set and parity set of the spin orbital j for the Bravyi-

Kiteav transformation. U(j) is the updated set of qubits to be changed when aj or a†
j applied

on the spin orbital j. P (j) is the parity set of qubits to decide phase change when aj or a†
j

applied on the spin orbital j [ 7 ]. Because size of U(j) and P (j) scale O(log n) [ 8 ] the cost of

the Brevyi-Kiteav transformation is O(log n).

Binary Code Transformation

Recently, a new transformation is proposed by Mark Steudtner et al [  10 ], which uses

classical code to map the creation and annihilation operators into Pauli matrices. The

general format of the mapping can be written as:

a†
j → 1

2σ
Uj
x ⊗ (1 + σF (j)

z ) ⊗ σP (j)
z

aj → 1
2σ

U(j)
x ⊗ (1 − σF (j)

z ) ⊗ σp(j)
z

(1.7)

U(j) is the update set of qubits to be changed when a†
j or aj is applied on the spin

orbital j. F (j) is the flip set of qubits to check whether applying a†
j or aj will give 0. P (j)

is the parity set of the qubits to check the phase change when a†
j or aj is applied on the

spin orbital j [  10 ]. An simple example is the Jordan-Wigner transformation. For Jordan-

Wigner transformation, U(j) = {j}, F (j) = {j} and P (j) = {1...j − 1}. Thus Jordan-Wigner

transformation using binary code transformation can be written as:

a†
j → 1

2(σj
x − iσj

y) ⊗j−1
i=1 σ

i
z

aj → 1
2(σj

x + iσj
y) ⊗j−1

i=1 σ
i
z

(1.8)
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which is same as the original Jordan-Wigner transformation.

Furthermore, binary code transformation can also use other classical code like checksum

code, to utilize the particle preservation or spin symmetry to reduce the number of qubits

[ 10 ]. For example, we can utilize the spin symmetry which requires the number of spin-up

and spin-down electrons to be same, which can be encoded by the checksum code and used

by the binary code transformation to save 2 qubits of the final Hamiltonian [ 10 ].

1.3 Quantum Computation for Electronic Structure Calculations

Current applications of quantum computation for electronic structure calculations fo-

cuses on solving the ground state and excited states of chosen system. Two main approaches

for electronic structure calculations on quantum computation are Phase Estimation Algo-

rithm(PEA) and Variational Quantum Eigensolver(VQE).

1.3.1 Phase Estimation Algorithm

The Phase Estimation Algorithm(PEA) has been proposed to calculate the eigenvalue

of the corresponding eigenstate of a Hamiltonian by using quantum Fourier transform. The

PEA can be divided into the phase calculation and the inverse quantum Fourier transforma-

tion. Phase calculation is enabled by controlled-U gate as in Figure  1.1 .

𝐻

𝐻

𝐻

𝑈 𝑈! 𝑈"

0

0

0

|𝜓⟩ |𝜓⟩

1
2
(	 0 + 𝑒!#$%.'! |1⟩)

1
2
(	 0 + 𝑒!#$%.'"'!|1⟩)

1
2
( 0 + 𝑒!#$%.'#'"'! |1⟩)

Figure 1.1. First part of PEA is enabled by controlled-U gate
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U = e2πiH and H is a Hamiltonian. The first register is initialized as 1
2n/2

∑2n−1
k=0 |k〉

by using Hardmard gates and the second register takes the input of a eigenstate of the

Hamiltonian H. As in the Figure  1.1 , suppose the eigenstate is |ψ〉 and corresponding

eigenvalue is Eψ = 0.j1j2j3. We have the state after the first part should be:

(|0〉 + e2πi0.j1j2j3|1〉)(|0〉 + e2πi0.j2j3|1〉)(|0〉 + e2πi0.j3 |1〉)
2
√

2
|ψ〉 (1.9)

The second part is inverse quantum Fourier transform as in Figure  1.2 . The gate Ri

denotes the unitary transformation:

Ri =

1 0

0 e2π/2i



1
2
(	 0 + 𝑒!"#$.&! |1⟩)

1
2
(	 0 + 𝑒!"#$.&"&!|1⟩)

1
2
(	 0 + 𝑒!"#$.&#&"&! |1⟩)

𝐻

𝑅! 𝐻

𝑅' 𝑅! 𝐻

𝑗'

𝑗!

𝑗(

Figure 1.2. Second part of PEA is enabled by inverse Quantum Fourier Transformation

As Figure  1.2 illustrates that 1√
2(|0〉 + e2πi0.j3 |1〉) would become |j3〉 after Hardmard gate.

1√
2(|0〉 + e2πi0.j2j3|1〉) would become |j2〉 after controlled rotation gate and Hardmard gate.

1√
2(|0〉 + e2πi0.j1j2j3|1〉) would become |j1〉 after controlled rotation gates and Hardmard gate.

Thus, by measuring states of three qubits we would be able to get Eψ = 0.j1j2j3
However, PEA has several problems. The probability of the getting the correct eigenvalue

equals to the overlap between the input and target eigenstate, which will require a highly

approximating precomputed eigenstate as the input. Furthermore, PEA requires controlled-

U gates base on the Hamiltonian, which will require too many number of elementary quantum

gates to be implemented on current Noisy Intermediate-Scale Quantum (NISQ) [  11 ] device.
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1.3.2 Variational Quantum Eigensolver

Another approach to solve electronic structure problems on the quantum computer is

variational quantum eigensolver (VQE), which is based on parameterized quantum circuit,

variationally calculate ground state energies. In the following sections, we give brief in-

troductions on parameterized quantum circuit, variational quantum eigenslover ansatz and

evaluation of Hamiltonian.

Parameterized Quantum Circuit

Parameterized quantum circuit (PQC), also called variational quantum circuit, is a quan-

tum circuit consisting of quantum gates. The general parameterized quantum circuit can be

written as:

U(~θ) =
∏

i
Ui (1.10)

where U(~θ) represents the PQC, ~θ are adjustable parameters and Ui can be quantum gates

not taking parameters and quantum gates taking parameters. The most common quantum

gates taking parameters are rotation gates:

Rx(θ) = e−i θ
2σx Ry(θ) = e−i θ

2σy = e−i θ
2σz (1.11)

The output state by the PQC U(~θ) and input state |φ〉 can be written as U(~θ)|φ〉. By

adjusting ~θ, we can adjust the output state to approximate arbitrary states.

Variational Quantum Eigensolver Ansatz

A new quantum algorithm based on variational algorithm has been proposed to enable

electronic structure calculation on current NISQ device. Variational Quantum Eigensolver

(VQE) is a hybrid quantum and classical algorithm [  12 ] based on PQC. By optimizing

the parameters of PQC, VQE tries to make the output state approximating the ground

state. Thus, the ground state energy can be estimated by evaluating the corresponding

Hamiltonian.
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Figure 1.3. Example of VQE quantum circuit. Ui(θi) is an unitary quantum
gate which can be adjusted by the parameter θi.

|Θ〉 is the final state of the quantum circuit. The expectation value of a Hamiltonian H

of the final state can be calculated by measuring the final state:

〈Θ|H|Θ〉 = 〈0|U †(~θ)HU(~θ)|0〉 (1.12)

The expectation 〈Θ|H|Θ〉 can be optimized by adjusting parameters ~θ. By using classical

optimizing methods, the expectation value can be optimized to minimal value which can be

used as approximating ground energy of H. One example of VQE is shown as Figure  1.3 .

VQE is more favorable for NISQ quantum computers for that it has low circuit depth [ 13 ],

[ 14 ].

Evaluation of Hamiltonian

After certain transformations, for example, Jordan-Wigner transformation, parity trans-

formation or Bravyi-Kitaev transformation etc, the Hamiltonian will be written as weighted

summation of tensor products of Pauli matrices and 2 × 2 identity matrix:

H =
∑

i
ciPi (1.13)
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To evaluate H, the evaluation is done by evaluating each tensor product term so that

〈H〉 = ∑
i ci〈Pi〉. 〈Pi〉 can be obtained by measuring the qubits after I, Rx(π

2) or Ry(−π

2 ). Let

us choose a two qubits system as an example. If Pi is the tensor product of σz and I, 〈Pi〉

can be obtained by the probabilities of measuring qubits in different bases. For example,

Pi = I1σ2
z , we can write 〈Pi〉 as:

〈Pi〉 = 〈φ|I1σ2
z |φ〉 = a00 − a01 + a10 − a11 (1.14)

where a00, a01, a10 and a11 are the probabilities of measuring the final state |φ〉 in bases |00〉,

|01〉,|10〉 and |11〉.

If Pi is the tensor product including σx and σy, Rx(π

2) and Ry(−π

2 ) can be appended after

corresponding qubits and 〈Pi〉 can be obtained by the probabilities of measuring qubits in

different bases. For example, Pi = σ1
xσ

2
y, we can write 〈Pi〉 as:

〈Pi〉 = 〈φ|R1
y(

π

2)R2
x(

−π

2 )σ1
xσ

2
yR

2
x(

π

2)R1
y(

−π

2 )|φ〉

= 〈φ|σ1
zσ

2
z |φ〉 = a00 − a01 − a10 + a11

(1.15)

where a00, a01, a10 and a11 are the probabilities of measuring the final state |φ〉 = R2
x(π

2)R1
y(−π

2 )|φ〉

in bases |00〉, |01〉,|10〉 and |11〉 and R2
x R

1
y are Rx gate on qubit 2 and Ry gate on qubit 1.
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2. TRANSFORM ELECTRONIC STRUCTURE PROBLEMS

TO APPROXIMATING ISING-TYPE HAMILTONIAN

Solving the Schrödinger equation is hard due to the dimension of the Hilbert space increasing

exponentially with the number of the particles in the system. Exact solution requires large

computing resource. Thus, quantum chemistry tries to use approximate methods to solve the

Schrödinger equation to chemical accuracy (around 1 kacl/mole). A few contributions from

past decades includes ab initio, Density Functional, Density Matrix, Algebraic, Quantum

Monte Carlo and Dimensional Scaling [  15 ]–[ 17 ]. However, all these methods need large

computing resource when the size of the system increases. 

1
 

One important problem in quantum chemistry, electronic structure problem, as [ 18 ]–[ 20 ]

suggested, would be exponentially hard for classical methods. In the meantime, people de-

veloped a lot quantum algorithm to simulate electronic structure on the quantum computer,

which gives a new promising route to solve these problems [ 14 ], [  21 ]. Recently, there has been

an attempt at using an adiabatic quantum computing model to perform electronic structure

calculations [  22 ]. The fundamental concept behind the adiabatic quantum computing (AQC)

method is to define a problem Hamiltonian, HP , engineered to have its ground state encode

the solution of a corresponding computational problem. The system is initialized in the

ground state of a beginning Hamiltonian, HB, which is easily solved classically. The system

is then allowed to evolve adiabatically as: H(s) = (1 − s)HB + sHP (where s is a time

parameter, s ∈ [0, 1]). The adiabatic evolution is governed by the Schrödinger equation for

the time-dependent Hamiltonian H(s(t)).

The largest scale implementation of AQC to date is by D-Wave Systems [  23 ], [ 24 ]. In the

case of the D-Wave device, the physical process undertaken which acts as an adiabatic evolu-

tion is more broadly called quantum annealing (QA). The quantum processors manufactured

by D-Wave are essentially a transverse Ising model with tunable local fields and coupling

coefficients. The governing Hamiltonian is given as: H = ∑
i ∆iσ

i
x + ∑

i hiσ
i
z + ∑

i,j Jijσ
i
zσ

j
z;

where the parameters ∆i, hi and Jij are the physically tunable field, self-interaction and
1Contents in this chapter are reprinted and adapted with permission from Xia, R., Bian, T., & Kais, S.
(2017). Electronic structure calculations and the Ising Hamiltonian. The Journal of Physical Chemistry B,
122(13), 3384-3395. Copyright (2017) American Chemical Society
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site-site interaction. The qubits are connected in a specified graph geometry, permitting the

embedding of arbitrary graphs. The adiabatic evolution is initialized at HB = −h∑
i σ

i
x and

evolves into the problem Hamiltonian: HP = ∑
i hiσ

i
z + ∑

i,j Jijσ
i
zσ

j
z. Therefore any com-

binatorial optimization NP-hard problem may be encoded into the parameter assignments,

{hi, Jij}, of HP and may exploit the adiabatic evolution under H(s) = (1 − s)HB + sHP as

a method for reaching the ground state of HP .

In this chapter, we present a detailed approximating mapping of electronic structure

problems to Ising-type Hamiltonian, which can be implemented on the D-Wave system. We

also presented numerical results of the mapping to show the correctness of our mapping. The

structure of the chapter consists of mapping electronic structures to Pauli matrices format,

approximately mapping Pauli matrices format to k-local diagonal Hamiltonian, decrease the

locality of k-local diagonal Hamiltonian to Ising-type Hamiltonian and numerical results of

the approximating mapping.

2.1 Mapping Electronic Structure Hamiltonian to Pauli Matrices Format

Explicitly, this general procedure begins with a second quantization description of a

fermionic system in which N single-particle states can be either empty or occupied by a

fermionic particle [ 17 ], [  25 ] as described in section 1.4.2. Thus, the molecular electronic

Hamiltonian with Born-Oppenheimer approximation can be written as:

Ĥ = h0 +
∑
i,j
hija

†
i aj + 1

2
∑

i,j,k,l
hijkla

†
i a

†
jakal. (2.1)

h0 is the nuclear repulsion energy. The above coefficients hij and hijkl are one and two-

electron integrals can be computed by quantum chemistry methods. The next step is to

convert to a Pauli matrix representation of the creation and annihilation operators. We can

then use transformations as described in section 1.4.2 to map between the second quan-

tization operators and Pauli matrices {σx, σy, σz} as well as 2 × 2 identity matrices. The

molecular Hamiltonian takes the general form:

H =
∑

i
ciPi (2.2)
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Within the above, the ci is the coefficient and Pi is the tensor product of Pauli matrices

{σx, σy, σz} as well as 2 × 2 identity matrix.

2.2 Approximate Mapping Pauli Matrices Format Hamiltonian to K-local Di-
agonal Hamiltonian

2.2.1 Hilbert Space Mapping

The mapping is enabled by enlarging the n qubits space to r× n qubits space where r is

the number of repeating n qubits. Consider a quantum state in the n qubit space:

|ψ〉 =
∑

i
ai|φi〉 (2.3)

With {|φi〉} as the basis set consisting of bases representing combinations of spin-up and

spin-down qubits. Here we just consider {ai} are real values for that the eigenstates of Pauli

matrices format electronic structure Hamiltonian can always only have real coefficients if

using real-valued basis set as well as real-valued transformation. The new mapping state in

the mapped r × n qubits space can be written as:

|Ψ〉 = ⊗r
j=1|Φj〉 (2.4)

With |Φj〉 representing the the state of the jth n qubits in the r × n qubits space. For

the n qubits system, the coefficient of basis ai may be a positive or a negative real value

while |Ψ〉 does not contain sign information, we introduce an extra information {S(j)} for

the r×n qubits to store the sign information of each n qubits. S(j) represents the sign value

of the jth n qubits in the r×n qubits system, which can be {1,−1} and has the relationship

r = ∑r
j=1 |S(j)|. We introduce the new variable bi = ∑

|Φj〉=|φi〉 S(j) to count for the repetition

of basis |φi〉 with sign information in the r × n qubits space. The relationship between ai

and bi can be written as:
ai ≈ bi√∑

m b2
m

(2.5)

To illustrate our mapping, we give several mappings examples as in Figure  2.1 . The first

example is to map 2 qubits space to 4 qubits space. For a state |ψ〉 = 1√
2(|00〉 + |11〉) the
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mapping result is |Ψ〉 = |0011〉 with S(1) = S(2) = 1. It has the relationship ai = bi√∑
m
b2

m

with a1 = a2 = 1√
2 and b1 = b2 = 1. The second example is to map 2 qubits space to 4 qubits

space. For a state |ψ〉 = 1√
2(|00〉 − |11〉) the mapping result is |Ψ〉 = |0011〉 with S(1) =

−S(2) = 1. It has the relationship ai = bi√∑
m
b2

m

with a1 = −a2 = 1√
2 and b1 = −b2 = 1. The

third example is to map 2 qubits space to 8 qubits space. For a state |ψ〉 = 1√
2(|00〉 + |11〉)

the mapping result is |Ψ〉 = |00111111〉 with S(1) = S(2) = S(3) = −S(4) = 1. It has the

relationship ai = bi√∑
m
b2

m

with a1 = −a2 = 1√
2 and b1 = b2 = 1. Note here b2 is calculated

by b2 = S(2) + S(3) + S(4) = 1

Figure 2.1. Left: A mapping between a two qubits state with two positive
coefficients and a four qubits state. Middle: A mapping between a two qubits
state with one positive coefficient and one negative coefficient and a four qubits
state. Right A mapping between a two qubits state and a eight qubits state.

2.2.2 Operator Mapping

After the mapping of the Hilbert space, the mapping of the operator should follow the

same way. First let us introduce several notations we will use in the following description of

the operator mapping. ik qubit in the r × n qubits space represents the ith qubit in the kth
n qubits of total r× n qubits. We also mark the kth n qubits of total r× n qubits are in the

n qubits basis |φb(k)〉 or |Φk〉 = |φb(k)〉.

The mapping of the Pauli matrices and the Identity matrices can be written as:

σi
x → 1 − σ

ij
z σik

z

2 σi
y → i

σik
z − σ

ij
z

2

σi
z → σ

ij
z + σik

z

2 I i → 1 + σ
ij
z σik

z

2

(2.6)
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Figure 2.2. Example of mapping σ2
x between different basis from a 3 qubits

state to a 6 qubits state. The spin operators act on the second qubit in the
original Hamiltonian basis and on the second and fifth qubits in the mapped
Hamiltonian basis.

Note here σi
x represents the Pauli matrix σx on the ith qubits in the n qubits space and

σ
ij
z represents the Pauli matrix σz on the ith qubit of the jth n qubits in the r × n qubits

space.

Lemma 1:

〈φb(j)| ⊗i Ii|φb(k)〉 = 〈Ψ|
∏

i

1 + σ
ij
z σik

z

2 |Ψ〉 (2.7)

Proof: Ii in the space of |ψ〉 is to check if ith digits of |φb(j)〉 and |φb(k)〉 are the same

or not. If they are the same, it yields 1, otherwise 0. On the other hand, 1+σ
ij
z σ

ik
z

2 in the

space of |Ψ〉 is to check the ith digits of the jth n-qubits subspace (|φb(j)〉) and the kth n-qubit

subspace (|φb(k)〉) are the same or not. If they are the same it yields 1, otherwise 0. (For
1+sigma

ij
z σ

ik
z

2 we omit the operators for other digits which are the identity I.)

Lemma 2:

〈φb(j)| ⊗i<m Ii ⊗ σmx ⊗i>m Ii|φb(k)〉

= 〈Ψ|
∏
i<m

1 + σ
ij
z σik

z

2 × 1 − σ
mj
z σmk

z

2 ×
∏
i>m

1 + σ
ij
z σik

z

2 |Ψ〉
(2.8)

Proof: σi
x in the space of |ψ〉 is to check if the ith digit of |φb(j)〉 and |φb(k)〉 are the same

or not. If they are the same it yields 0, otherwise 1. Similarly, 1−σ
ij
z σ

ik
z

2 in the space |Ψ〉 is to
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verify the ith digits of the jth n-qubit subspace (|φb(j)〉) and the kth n-qubit subspace (|φb(k)〉)

are identical. If they are the same it gives 0, otherwise 1. (For 1−σ
ij
z σ

ik
z

2 we omit operators for

other digits which are the identity I.)

Also, σi
y and iσ

ik
z −σ

ij
z

2 have the same function in different spaces. These operators are used

to check the ith digits of |φb(j)〉 and |φb(j)〉. Also, σi
z and σ

ij
z +σik

z

2 have the same function in

different spaces to check the ith digits of |φb(j)〉 and |φb(j)〉. This can be easily verified by the

above discussion.

Theorem 1: Any real valued Hamiltonian in the space of n qubits space in the format of

Pauli and Identity Matrices can be mapped approximately to the r × n as described above.

Proof: First we introduce a new notation, we mark the mapping between jth n qubits

and kth n qubits in |Ψ〉, 1−σ
ij
z σ

ik
z

2 as X(j,k)
i , σ

ij
z +σik

z

2 as Z(j,k)
i , iσ

ik
z −σ

ij
z

2 as Y (j,k)
i and 1+σ

ij
z σ

ik
z

2 as

I
(j,k)
i .

If the Hamiltonian H in the n qubits space can be written as:

H =
∑

i
hi ⊗ai σ

ai
x ⊗bi σ

bi
y ⊗ci σ

ci
z ⊗di I

di (2.9)

where hi is the coefficient and ai, bi, ci di are indexes of qubits.

We can write mapped H ′
(j,k) in the r × n qubits as:

H ′
(j,k) =

∑
i
hi

∏
ai

X(j,k)
ai

∏
bi

Y
(j,k)
bi

∏
ci

Z(j,k)
ci

∏
di

I
(j,k)
di

(2.10)

It can be verified following the rules above if |Ψ〉 and |φ〉 are constructed as in equation

 2.3 and  2.4 :

〈Ψ|H ′
(j,k)|Ψ〉 = 〈φb(j)|H|φb(k)〉 (2.11)

Furthermore, for all j = k we can simplify to:

X
(j,j)
i = 1 − σ

ij
z σ

ij
z

2 = 0 Y
(j,j)

i = i
σ

ij
z − σ

ij
z

2 = 0

Z
(j,j)
i = σ

ij
z + σ

ij
z

2 = σij
z I

(j,j)
i = 1 + σ

ij
z σ

ij
z

2 = I

(2.12)
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Thus, if we add the sign S(j) and S(k), we can get:

〈Ψ|
r∑

j=1

r∑
k=1

H ′
(j,k))S(j)S(k)|Ψ〉

=
r∑

j=1

r∑
k=1

〈φb(j)|H|φb(k)〉S(j)S(k)

=
J 6=K,J,K≤2n∑

J,K

bJbK〈φJ |H|φK〉 +
J≤2n∑
J

b2
J〈φj|H|φJ〉

=
∑
m

b2
m〈ψ1|H|ψ1〉 ≈

∑
m

b2
m〈ψ|H|ψ〉

(2.13)

where j k are indexes of the n qubits in the r×n qubits and J , K are indexes of the basis of

n qubits. |ψ1〉 = ∑
J

bJ√∑
m
b2

m

|φJ〉 and |ψ〉 = ∑
J aJ |φJ〉 (for ∑

m b
2
m = 0 case |ψ1〉 = |ψ〉 = 0).

By increasing r we can use |ψ1〉 to approximate |ψ〉.

Through above we have established a mapping of operators between n qubits space and

r×n qubits space by constructing H ′ = ∑j,k≤r
j,k H ′

(j,k)S(j)S(k). The expectation values of the

original operator and the mapped operator have a difference of a constant ∑
m b

2
m which can

be calculated on the mapped state by constructing a new operator C where:

• C = ∑
±(∑

i(
∏ni
k=1i

1±σk
z

2 )S(i))2

• ∑
± over all combination of positive and negative signs of each digit in each ith of the

n-qubit in space |Ψ〉.

• ∑
i over all n-qubit collection in |Ψ〉 to check whether each n qubits is in a certain

state.

• ∏ni
k=1i

over each qubits of ith n qubits in |Ψ〉 .

• 1±σk
z

2 is to check whether kth qubits of ith n-qubit subspace is in a certain state. 1+σk
z

2

is 1 when the kth qubits is in |0〉 state and 0 otherwise.

Here, we present an algorithm combing H ′ = ∑j,k≤r
j,k H ′

(j,k) and C to calculate the ground

state of the initial Hamiltonian H. We mark the expectation value of |ψ1〉 for H as λ1. The

expectation value of mapped |Ψ〉 for H ′ is ∑
m b

2
mλ1. Thus, if we choose a λ and construct a

Hamiltonian H ′ − λC. The expectation value of |Ψ〉 for H ′ − λC is ∑
m b

2
m(λ1 − λ)
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Algorithm 1
for i from 0 to b r2c do

Set the signs of the first i n qubits to be negative and the others to be positive.

Construct H ′ and C. Set λ to be a large number (at least larger than the minimal λ1

of all λ1 with current signs excluding case ∑
m b

2
m = 0 to avoid case ∑

m b
2
m = 0 ).

while True do

Calculate H ′ −λC and get the ground state |Ψ′〉 and the corresponding ground state

eigenvalue ∑
m b

2
m(λ1 − λ).

if ∑
m b

2
m(λ1 − λ) ≥ 0 then

Break the while loop

end if

Calculate C on |Ψ′〉 to get ∑
m b

2
m then get λ1. Set λ to be λ1.

end while

Set λ2 to be λ and λ2 is the smallest approximating eigenvalue with current signs.

end for

The smallest one among all λ2 is the approximating ground state energy of H.

Theorem 2: The algorithm will stop at the minimum achievable expectation value of

H by the mapping in finite iterations.

Proof: The algorithm will continue only if we find a mapped state |Ψ〉 of H ′ − λC with

eigenvalue ∑
m b

2
m(λ1 − λ) < 0, which would give us λ1 − λ < 0. The algorithm will set

λ = λ1 and start a new iteration. Because we first set λ to be a large number (at leaset

larger than the minimal λ1 all λ1 with current signs excluding case ∑
m b

2
m = 0), during the

first iteration, we will have the minimal eigenvalue of H ′ −λC as a negative value and λ will

be set to a possible λ1. As long as there is a possible λ1 which does not correspond to case∑
m b

2
m = 0 and is smaller than current λ, we always have minimal eigenvalue of H ′ − λC is

negative. Each time λ is set to a smaller value and decreases monotonically.

We will finally come to the minimum achievable expectation value by the mapping for

the finite number of expectation values. If and only if λ is the minimal λ1 of all λ1 with

current signs excluding case ∑
m b

2
m = 0, the minimal eigenvalue of H ′ − λC will become 0
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and the algorithm will stop. Thus λ will decrease for each iteration and will finally stop only

if become the smallest achievable expectation value (excluding case ∑
m b

2
m = 0).

Theorem 3: To account for the sign, we just need to set i from 0 to b r2c and set signs

of the first ith n qubits to be negative and the others to be positive in |Ψ〉.

Proof: If the number of of n qubits with negative sign is larger than the number of n

qubits with positive sign, we can always make all negative signs to positive signs and all

positive signs to negative signs without changing the final results. If we have an n qubits

in the |Ψ〉 with negative sign, where |Ψ〉 has total i n qubits with negative sign. If this n

qubits are not in first i n qubits, we can rearrange it to the first i n qubits by exchanging it

with n qubits in first i n qubits which has positive sign without changing the final results.

Thus all combination can be reduced to the combination stated in this Theorem 3.

Thus, we have established a transformation from an initial Hamiltonian to a k-local

diagonal Hamiltonian and presented an algorithm to calculate the minimum achievable ex-

pectation value of initial Hamiltonian using the diagonal Hamiltonian.

2.3 Reduce K-local Diagonal Hamiltonian to 2-local Ising Hamiltonian

Here we present the procedure to reduce the locality of H ′ from k-local to a 2-local Ising

Hamiltonian. For x, y, z ∈ {0, 1} [ 26 ], [ 27 ]:

xy = z iff xy − 2xz − 2yz + 3z = 0

xy 6= z iff xy − 2xz − 2yz + 3z > 0
(2.14)

Thus, the 3-local x1x2x3 can be transformed to 2-local:

min(x1x2x3) = min(x4x3 + x1x2 − 2x1x4 − 2x2x4 + 3x4) x1, x2, x3, x4 ∈ {0, 1}

min(−x1x2x3) = min(−x4x3 + x1x2 − 2x1x4 − 2x2x4 + 3x4) x1, x2, x3, x4 ∈ {0, 1}
(2.15)

Theorem 4: min(kx1x2x3 + f(x) = g1(x)) = min(kx4x3 + |k|(x1x2 − 2x1x4 − 2x2x4 +

3x4)+f(x) = g2(x, x4)) where k is a non-zero real value and f(x) is polynomial of all variables

(including x1, x2, x3 and other variables, excluding x4). The set of variables x makes g1(x)

minimum will also make g2(x, x4) with certain x4 minimum and vice versa.
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Proof: If there exists a set of variables x′ makes g1(x′) to be minimum, we can always

make g2(x′, x′
4) = g1(x′) by choosing x′

4 = x′
1x

′
2 where x′

1, x
′
2 are values of x1, x2 in x′.

If there exists a set of variables x′′ and x′′
4 makes g2(x′′, x′′

4) to be minimum, then g1(x′′) ≤

g2(x′′):

1. If x′′
4 = x′′

1x
′′
2, g1(x′′) = kx′′

1x
′′
2x

′′
3 + f(x′′) = kx′′

4x
′′
3 + |k|(x′′

1x
′′
2 − 2x′′

1x
′′
4 − 2x′′

2x
′′
4 + 3x′′

4) +

f(x′′) = g2(x′′, x4) where x′′
1, x

′′
2, x

′′
3 are values of x1, x2, x3 in x′′,

2. If x′′
4 6= x′′

1x
′′
2, g2(x′′, x4) = kx′′

4x
′′
3 + |k|(x′′

1x
′′
2 −2x′′

1x
′′
4 −2x′′

2x
′′
4 +3x′′

4)+f(x′′) ≥= kx′′
4x

′′
3 +

|k| + f(x′′) ≥ kx′′
1x

′′
2x

′′
3 + f(x′′) = g1(x′′) where x′′

1, x
′′
2, x

′′
3 are values of x1, x2, x3 in x′′,.

This is valid because |k|(x′′
1x

′′
2 −2x′′

1x
′′
4 −2x′′

2x
′′
4 +3x′′

4) ≥ |k| and kx′′
4x

′′
3 −kx′′

1x
′′
2x

′′
3 ≥ −|k|.

Thus, we have g1(x′) = g2(x′, x′
4) ≥ g2(x′′, x′′

4) ≥ g1(x′′) ≥ g1(x′). Thus we have g1(x′) =

g2(x′, x′
4) = g2(x′′, x′′

4) = g1(x′′), or any set of variables x makes g1(x) minimum will also

make g2(x, x4) with certain x4 minimum and vice versa.

Thus, we can obtain the reduction of the locality for the Hamiltonian H ′ using equation

 2.15 to reduce the locality. For example, for σ1
zσ

2
zσ

3
z , we can use equation  2.15 to get:

min(1 + σ1
z

2 × 1 + σ2
z

2 × 1 + σ3
z

2 )

= min(1
4((1 + σ4

z)(1 + σ3
z) + (1 + σ1

z)(1 + σ2
z) − 2(1 + σ1

z)(1 + σ4
z) − 2(1 + σ2

z)(1 + σ4
z) + 6(1 + σ4

z)))

= min(1
4(4 − σ1

z − σ2
z + σ3

z + 3σ4
z + σ1

zσ
2
z + σ3

zσ
4
z − 2σ1

zσ
4
z − 2σ2

zσ
4
z))

(2.16)

Or by Theorem 4 we can get:

min(σ1
zσ

2
zσ

3
z)

= min(81 + σ1
z

2 × 1 + σ2
z

2 × 1 + σ3
z

2 − 81 + σ1
z + σ2

z + σ3
z + σ1

zσ
2
z + σ1

zσ
3
z + σ2

zσ
3
z

8 )

= min(8 × 1
4(4 − σ1

z − σ2
z + σ3

z + 3σ4
z + σ1

zσ
2
z + σ3

zσ
4
z − 2σ1

zσ
4
z − 2σ2

zσ
4
z)

− (1 + σ1
z + σ2

z + σ3
z + σ1

zσ
2
z + σ1

zσ
3
z + σ2

zσ
3
z))

= min(7 − 3σ1
z − 3σ2

z + σ3
z + 6σ4

z + σ1
zσ

2
z + 2σ3

zσ
4
z − 4σ1

zσ
4
z − 4σ2

zσ
4
z − σ1

zσ
3
z − σ2

zσ
3
z)

(2.17)

According to Theorem 4, {σ1, σ2, σ3} making left term minimum will also make the right

term minimum with certain σ4 and vice versa.
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Using the same approach for −σ1
zσ

2
zσ

3
z we can get:

min(−σ1
zσ

2
zσ

3
z)

= min(5 − σ1
z − σ2

z − σ3
z + 2σ4

z + 3σ1
zσ

2
z − 2σ3

zσ
4
z − 4σ1

zσ
4
z−

4σ2
zσ

4
z + σ1

zσ
3
z + σ2

zσ
3
z)

(2.18)

According to Theorem 4, {σ1, σ2, σ3} making left term minimum will also make the right term

minimum with certain σ4 and vice versa. Furthermore, there are many other implementations

to reduce the locality, for example, D-Wave Ocean software [ 28 ].

2.4 Numerical Example

Here we present an example of our transformation and use our algorithm to find the

achievable minimum expectation value of the mapping to better illustrate the whole trans-

formation. The Hamiltonian describes a simple model of two spin 1
2 electrons with an

exchange coupling constant J in an effective transverse magnetic field of strength B. This

simple model has been used to discuss the entanglement for H2 molecule [  29 ]. The general

Hamiltonian for such a system is given by:

H = −J

2 (1 + γ)σ1
xσ

2
x − J

2 (1 − γ)σ1
yσ

2
y −Bσ1

z −Bσ2
z (2.19)

When r = 2 the mapping Hamiltonian for each term can be written as:

H ′
(1,1) = −Bσ1

z −Bσ2
z

H ′
(2,2) = −Bσ3

z −Bσ4
z

H ′
(1,2) = −J

2 (1 + γ)1 − σ1
zσ

3
z

2
1 − σ2

zσ
4
z

2 − J

2 (1 − γ)σ
1
z − σ3

z

2
σ4
z − σ2

z

2

−B
σ1
z + σ3

z

2
1 + σ2

zσ
4
z

2 −B
σ2
z + σ4

z

2
1 + σ1

zσ
3
z

2
H ′

(2,1) = H ′
(1,2)

(2.20)
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Figure 2.3. The mapped Hamiltonian −J/2(1 + γ)σ1
xσ

2
x between different basis.

Thus, the mapping Hamiltonian H ′ as well as the C used in the calculation can be written

as:

H ′ =
j,k≤2∑

j,k
H ′

(j,k)S(j)S(k) (2.21)

C = (1 + σ1
z

2
1 + σ2

z

2 S(1) + 1 + σ3
z

2
1 + σ4

z

2 S(2))2

+ (1 + σ1
z

2
1 − σ2

z

2 S(1) + 1 + σ3
z

2
1 − σ4

z

2 S(2))2

+ (1 − σ1
z

2
1 + σ2

z

2 S(1) + 1 − σ3
z

2
1 + σ4

z

2 S(2))2

+ (1 − σ1
z

2
1 − σ2

z

2 S(1) + 1 − σ3
z

2
1 − σ4

z

2 S(2))2

(2.22)

We show the procedure of our algorithm (we set B = 0.001, J = −0.1 and γ = 0) with

r = 2:

1. For S(1) = S(2) = 1, first we choose λ = 1000, we get the minimum eigenvalue of

H ′−1000C is −4000.008 with |Ψ〉 = |0000〉. Thus we get ∑
m b

2
m = 4 then λ1 = −0.002.

2. We set λ = −0.002, we get the minimum eigenvalue of H ′ +0.002C is 0. We stop here.

3. For −S(1) = S(2) = 1, first we choose λ = 1000, we get the minimum eigenvalue of

H ′ − 1000C is −2000.2 with |Ψ〉 = |0110〉. Thus we get ∑
m b

2
m = 2 then λ1 = −0.1.

4. We set λ = −0.1, we get the minimum eigenvalue of H ′ + 0.1C is 0. We stop here.
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5. We get the minimum eigenvalue of H is min(−0.1,−0.002) = −0.1.

We also present the result of mapping the above Hamiltonian H with B = 0.001, J =

−0.821R5/2e−2R [ 29 ] and γ = 0 as in Figure  2.4 .

0 1 2 3 4 5
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0.12

0.10

0.08

0.06

0.04

0.02

0.00
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gy

 (a
.u

.)

simulated
exact

Figure 2.4. Comparing the ground state energy from exact (atomic units) of
the original Hamiltonian H, as a function of the internuclear distance R (solid
line) with the results of the transformed Hamiltonian H ′.

2.5 Mapping H2 Hamiltonian to Ising Hamiltonian

Here, we treat the Hydrogen molecule in a minimal basis STO-6G. we can write the

second quantization Hamiltonian of H2:

HH2 = h0 +
∑

ij
hija

†
i aj + 1

2
∑
ijkl

hijkla
†
i aj†akal (2.23)

h0 is the nuclei repulsion energy. The one and two-electron integrals are giving by:

hij =
∫
d~rχ∗

i (~r)(−
1
2∇2 −

∑
A

ZA

|~r − ~RA|
)χj(~r)

hijkl =
∫
d~r1d~r2χ

∗
i (~r1)χ∗

j (~r2)
1
r12

χk(~r2)χl(~r1)
(2.24)
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where χi(~r), χj(~r), χk(~r), χl(~r) are molecular spin orbital wave functions. ZA is Ath nuclear

charge and ~RA is position of Ath nucleus.

By using binary code transformation with checksum code to save to qubits utilizing the

spin symmetry, we can rewrite the Hamiltonian as:

HH2 = g0 + g1σ
1
z + g2σ

2
z + g3σ

1
zσ

2
z + g4σ

1
xσ

2
x (2.25)

By applying the mapping method described above, we can get the Hamiltonian H ′ con-

sisting of only σz (where 1i and 2i means the 1 and 2 qubits of ith 2 qubits) as well as C

needed for the algorithm:

H ′ =
∑

i
g0 + g1σ

1i
z + g2σ

2i
z + g3σ

1i
z σ

2i
z

+
∑
i6=j

[g0
(1 + σ1i

z σ
1j
z )(1 + σ2i

z σ
2j
z )

4 S(i)S(j)

+ g1
(σ1i

z + σ
1j
z )(1 + σ2i

z σ
2j
z )

4 S(i)S(j)

+ g2
(σ2i

z + σ
2j
z ))(1 + σ1i

z σ
1j
z )

4 S(i)S(j)

+ g3
(σ1i

z + σ
1j
z )(σ2i

z + σ
2j
z )

4 S(i)S(j)

+ g4
(1 − σ1i

z σ
1i
z )(1 − σ2i

z σ
2j
z )

4 S(i)S(j)]

(2.26)

C =
∑
±

(
∑

i

(1 ± σ1i
z )(1 ± σ2i

z )
4 S(i))2 (2.27)

For each time when calculating the new Hamiltonian H ′ − λC we can use the method in

2.3 to reduce the Hamiltonian to an Ising-type Hamiltonian which is able to be implemented

on D-Wave quantum computer.

2.6 Results and Discussion

2.6.1 Numerical Results

To illustrate this proposed method, we present the calculations for the Hydrogen molecule

H2, the Helium dimer He2, HeH+ diatomic molecule and the LiH molecule. First, we convert

39



the second quantization Hamiltonian in the minimal basis set (STO-6G) to the spin Hamil-

tonian of (σx, σy, σz). Then we use our transformed Hamiltonian in r × n qubits to obtain

a diagonal k-local Hamiltonian of σz terms and we can get:

H ′ = c+
∑

i
h′

iσ
i
z +

∑
ij
hijσ

i
zσ

j
z +

∑
ijk
hijkσ

i
zσ

j
zσ

k
z + ... (2.28)

where c is a constant. Furthermore, we can reduce the locality to get a 2-local Ising Hamil-

tonian with the constant c′ by introducing ancilla qubits:

H ′′ = c′ +
∑

i
aiσ

i
z +

∑
ij
aijσ

i
zσ

j
z (2.29)

We use the binary code transformation [ 10 ] implemented in OpenFermion [  30 ] with check-

sum code to save two qubits by spin symmetry when transforming to the Pauli matrices for-

mat. For H2 the final Pauli matrices format Hamiltonian has 2 qubits and we set r = 10. For

He2 the final Pauli matrices format Hamiltonian has 2 qubits and we set r = 10. One should

note that the Hamiltonian of He2 after binary code transformation is already an Ising-type

Hamiltonian because we are using the minimal basis set. But we still use our transformation

on it to show our method also works for Ising-type electronic structure Hamiltonian. For

HeH+ the final Pauli matrices format Hamiltonian has 2 qubits and we set r = 10. For LiH,

we use the active space approach to assume the two lowest energy spin orbitals are always

occupied and first six highest energy spin orbitals are always unoccupied and the final Pauli

matrices format Hamiltonian has 2 qubits. We set r = 10.

The result presented below is calculated by the algorithm in 2.2.2. The k-local diagonal

Hamiltonian and the transformed Ising-type Hamiltonian have same ground state (on original

qubits without introduced ancilla qubits) and same ground state energy, which have been

proved by section 2.3. Due to the large size of the Ising-type Hamiltonian and limited

computer resource, as well as we only need the ground state on original qubits and the ground

state energy, the ground state (on original qubits without introduced ancilla qubits) and

ground state energy of the Ising-type Hamiltonian are simulated by the direct diagonalization

of k-local diagonal Hamiltonian.
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Figure 2.5. Comparing the numerical results of ground state energy obtained
by the Ising-type Hamiltonian (k-local diagonal Hamiltonian) with the ground
state energies obtained from diagonalization of H2, He2, HeH+ and LiH Hamil-
tonian as one varies the internuclear distance R.

2.6.2 Discussion

The requirement of qubits can be derived by the several steps of constructing the final

Hamiltonian. For example, for a Hamiltonian with n total spin orbitals taken into consider-

ation, transforming Hamiltonian from second quantization to Pauli operators requires O(n)

qubits and O(n4) terms. Mapping Hamiltonian from Pauli matrices format H to k-local

diagonal Hamiltonian H ′ requires O(rn) qubits and O(2nr2n4) terms. The C in the algo-

rithm requires O(rn) qubits and O(r222n) terms. The both exponential numbers of terms

will introduce a large number of ancilla qubits when reduced to 2-local.

Furthermore, we cannot clearly give a relationship between r and wanted accuracy. Same

as the variational method which tries to get an optimal result during certain condition, this

mapping tries to approach the wanted ground eigenstate by a new state to achieve an optimal

result by repeating r times. Thus we cannot calculate the errors between our optimal result
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and exact result because we have no idea what is the exact result as the variational method.

But by the calculation we can see that by increasing r, we can achieve more accuracy [ 31 ].

This is clear because by increasing r we have more space to repeat which will help us to

make bi approach ai.

The meaning of our method mainly lies in we have successfully mapping a normal Hamil-

tonian to a k-local diagonal Hamiltonian which is much easier to implement in experiment.

Nowadays implementing σx and σy is impossible in adiabatic quantum computing like D-

Wave. Our method gives a possibility of easy implementing Hamiltonian and do require

difficult calculation like diagonalizing matrix which is as hard as calculating eigenstates.

Moreover, the recent experimental results for simple few electrons diatomic molecules pre-

sented by the IBM group have shown that a hardware-efficient optimizer implemented on

a 6-qubit superconducting quantum processor is capable of producing the potential energy

surfaces of such molecules [ 13 ]. The development of efficient quantum hardware and the

possibility of mapping the electronic structure problem into an Ising-type Hamiltonian may

grant efficient ways to obtain exact solutions to the Schrödinger equation, this being one of

the most daunting computational problems present in both chemistry and physics.
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3. QUANTUM-ASSISTED RESTRICTED BOLTZMANN FOR

ELECTRONIC STRUCTURE CALCULATIONS

Machine learning techniques are demonstrably powerful tools displaying remarkable success

in compressing high dimensional data [  32 ], [  33 ]. These methods have been applied to a

variety of fields in both science and engineering, from computing excitonic dynamics [ 34 ],

energy transfer in light-harvesting systems [  35 ], molecular electronic properties [  36 ], surface

reaction network [  37 ], learning density functional models [  38 ] to classify phases of matter,

and the simulation of classical and complex quantum systems [  39 ]–[ 45 ]. Modern machine

learning techniques have been used in the state space of complex condensed-matter systems

for their abilities to analyze and interpret exponentially large data sets [  40 ] and to speed-up

searches for novel energy generation/storage materials [ 46 ], [ 47 ]. 

1
 

Quantum machine learning [  48 ] - hybridization of classical machine learning techniques

with quantum computation – is emerging as a powerful approach allowing quantum speed-

ups and improving classical machine learning algorithms [  49 ]–[ 53 ]. Recently, Wiebe et. al.

[ 54 ] have shown that quantum computing is capable of reducing the time required to train

a restricted Boltzmann machine (RBM), while also providing a richer framework for deep

learning than its classical analogue. The standard RBM models the probability of a given

configuration of visible and hidden units by the Gibbs distribution with interactions restricted

between different layers. Here, we focus on an RBM where the visible and hidden units

assume {+1,−1} forms [ 55 ], [ 56 ].

Accurate electronic structure calculations for large systems continue to be a challenging

problem in the field of chemistry and material science. Toward this goal — in addition to

the impressive progress in developing classical algorithms based on ab initio and density

functional methods — quantum computing based simulation have been explored [ 14 ], [ 22 ],

[ 57 ]–[ 60 ]. Recently, Kivlichan et. al. [ 61 ] show that using a particular arrangement of gates

(a fermionic swap network) it is possible to simulate electronic structure Hamiltonian with

linear depth and connectivity. These results present significant improvement on the cost
1Contents in this chapter are reprinted and adapted from Xia, R., & Kais, S. (2018). Quantum machine
learning for electronic structure calculations. Nature communications, 9(1), 1-6.
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of quantum simulation for both variational and phase estimation based quantum chemistry

simulation methods.

Recently, Troyer and coworkers proposed using a restricted Boltzmann machine to solve

quantum many-body problems, for both stationary states and time evolution of the quantum

Ising and Heisenberg models [  55 ]. However, this simple approach has to be modified for cases

where the wave function’s phase is required for accurate calculations [ 56 ].

In this chapter, we propose a three-layered RBM structure that includes the visible and

hidden layers, plus a new layer correction for the signs of coefficients for basis functions of

the wave function. We will show that this model has the potential to solve complex quantum

many-body problems and to obtain very accurate results for simple molecules as compared

with the results calculated by a finite minimal basis set, STO-3G. We also employed a

quantum algorithm to help the optimization of training procedure.

3.1 Improved RBM for Electronic Structure Problems

3.1.1 Previous Work of RBM to Solve Quantum Many Body Problems

We will begin by briefly outlining the original RBM structure adapted from [ 55 ]. For

a given Hamiltonian, H, and a trial state, |φ〉 = ∑
x φ(x)|x〉, the expectation value can be

written as[ 55 ]:

〈H〉 = 〈φ|H|φ〉
〈φ|φ〉

=
∑
x,x〈φ|x〉〈x|H|x〉〈x|φ〉∑

x〈φ|x〉〈x|φ〉
=

∑
x,x φ(x)〈x|H|x〉φ(x)∑

x |φ(x)|2 z (3.1)

where φ(x) = 〈x|φ〉 will be used throughout this letter to express the overlap of the complete

wave function with the basis function |x〉, φ(x) is the complex conjugate of φ(x).

We can map the above to a RBM model with visible layer units σ1
z , σ

2
z ... σ

n
z and hidden

layer units h1, h2... hm with σi
z, hj ∈ {−1, 1}. We use the visible unit σi

z to represent the

spin state of the qubit i – if σi
z = −1 it represents qubit i in |0〉 and if σi

z = 1 it represents

qubit i in |1〉 . The total spin state of n qubits is represented by the basis |x〉 = |σ1
zσ

2
z ...σ

n
z 〉.
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φ(x) =
√
P (x) where P (x) is the probability for x from the distribution determined by the

RBM. The probability of a specific set x = {σ1
z , σ

2
z ...σ

n
z } is:

P (x) =
∑

{h} e(
∑

i aiσi
z+

∑
j bjhj+

∑
i,j wijσi

zhj)∑
x

∑
{h} e(

∑
i aiσi

z+
∑

j bjhj+
∑

i,j wijσi
zhj)

(3.2)

Within the above ai and bj are trainable weights for units σi
z and hj. wij are trainable

weights describing the connections between σi
z and hj (see Figure  3.1 )

By setting 〈H〉 as the objective function of this RBM, we can use the standard gradient

decent method to update parameters, effectively minimizing 〈H〉 to obtain the ground state

energy.

3.1.2 Improved RBM Structure for Electronic Structure Problem

However, previous prescriptions considering the use of RBMs for electronic structure

problems have found difficulty as φ(xi) can only be non-negative values. We have thus

appended an additional layer to the neural network architecture to compensate for the lack

of sign features specific to electronic structure problems.

We propose an RBM with three layers. The first layer, σz, describes the parameters

building the wave function. The h’s within the second layer are parameters for the coefficients

for the wave functions and the third layer s, represents the signs associated |x〉:

s(x) = s(σ1
z , σ

2
z ...σ

n
z ) = tanh(

∑
i
diσ

i
z + c) (3.3)

The s uses a non-linear function tanh to classify whether the sign should be positive or

negative. Because we have added another function for the coefficients, the distribution is not

solely decided by RBM. We also need to add our sign function into the distribution. Within

this scheme, c is a regulation and di are weights for σi
z. (see Figure  3.1 ). Our final objective

function, now with |φ〉 = ∑
x φ(x)s(x)|x〉, becomes:

〈H〉 =
∑
x,x φ(x)s(x)〈x|H|x〉φ(x)s(x)∑

x |φ(x)s(x)|2 (3.4)
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Figure 3.1. (a) Original RBM for quantum many-body problems. (b) Our
improved RBM for electronic structure calculations.

After setting the objective function, the learning procedure is performed by sampling to

get the distribution of φ(x) and calculating to get s(x). We then proceed to calculate the

joint distribution determined by φ(x) and s(x). The gradients are determined by the joint

distribution and we use gradient decent method to optimize 〈H〉. Calculating the the joint

distribution is efficient because s(x) is only related to x.

3.1.3 Calculating Gradients for Improved RBM Structure

For an electronic structure Hamiltonian prepared by second quantization and transformed

to Pauli matrices format, H, and a trial wave function, |φ〉 = ∑
x φ(x)s(x)|x〉, the expectation

value can be written as[ 62 ]:

〈H〉 = 〈φ|H|φ〉
〈φ|φ〉

=
∑
x,x φ(x)s(x)〈x|H|x〉φ(x)s(x)∑

x |φ(x)s(x)|2 (3.5)
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x is a combination of {σ1
z , σ

2
z ...σ

n
z } and |x〉 = |σ1

zσ
2
z ...σ

n
z 〉. If we set Φ(x) = φ(x)s(x),

because φ(x) and s(x) are all real value functions, then the gradient can be calculated as[  55 ],

[ 62 ]:

∂pk
〈H〉 =

∑
x(∂pk

Φ(x))〈x|H|φ〉 + ∑
x〈φ|H|x〉(∂pk

Φ(x))∑
x |Φ(x)|2

−
∑
x Φ(x)〈x|H|φ〉∑

x |Φ(x)|2
∑
x((∂pk

Φ(x))Φ(x) + Φ(x)∂pk
Φ(x))∑

x |Φ(x)|2
(3.6)

If we set Eloc(x) = 〈x|H|φ〉
Φ(x) and Dpk

(x) = ∂pk
Φ(x)

Φ(x) , the gradient can be written as[ 62 ]:

∂pk
〈H〉 =

∑
xDpk

(x)Eloc(x)|Φ(x)|2 + ∑
xEloc(x)Dpk

(x)|Φ(x)|2∑
x |Φ(x)|2

−
∑
x |Φ(x)|2Eloc(x)∑

x |Φ(x)|2
∑
x(Dpk

(x) +Dpk
(x))|Φ(x)|2∑

x |Φ(x)|2

= 2〈ElocDpk
〉 − 2〈Eloc〉〈Dpk

〉

(3.7)

where 〈...〉 represent the expectation value of distribution determined by Φ(x). 〈x|H|φ〉 =

〈φ|H|x〉 for that H is a real symmetric matrix because we used real-valued STO-3G basis

set as well as the real-valued transformation to Pauli matrices format.

pk is the parameters ai, bj, wij, di, c for kth iterations. Thus we have[ 62 ]:

Dai(x) = 1
2σ

i
z − 1

2〈σi
z〉RBM ,

Dbj(x) = 1
2tanh(θj) − 1

2〈hj〉RBM ,

Dwij(x) = 1
2tanh(θj)σi

z − 1
2〈σi

zhj〉RBM ,

Dc(x) = 1/s(x) − s(x),

Ddi(x) = σi
z(1/s(x) − s(x)),

(3.8)

where θj = ∑
i wijσ

i
z + bj. 〈...〉RBM represents the distribution determined solely by RBM. We

do not need to calculate the second term of Dai , Dbi and Dwij for that they will be cancelled

when calculating the gradient ∂pk
〈H〉. We use the gradient decent method to optimize our

RBM, yielding the minimum corresponding to the ground energy:

pk+1 = pk − αk∂pk
〈H〉 (3.9)
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where αk is the learning rate for kth iteration, controlling the convergence rate. We can con-

tinue iterating until we reach the maximum number of iterations. The gradient is estimated

by the distribution calculated by sampling.

3.1.4 Quantum Algorithm to Train RBM

We propose a quantum algorithm to sample the distribution determined by RBM. The

probability for each combination y = {σz, h} can be written as:

P (y) = e
∑

i aiσi
z+

∑
j bjhj+

∑
i,j wijσi

zhj∑
y e

∑
i aiσi

z+
∑

j bjhj+
∑

i,j wijσi
zhj

(3.10)

Instead of P (y), we try to sample the distribution Q(y) as:

Q(y) = e
1
k

(
∑

i aiσi
z+

∑
j bjhj+

∑
i,j wijσi

zhj)∑
y e

1
k

(
∑

i aiσi
z+

∑
j bjhj+

∑
i,j wijσi

zhj)
(3.11)

where k is an adjustable constant with different values for each iteration and is chosen to

increase the probability of successful sampling. In our simulation, it is chosen as O(∑
i,j |wij|).

We employed a quantum algorithm to sample the Gibbs distribution from the quantum

computer. This algorithm is based on sequential applications of controlled-rotation opera-

tions, which used an ancilla qubit showing whether the sampling for Q(y) is successful[ 54 ].

This two-step algorithm uses one system register (with n + m qubits in use) and one

scratchpad register (with one qubit in use) as shown in Figure  3.2 .

All qubits are initialized as |0〉 at the beginning. The first step is to use Ry gates

to get a superposition of all combinations of {σz, h} with θi = 2arcsin(
√

eai/k

eai/k+e−ai/k ) and

γj = 2arcsin(
√

ebj/k

ebj/k+e−bj/k ):

⊗iRy(θi)|0i〉 ⊗j Ry(γj)|0j〉|0〉 = ∑
y

√
O(y)|y〉|0〉

whereO(y) = e
∑

i aiσi
z/k+

∑
j bjhj/k∑

y
e
∑

i aiσi
z/k+

∑
j bjhj/k

and |φy〉 corresponds to the combination |y〉 = |σ1
z ..σ

n
z h1...hm〉.
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The second step is to calculate ewijσi
zhj . We use controlled-rotation gates to achieve this.

The idea of sequential controlled-rotation gates is to check whether the target qubit is in

state |0〉 or state |1〉 and then rotate the corresponding angle (Figure  3.2 ). If qubits σi
z and

hj are in |00〉 or |11〉, the ancilla qubit is rotated by Ry(θij,1) and otherwise by Ry(θij,2),

with θij,1 = 2arcsin(
√

ewij/k

e|wij|/k ) and θij,2 = 2arcsin(
√

e−wij/k

e|wij|/k ). Each time after one ewijσi
zhj is

calculated, we do a measurement on the ancilla qubit. If it is in |1〉 we continue with a new

ancilla qubit initialized in |0〉 , otherwise we start over from the beginning.

All controlled rotation gates can be expressed as below:

C2Rwij,1 = Cσi
z ,hj ⊗Ry(2arcsin(

√
ewij/ke−|wij|/k)) + (Dσi

z ,hj + Eσi
z ,hj + Fσi

z ,hj) ⊗ I

C2Rwij,2 = Dσi
z ,hj ⊗Ry(2arcsin(

√
e−wij/ke−|wij|/k)) + (Cσi

z ,hj + Eσi
z ,hj + Fσi

z ,hj) ⊗ I

C2Rwij,3 = Eσi
z ,hj ⊗Ry(2arcsin(

√
e−wij/ke−|wij|/k)) + (Cσi

z ,hj +Dσi
z ,hj + Fσi

z ,hj) ⊗ I

C2Rwij,4 = Fσi
z ,hj ⊗Ry(2arcsin(

√
ewij/ke−|wij|/k)) + (Cσi

z ,hj +Dσi
z ,hj + Eσi

z ,hj) ⊗ I

(3.12)

where Cσi
z ,hj = Bσi

z
⊗Bhj , Dσi

z ,hj = Aσi
z

⊗Bhj , Eσi
z ,hj = Bσi

z
⊗ Ahj , Fσi

z ,hj = Aσi
z

⊗ Ahj and

A =

1 0

0 0

B =

0 0

0 1


Between the calculation of two wij, we need to do a measurement on the ancilla qubit to

make sure the state of system qubits collapse to the wanted state. Measuring ancilla qubit in

|1〉 means the state of system qubits collapse to the wanted state as we initialize the ancilla

qubit in |0〉.

We then do the measurement, if and only if the ancilla qubit is in |1〉 we continue with

a new ancilla qubit initialized in |0〉, otherwise we start from beginning. The probability of

success is very large since we choose k as a large number.

After we finish all measurements, the distribution should be Q(y). We just measure the

first n+m qubits of the system register to obtain the probability distribution. After we get

the distribution, we calculate all probabilities to the power of k and normalize to get the

Gibbs distribution. The whole procedure can be seen from the flow chart Figure  3.3 .
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Figure 3.2. The example circuit for the controlled-rotation gate approach
with measurements.
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Figure 3.3. The algorithmic flow chart of the quantum algorithm based on
sequential controlled-rotations gates.
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3.1.5 Complexity and Successful Probability of the Algorithm

The successful probability P can be written as:

P =
∑
σz ,h e

1
k

(
∑

i aiσi
z+

∑
j bjhj+

∑
i,j wijσi

zhj)∑
σz ,h e

1
k

(
∑

i aiσi
z+

∑
j bjhj)e

1
k

(
∑

i,j |wij|)
≥ e

−1
k

(
∑

i,j |wij|)

e
1
k

(
∑

i,j |wij|)
= 1

e
1
k

(
∑

i,j 2|wij|)
(3.13)

If we choose k = 1, we are sampling the targeted distribution determined by RBM.

However, the probability of successful sampling is 1

e
1
k

(
∑

i,j 2|wij|) which is exponentially small.

To solve this problem we choose k = O(∑
i,j |wij|), we have P ≥ 1

eO(1) which means the lower

bound of probability of successful sampling is a constant. In the simulation, we choose

k = max(1
2

∑
i,j |wij|, 1) because larger k introduces larger sampling errors. This particular

choice of k gives us lower bound of success as e−4.

For a controlled-controlled-U gate or C2(U) conditioned by |11〉 to apply U on the target

qubit, it can be decomposed as the below Figure  3.4 [ 2 ]:

Figure 3.4. The decomposition of the C2(U) gate. V 2 = U .

In our algorithm, U = Ry(θ), thus we can choose V = Ry(θ/2) to achieve the decom-

position. C2(U) conditioned by |00〉, |10〉 or |01〉 can be achieved by adding X gates on

controlling qubits. For each wij, we have 4 C2(U) which means the gates complexity scales

to O(mn) and the number of qubits for our algorithms scales to O(mn), which can be reduced

to O(m+n) if considering qubit reuse. Because the lower bound of probability of successful

sampling is constant, if the number of successful sampling is Ns, the complexity for each
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iteration is O(Nsmn). The only error comes from the error of sampling if not considering

noise in the quantum computer.

3.2 Results and Discussion

3.2.1 Numerical Results

In the numerical simulation, we treat H2 molecule with 2-electrons in a minimal basis

STO-3G and use the Jordan-Wigner transformation[ 5 ]. The final Hamiltonian is of 4 qubits.

We treat LiH molecule with 4-electrons in a minimal basis STO-3G and use the Jordan-

Wigner transformation[  5 ]. We assumed the first two lowest energy spin orbitals are occupied

by electrons and first six highest energy spin orbitals are never occupied and the the final

Hamiltonian is of 4 qubits. We treat H2O molecule with 10-electrons in a minimal basis

STO-3G. We assume the first four lowest energy orbitals are occupied by electrons and first

two highest energy orbitals are never occupied all time. We also use the spin symmetry

in [ 10 ], [  13 ], [  63 ] to reduce another two qubits by using the binary code transformation

with checksum code [  10 ]. With the reduction of the number of qubits, finally we have

6 qubits Hamiltonian [ 64 ], [  65 ]. All calculations of integrals in second quantization and

transformations of electronic structure are done by OpenFermion[ 30 ] and Psi4[ 66 ].

We now present the results derived from our RBM for H2, LiH and H2O molecules. It

can clearly be seen from Figure  3.5 that our three layer RBM yields very accurate results

comparing to the disorganization of transformed Hamiltonian which is calculated by a finite

minimal basis set, STO-3G. Points deviating from the ideal curve are likely due to local

minima trapping during the optimization procedure. This can be avoided in the future by

implementing optimization methods which include momentum or excitation, increasing the

escape probability from any local features of the potential energy surface.

Further discussion about our results should mention instances of transfer learning. Trans-

fer learning is a unique facet of neural network machine learning algorithms describing an

instance (engineered or otherwise) where the solution to a problem can inform or assist in

the solution to another similar subsequent problem. Given a diatomic Hamiltonian at a

specific intermolecular separation, the solution yielding the variational parameters — which
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are the weighting coefficients of the basis functions — are adequate first approximations to

those parameters at a subsequent calculation where the intermolecular separation is a small

perturbation to the previous value.

In the transfer learning as in Figure  3.5 (d), we proceed from the last point to the first

point, and use the parameters from the calculations of the previous point. Except for the last

point in the Figure  3.5 (d), we use 1/40 of the iterations for the last point in the calculations

initiated with transferred parameters from previous iterations of each points and still achieve

a good result. We also see that the local minimum is avoided if the starting point achieve a

good minimum.

In simulation we use k = max(1, 1
2

∑
i,j |wij|) to make the probability becomes O( 1

e4 ),

which needs constant number of measurements to get enough successful sampling. After we

get the distribution, we need to calculate all distribution to the power of k and normalize

to get the wanted distribution. k is a large number, which is around 5 at final for H2, LiH

and H2O in our simulation. In the simulation, the only error comes from the statistical

errors by the sampling. When k is large, calculating the power of k introduces large errors

in the simulation and causes fluctuations in final steps of optimization. Furthermore, there

are many different errors and noise on current quantum devices, for example, gate errors,

measurement errors and statistical errors. Calculating power of k will introduce large errors

if k is large. To decrease errors when calculating power of k, some techniques have to

be introduced to decrease errors, for example, error mitigation on quantum computer and

increasing number of sampling. Because we investigated small molecule system, k is not

very large and the quantum algorithm is efficient. For large k, our quantum algorithm may

require other error correction techniques and large number of sampling, which may not be

efficient.
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a b

c d

Figure 3.5. Results of calculating ground state energy of H2, LiH and H2O.
a, b, c are the results of H2 (n = 4, m = 8), LiH (n = 4, m = 8) and
H2O (n = 6, m = 6) calculated by our three layer RBM compared with exact
diagonalized results of the transformed Hamiltonian. d is the result of LiH
(n = 4, m = 8) calculated by the Transfer Learning method. We use STO-3G
as basis to compute the molecular integrals for the Hamiltonian. Bond length
represents inter-atomic distance for the diatomic molecules and the distance
O-H of the water molecule with fixed bond angle. The data points of RBM are
minimum energies of all energies calculated during the whole optimization. In
the simulation, the distribution of RBM by the quantum algorithm is obtained
by sampling.

3.2.2 Discussion

In the current simulation, H2 requires 13 qubits with the number of visible units n = 4,

the number of hidden units m = 8 and additional 1 reusing ancilla qubits . LiH requires

13 qubits with the number of visible units n = 4, the number of hidden units m = 8 and

additional 1 reusing ancilla qubits. H2O requires 13 qubits with the number of visible units

n = 6, the number of hidden units m = 6 and additional 1 reusing ancilla qubits. The order

of scaling of qubits for the system should be O(m + n) with reusing ancilla qubits. The
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number of visible units n is equal to the number of spin orbitals. The choice of the number

of hidden units m is normally constant integer times of n which gives us a scaling of O(n)

with reusing ancilla qubits . Thus, the scaling of the qubits increases polynomially with the

number of spin orbitals. Also, the complexity of gates O(n2) scales polynomially with the

number of spin orbitals.

In conclusion, we present a combined quantum machine learning approach to perform

electronic structure calculations. Here, we have a proof of concept and show results for

small molecular systems. Screening molecules to accelerate the discovery of new materials

for specific application is demanding since the chemical space is very large! For example, it

was reported that the total number of possible small organic molecules that populate the

‘chemical space’ exceed 1060[ 67 ], [  68 ]. Such an enormous size makes a thorough exploration

of chemical space using the traditional electronic structure methods impossible. Moreover, in

a recent perspective[ 69 ]in Nature Reviews Materials the potential of machine learning algo-

rithms to accelerate the discovery of materials was pointed out. Machine learning algorithms

have been used for material screening. For example, out of the GDB-17 data base, consisting

of about 166 billion molecular graphs, one can make organic and drug-like molecules with up

to 17 atoms and 134 thousand smallest molecules with up to 9 heavy atoms were calculated

using hybrid density functional (B3LYP/6-31G(2df,p). Machine learning algorithms trained

on these data, were found to predict molecular properties of subsets of these molecules [ 70 ]–

[ 72 ].

With the rapid development of larger-scale quantum computers and the possible training

of some machine units with the simple dimensional scaling results for electronic structure,

quantum machine learning techniques are set to become powerful tools to perform electronic

structure calculations and assist in designing new materials for specific applications.

55



4. HYBRID QUANTUM-CLASSICAL NEURAL NETWORK

FOR CALCULATING GROUND STATE ENERGIES OF

MOLECULES

Quantum computing has shown its great potential in advancing quantum chemistry research

[ 73 ]. Many quantum algorithms have been proposed to solve quantum chemistry problems

[ 64 ], [  65 ], [  74 ], such as Phase Estimation Algorithm [ 6 ], [  58 ], [  59 ], [  75 ] to calculate eigenstate

energies of simple molecules, the Variational Quantum Eigensolver (VQE) [  13 ], [ 14 ], [ 76 ] to

solve electronic structure problems and quantum algorithms for open quantum dynamics

[ 77 ]. Using quantum computing techniques to perform machine learning tasks [ 48 ] has also

received much attention recently including quantum data classification [  49 ], [ 50 ], quantum

generative learning [ 78 ], [  79 ], and quantum neural network approximating non-linear func-

tions [ 80 ]. So far, applying the various quantum machine learning techniques to quantum

chemistry is a natural extension [  81 ], [ 82 ]. However, previous studies focused solely on quan-

tum circuits with only a few non-linear operations, which are introduced by data encoding

[ 80 ], [ 83 ] or repeated measurements until success [ 84 ]. Moreover, a recent research shows in-

creasing layers of parameterized quantum circuit (PQC) would reach saturation and may not

improve the performance when the number of layers is large enough. FurthermoreThe non-

linearity is the most important part for the classical neural network[ 85 ] which makes neural

networks able to produce complex results[  32 ], [  84 ], [  86 ]. Therefore, a non-linear operation is

needed for the quantum neural network. 

1
 

To solve this problem, here we introduce a new hybrid quantum classical neural network,

by combining quantum computing and classical computing with measurements between the

parameterized quantum circuits. In this paper, we first give a detailed description of the

whole structure of the hybrid quantum classical neural network. We then present numerical

simulations by using the new hybrid quantum classical neural network to calculate ground

state energies of different molecular systems. The calculated ground state energies are very
1Contents in this chapter are reprinted and adapted from Xia, R., & Kais, S. (2020). Hybrid Quantum-
Classical Neural Network for Calculating Ground State Energies of Molecules. Entropy, 22(8), 828.
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accurate, which demonstrate the potential of the proposed hybrid quantum classical neural

network to generate potential energy surfaces.

We propose a new structure of quantum-classical hybrid neural network by connecting

the quantum part (quantum layer) with the classical part (classical layer). For a classical

neural network, each artificial neuron is normally constructed by linear connected layers, with

nonlinear activation functions connected at the end, as shown in the left part of Figure  4.1 .

In this work, we replace the linear part by the quantum circuit as shown in the right side of

Figure  4.1 to take advantage of possible speedup in quantum computation. In the meantime,

we use expectation values of operators by measurements, which are nonlinear operations,

to serve as the activation function. In this neural network set-up, the quantum circuit

can be viewed as the quantum layer and the expectation values by measurements can be

viewed as the classical layer. The input data is first encoded into quantum states and

calculated by the quantum layer. The outputs are extracted as the expectation values by

measurements. The two steps can be repeated several times to construct a hybrid multi-

layer neural network. In our construction, the quantum layer is enabled by parameterized

quantum circuits (PQC) [  87 ]. We will give details about the hybrid quantum-classical neural

network in the following sections. Note, in this chapter, the qubits are indexed starting from

0 instead of 1 to be consistent with indexes of simulation software we are using.

4.1 Quantum Layer

The quantum layer is enabled by a parameterized quantum circuit consisting of parame-

terized quantum gates, which allows the PQC to be optimized by adjusting the parameters to

approximate wanted results. PQC has been widely used in many areas of quantum comput-

ing and quantum machine learning, such as in VQE [ 13 ], [  14 ], [  76 ], quantum autoencoder [ 81 ],

and quantum generative learning [  78 ]. In the following section, we will provide details of the

quantum layer including encoding classical data into quantum circuits and parameterized

quantum circuits.
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Figure 4.1. In the proposed quantum-classical hybrid neural network, the
linear part in the classical neural network is replaced by the quantum circuits
and the nonlinear part is replaced by measurements.

4.1.1 Data Encoding

To implement the quantum layer, the first step is to encode the input classical data into a

quantum state. Variational encoding [ 83 ] has been proposed to reduce the depth of quantum

circuits and has been widely used in many quantum machine learning techniques [ 80 ], [ 83 ],

[ 88 ], [  89 ]. Variational encoding is used to prepare a set of quantum gates with parameters

generated by the input data and then initialize the state from the basic state with all qubits

as |0〉 with these gates. For an array of data {a0, a1, ...an−1}, an example of variational

encoding to encode n qubits is to prepare the gate G as:

G = ⊗n−1
i=0 gi(fi(ai)) (4.1)

where gi is a set of single qubit quantum gates on qubits i and fi is a classical function

to encode ai as the parameter of gi. The encoded state would be G|0〉⊗n. One simple

example is given in our numerical simulations: we take the bond length, a, as the encoding
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data for each qubit. We choose fi as the identity function and gi as RyH, where Ry is the

rotation-y gate and H is the Hadamard gate. Thus, the encoded quantum state would be

(⊗n−1
i=0 Ry(a)H)|0〉⊗n.

In most variational encoding the depth of the circuit needed to encode the data would be

O(1) [ 88 ] for that the number of quantum gates to initialize the quantum state is fixed, which

makes variational encoding more suitable for Noisy Intermediate-Scale Quantum (NISQ)

devices [  11 ]. Furthermore, recently it has been shown how the variational encoding may

help to introduce nonlinearity features in quantum circuits [ 83 ], [ 90 ]. Variational encoding

can only be implemented at the beginning of the quantum circuit, but connections between

multiple PQC also need to be nonlinear. To enable nonlinear connections, we introduce

measurements as connections between multiple PQC. In the numerical simulations, we will

be using the variational encoding to perform the simulation and discuss implementing the

quantum circuits on NISQ device.

4.1.2 Parameterized Quantum Circuit

A parameterized quantum circuit, also known as a variational quantum circuit [  76 ], [  87 ],

is a quantum circuit consisting of parameterized gates with fixed depth. This is the main

part of the quantum layer to perform the calculation. The parameterized quantum circuit

consists of one-qubit gates as well as CNOT . Some more complicated gates may also be

used in PQC which can be decomposed into one qubit gates and CNOT [ 2 ]. In general, an

n qubits PQC can be written as:

U(~θ)|ψ〉 = (
m∏

i=1
Ui)|ψ〉 (4.2)

where U(~θ) is the set of universal gates and m is the number of quantum gates. ~θ is the set of

parameters {θ0, θ1....θk−1}, where k is the total number of parameters and |ψ〉 is the encoded

quantum state after data encoding. For each unitary gate Ui, it may be a quantum gate

which does not require parameters or a quantum gate which takes parameters. Examples of
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the unitary gate taking parameters are rotational gates, Rx(θ), Ry(θ), and Rz(θ), which are

given by:

Rx(θ) = e−i θ
2σx Ry(θ) = e−i θ

2σy Rz(θ) = e−i θ
2σz (4.3)

where σx, σy, and σz are Pauli matrices. The operation of U can be modified by changing

parameters ~θ. Thus, the output state can be optimized to approximate the wanted state by

changing parameters ~θ. By optimizing the parameters used in U(~θ), PQC approximates the

wanted quantum states.

4.2 Classical Layer

The classical layer in our construction of the quantum-classical hybrid neural network is to

serve as the activation function connecting different quantum layers. To achieve nonlinearity,

the classical layer is enabled by measurements—expectation values of operators on each qubit

of the PQC, for example, 〈σi
z〉 of each qubit i as the classical layer, which would also serve as

nonlinear operations. Expectation values of operators can save complexity because quantum

tomography is exponentially hard. Though the expectation values of operators may lose

some information compared to quantum tomography, some work used expectation values

of operators as connections between quantum computation and classical computation and

showed great success [ 91 ], which indicates expectation values of operators are capable of

extracting useful information from quantum circuits.

4.3 Numerical Simulations

To demonstrate the power of the proposed quantum-classical hybrid neural network, we

present results for calculating the ground state energies of simple molecular systems: H2, LiH,

and BeH2. The inputs for the unsupervised learning are bond lengths and the outputs are

the ground state energies. The whole procedure consists of first training the neural network

with some bond lengths and then testing the neural network with other bond lengths to

generate the whole potential energy curve.
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4.3.1 Constructions of the Quantum Layer

The quantum layer consists of two parts: the variational encoding part and PQC part.

We choose to use the variational encoding to decrease the depth of the quantum circuit so

that it can be implemented on NISQ devices. The construction of the quantum layer follows

[ 88 ], [  91 ]. The input state is initialized as (⊗n−1
i=0 Ry(a)H)|0〉⊗n, where a is the bond length,

H is the Hadamard gate, and Ry is the rotation-y gate. We only have one bond length while

the number of qubits of the PQC is n; we decided to follow the variational encoding in [ 88 ]

to encode each qubit with same value. The number of qubits n is equal to the number of

qubits of the corresponding Hamiltonian. The quantum computation part is to use a simple

PQC consisting of Ry and CNOT gate. The jth layer Lj
n of the n qubits PQC can be written

as:
Lj
n = (⊗n−1

i=0 Ry(wi+n×j)) × (CNOTn−3,n−2...CNOT3,4CNOT1,2)

× (CNOTn−2,n−1...CNOT2,3CNOT0,1) n is even

Lj
n = (⊗n−1

i=0 Ry(wi+n×j)) × (CNOTn−2,n−1...CNOT3,4CNOT1,2)

× (CNOTn−3,n−2...CNOT2,3CNOT0,1) n is odd

(4.4)

where w are adjustable parameters, Ry represents rotation-y gate on the qubit i, and

CNOTm,n represents CNOT gate with m as the control qubit and n is the target qubit.

To achieve better entanglement of the qubits before appending nonlinear operations, the n

qubits PQC has n repeated layers in our simulation or the PQC can be written as ∏n−1
j=0 L

j
n.

By optimizing the parameters, the general PQC tries to approximate arbitrary states so that

it can be used for different specific molecules. The construction of the PQC for three qubits

is illustrated in the blue part of Figure  4.2 , and the construction of the PQC for four qubits

is illustrated in the blue part of Figure  4.3 .

4.3.2 Constructions of the Classical Layer

The classical layer is enabled by expectation values of the operators. In our numerical

simulations, we are using 〈σi
z〉 for qubit i as the classical layer. The outputs from the classical

layer will be encoded into another quantum layer. The second quantum layer is the same

as the first one except for the data encoding part it would be ⊗n−1
i=0 Ry(biπ)H, where bi is
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Figure 4.2. The example constructions of the proposed hybrid quantum-
classical neural network for 3 qubits (odd qubits number). The orange parts
are the data encoding, the blue parts are parameterized quantum circuits, and
the yellow parts are measurements. The first measurements serve as nonlin-
ear operations connecting two PQC. a is the input bond length, bs are the
expectation values of σz, and ws are adjustable parameters.

the measured expectation value from qubit i. We multiply each bi with π when encoding to

change the range of the encoding data from [ − 1, 1] to [ − π, π] [  92 ]. The construction of our

proposed hybrid quantum-classical neural network is illustrated in Figure  4.3 .

4.3.3 Cost Function

The cost function is defined as:

f =
∑

j
〈φj|Hj|φj〉 (4.5)

where j represents the jth input bond length of the training bond lengths. |φj〉 is the final state

of the proposed hybrid quantum-classical neural network with the input as the jth input bond
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Figure 4.3. The example constructions we use for the 4 qubits H2 calculation
(even qubits number). The orange parts are the data encoding, the blue parts
are parameterized quantum circuits, and the yellow parts are measurements.
The first measurements serve as nonlinear operations connecting two PQC.
a is the input bond length, bs are the expectation values of σz, and ws are
adjustable parameters.

length and Hj is the Hamiltonian corresponding to the jth input bond length. The idea of the

cost function is similar to VQE: by optimizing the parameters, the expectation energy of |φj〉

is minimized to approximate the ground state energy. The evaluation of the Hamiltonian

can be done by techniques in [  13 ]. The Hamiltonian can be written as the sum of tensor

products of Pauli matrices H = ∑
i ciPi, where ci is the coefficient and Pi is the tensor

product of Pauli matrices. Instead of evaluating the whole Hamiltonian, we can evaluate

each term of the Hamiltonian and the expectation of the Hamiltonian can be obtained by

〈H〉 = ∑
i ci〈Pi〉, which does not need quantum tomography or take exponential complexity.

The whole training procedure is done by taking a set of bond lengths and corresponding
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Hamiltonian and minimizing the cost function as equation  4.5 . After the training, we test

the model with other bond lengths.

4.3.4 Simulation Results

The Hamiltonian of the molecule systems can be derived by transforming the correspond-

ing second quantization Hamiltonian into sum of tensor products of Pauli matrices. For H2,

we use the Jordan–Wigner transformation [ 5 ] to get a 4-qubit Hamiltonian. We decided

to apply the complete active space (CAS) approach [ 93 ], [ 94 ], which divides the orbitals

into inactive orbitals such as always occupied low energy orbitals and always unoccupied

high energy orbitals, and active orbitals, to reduce the number of qubits of LiH and BeH2

Hamiltonian [  13 ], [  65 ] and the reduced Hamiltonian is only of the active orbitals. For LiH,

we assume the first two lowest energy spin orbitals are always occupied and use the binary

code transformation [  10 ] with checksum code considering spin symmetry to save two qubits.

We get an 8-qubit LiH Hamiltonian. For BeH2, we assume the first two lowest energy spin

orbitals are always occupied and the first two highest energy spin orbitals are never occupied,

and use the binary code transformation [ 10 ] with checksum code considering spin symmetry

to save two qubits. We get an 8-qubit BeH2 Hamiltonian.

In the simulation, H2 used four qubits and 32 parameters. LiH and BeH2 both used eight

qubits and 128 parameters. The gate and parameter complexity of the proposed hybrid

quantum-classical neural network in this simulation is O(n2), where n is the number of qubits

of the Hamiltonian. Here, we present the results using our proposed hybrid quantum-classical

neural network for ground state energies of H2, LiH, and BeH2 in Figures  4.4 and  4.5 . We can

see from these figures that the training data points converge very close to the diagonalization

results without pre-known ground state information of the transformed Hamiltonian in Pauli

matrices format. Furthermore, after training, by inputting the other bond lengths we can also

get good approximating ground state energies with optimized parameters. BeH2 has some

deviation when the bond length is large, which may be solved by improving the parameterized

quantum circuit. For example, the work in [  95 ], which discusses expressibility and entangling

capability of parameterized quantum circuits for hybrid quantum‐classical algorithms, shows
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that increasing the depth of PQC will increase the expressibility and different constructions

of PQC have also different expressibility.

Figure 4.4. Ground state energies of H2, LiH, and BeH2 calculated by the
proposed hybrid quantum- classical neural network.

Furthermore, to show that the intermediate nonlinear measurements improve the perfor-

mance, we present the comparison of the results of our proposed hybrid quantum-classical

neural network and quantum neural network removing intermediate measurements. The

setting of the quantum neural network removing intermediate measurements is illustrated

in Figure  4.7 .

In Figure  4.6 , we present the comparison of the results of our proposed hybrid quantum-

classical neural network and quantum neural network removing intermediate measurements.

The proposed hybrid quantum-classical neural network and quantum neural network, remov-

ing intermediate measurements, are trained with same set of bond lengths as in Figure  4.4 .

We can see without the intermediate nonlinear measurements, the quantum neural network

can only achieve bad results. However, by adding the intermediate nonlinear measurements,

the results converge closely to the diagonalization results.
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Figure 4.5. Errors of ground state energies of H2, LiH, and BeH2 calculated
by the proposed hybrid quantum-classical neural network.

The parameters of the proposed hybrid quantum-classical neural network and quantum

neural network removing intermediate measurements, are initialized from a Gaussian dis-

tribution with standard deviation as 0.1 and mean as 0. Because different initialization of

parameters will result in different starting of the optimization and may lead to different final

results, to eliminate the effects of parameter initialization, here we present the quantitative

comparison of the two constructions with four different parameter initialization from same

Gaussian distribution with different random seeds. All are trained with the same set of

the training bond lengths as in Figure  4.4 . In the Table  4.1 , we can see that our proposed

quantum neural network performs better than the quantum neural network without inter-

mediate measurements. Our simulation results show that adding intermediate nonlinear

measurements would help to improve the expressibility of the PQC. Furthermore, adding in-

termediate measurements would also decrease the circuit depth which makes it more suitable

for current NISQ devices.
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Figure 4.6. Results of H2, LiH, and BeH2 by the proposed hybrid quantum-
classical neural network and the quantum neural network removing intermedi-
ate measurements. With intermediate measurements represents the results by
our proposed hybrid quantum-classical neural network. Without intermediate
measurements represents the quantum neural network removing the interme-
diate measurements. Both are trained with same set of bond lengths as in
Figure  4.4 and same parameter initialization.

Figure 4.7. Constructions of the quantum neural network removing interme-
diate measurements for H2.

4.4 Materials and Methods

Orbital integrals in the second quantization Hamiltonian are calculated by STO-3G min-

imal basis using PySCF [  96 ] and the transformation is done by OpenFermion [  30 ]. The
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Table 4.1. Results for the proposed hybrid quantum-classical neural network
and the quantum neural network removing intermediate measurements. With
intermediate measurements represents the proposed hybrid quantum-classical
neural network. Without intermediate measurements represents the quantum
neural network removing intermediate measurements. ∑

training Error repre-
sents the sum of the error of the calculated ground state energies on the training
set. ∑

testing Error represents the sum of the error of the calculated ground
state energies on the testing set. Each result is calculated by 4 different pa-
rameter initialization and presented as means and standard deviations. It can
be seen that adding intermediate measurements to introduce nonlinear options
would help to improve the performance. The results presented are round to
four decimal places.

Constructions ∑
training Error

∑
testing Error

With intermediate measurements (H2) 0.0271 ± 0.0246 0.1178 ± 0.1061
Without intermediate measurements (H2) 0.6296 ± 0.0151 2.2755 ± 0.0677
With intermediate measurements (LiH) 0.0287 ± 0.0038 0.1178 ± 0.0190

Without intermediate measurements (LiH) 4.7638 ± 1.4444 19.1479 ± 5.7715
With intermediate measurements (BeH2) 0.1253 ± 0.0552 0.5613 ± 0.2483

Without intermediate measurements (BeH2) 3.7280 ± 0.6497 14.8440 ± 2.3747

simulation is done by Qiskit [  97 ]. The tensor production orders in OpenFermion and Qiskit

are opposite. For a n qubits, the tensor production order in OpenFermion is q0 ⊗ q1...⊗ qn−1,

while the tensor production order in Qiskit is qn−1 ⊗ qn−2... ⊗ q0. We decided to follow

the tensor production order in OpenFermion. In simulation, we treat the qubit indexed

in Qiskit reversely. For n qubits, the qubit indexed as q0 in Qiskit is treated as qn−1, the

qubit indexed as q1 in Qiskit is treated as qn−2, etc. By doing this, we change the tensor

production order in Qiskit same as OpenFermion. The optimization is performed by the

Broyden–Fletcher–Goldfarb–Shanno algorithm [ 98 ] using finite difference gradients imple-

mented in SciPy [  99 ] with maximum 500 iterations and gradient norm tolerance to stop as

10−5. In the simulation, the expectation of the operator is simulated by matrix production

of the operator matrix and the Hamiltonian can be treated as a single operator. To save

the simulation time, instead of evaluating each 〈Pi〉 to get 〈H〉 = ∑
i ci〈Pi〉, we treat H as a

single operator and only evaluate once.
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4.5 Conclusions

In this work, we proposed a new hybrid quantum-classical neural network by combing

PQC and measurements to achieve nonlinear operations in quantum computing. We have

shown that the proposed hybrid quantum-classical neural network can be trained to obtain

the electronic energies at certain bond lengths and then generate the whole potential energy

curve. The results of H2, LiH, and BeH2 are very accurate and demonstrate the power of

the proposed hybrid quantum-classical neural network.

Furthermore, we show that the intermediate nonlinear measurements are very impor-

tant in comparison with quantum neural network removing the intermediate measurements.

The intermediate nonlinear measurements can reduce the circuit depth and are more suit-

able for NISQ devices. Although the method is used to generate one-dimensional potential

energy curves, the approach is general and could be generalized to generate multidimen-

sional potential energy surfaces, for example, changing the inputs from the bond lengths to

multidimensional coordinates. This will be done in future work.
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5. QUBIT COUPLED CLUSTER SINGLES AND DOUBLES

VARIATIONAL QUANTUM EIGENSOLVER ANSATZ

Quantum computing has been developing rapidly in recent years as a promising new paradigm

for solving many problems in science and engineering. One major potential application of

quantum computing is solving quantum chemistry problems [ 100 ] such as electronic struc-

ture of molecules, which has received a lot of research interest and achieved a big success

in both algorithmic development and experimental implementation. The early development

of electronic structure calculations was based on the quantum phase estimation algorithm

developed by Kitaev [  101 ], Abrams and Lloyd [  102 ] and used to find spectrum of simple

molecular systems [ 57 ], [ 59 ], [ 65 ], [ 75 ], [ 103 ], [ 104 ]. More recently, hybrid classical-quantum

algorithms have been developed such as the variational quantum eigenslover (VQE) [ 12 ],

[ 76 ], [  105 ], [  106 ] and quantum machine learning techniques [  82 ] for electronic structure cal-

culations. Moreover, many experiments have been conducted on quantum computers to

show that electronic structure calculations of simple molecules are possible on current Noisy

Intermediate-Scale Quantum (NISQ) devices [ 11 ], [ 13 ], [ 14 ]. 

1
 

One of the most promising quantum algorithms to perform electronic structure calcu-

lations is based on unitary coupled cluster [  107 ] singles and doubles (UCCSD), which im-

plements the quantum computer version of UCCSD as the VQE ansatz [ 76 ], [ 94 ], [ 108 ] to

calculate the ground state from a Hartree-Fock reference state. The results from UCCSD

VQE achieve high accuracy [  94 ], [  100 ], [  109 ], [  110 ]. However, the gate complexity for first

order trotterization UCCSD VQE is up-bounded to O(n5) [ 94 ], [  100 ] using Jordan-Wigner

transformation where n is the number of qubits of the Hamiltonian. This makes it difficult to

implement on current NISQ devices. Some strategies developed may be used to reduced the

complexity, for example, the ordering and parallelization techniques in [  111 ] can reduce the

circuit depth by O(n) [ 94 ] and low-rank factorization [ 112 ] can reduce the gate complexity to

O(n4). Here we introduce a new VQE ansatz based on the particle preserving exchange gate

[ 108 ], [  113 ] to achieve qubit excitations, which has gate complexity up-bounded to O(n4)
1Contents in this chapter are reprinted and adapted from Xia, R., & Kais, S. (2020). Qubit coupled cluster
singles and doubles variational quantum eigensolver ansatz for electronic structure calculations. Quantum
Science and Technology, 6(1), 015001. Copyright (2020) IOP Publishing Ltd.
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and has comparable accuracy compared to first order trotterization UCCSD VQE. By re-

ducing the gate complexity, QCCSD VQE ansatz – qubit coupled cluster singles and doubles

(QCCSD) VQE ansatz, might be more favorable for current NISQ devices.

The rest of the chapter is organized as follows: The first section gives a brief introduction

to the method of UCCSD VQE ansatz. Then we give a detailed description of QCCSD VQE

ansatz. We also show QCCSD VQE is a simplified version of the first order trotterization

UCCSD VQE. Finally, we give the numerical simulation results of BeH2, H2O, N2, H4 and

H6 using first order trotterization UCCSD VQE and QCCSD VQE ansatz.

5.1 UCCSD VQE

The electronic structure Hamiltonian can be written in second quantization as:

H = h0 +
∑

ij
hija

†
i aj + 1

2
∑
ijkl

hijkla
†
i a

†
jakal (5.1)

where the one-electron integrals hij and the two-electron integrals hijkl can be calculated by

orbital integrals.

Using Jordan-Wigner transformation we can rewrite the Hamiltonian in the Pauli matri-

ces form:

H =
∑

i
ciPi (5.2)

where ci are general coefficients and Pi are the tensor product Pauli matrices σx, σy, σz and

2×2 identity matrix.

In unitary coupled clustered single double excitations, we can calculate the ground state

from the Hartree-Fock reference state by excitation operators of the form:

|φ〉 = eT (~θ)−T †(~θ)|φHF 〉 (5.3)

where T (~θ) = T1(~θ1) + T2(~θ2) is the excitation operator, |φHF 〉 is the Hartree-Fock reference

state and ~θ is the set of adjustable parameters. The single excitation operator can be

written as T1(~θ1) = ∑
i,j θija

†
i aj and the double excitation operator can be written as T2(~θ2) =
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∑
i,j,k,l θijkla

†
i a

†
jakal. We can minimize 〈φ|H|φ〉 to get the ground state energy by optimizing

~θ.

Considering an n qubits Hamiltonian, the number of spin orbitals is n and the total

number of excitation terms in T is O(
(
Nocc

2

)
×

(
Nvirt

2

)
), where Nocc is the number of occupied

spin orbitals, Nvirt is the number of virtual spin orbitals. n = Nocc +Nvirt is the number of

qubits of the Hamiltonian or the total number of spin orbitals.

The first order trotterization UCCSD operator can be written as:

eT (~θ)−T †(~θ) ≈
∏
i,j

eθij(a†
i aj−a†

j ai) ×
∏

i,j,k,l
eθijkl(a†

i a
†
j akal−a†

l
a†

k
ajai) (5.4)

To map the first order trotterization UCCSD to quantum computer, we use same trans-

formation, Jordan-Wigner transformation, as we do for the Hamiltonian to transform cre-

ation and annihilation operators into Pauli matrices. Each term in equation  5.4 can be

implemented as unitary quantum gates by Jordan-Wigner transformation. Since the cost of

Jordan-Wigner transformation for each term is O(n) [ 100 ], the gate complexity for the first

order trotterization UCCSD VQE is O(
(
Nocc

2

)
×

(
Nvirt

2

)
× n) < O(n5) using Jordan-Wigner

transformation [ 94 ], [ 100 ].

UCCSD VQE has shown high accuracy in electronic structure calculations [  94 ], [  100 ],

[ 109 ], [ 110 ]. However, one problem of the UCCSD VQE is the large complexity. The first

order trotterization UCCSD VQE has up-bounded O(n4) terms and O(n5) gate complex-

ity using Jordan-Wigner transformation. Here, we propose a new coupled cluster singles

and doubles VQE ansatz using the particle preserving exchange gate [  108 ], [  113 ]. The gate

complexity of QCCSD ansatz scales as O(
(
Nocc

2

)
×

(
Nvirt

2

)
) < O(n4). In the numerical sim-

ulations, we show that QCCSD ansatz can achieve comparable accuracy to the first order

trotterization UCCSD VQE.

5.2 QCCSD VQE Ansatz

After Jordan-Winger transformation, each qubit represents whether the corresponding

spin orbital is occupied or not. When qubit i is in |0〉, spin orbital i is not occupied and
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when qubit i is in |1〉 spin orbital i is occupied. Thus we can write down a particle preserving

exchange gate Uex [ 108 ], [ 113 ] between two qubits as:

Uex(θ) =



1 0 0 0

0 cosθ −sinθ 0

0 sinθ cosθ 0

0 0 0 1


The particle preserving exchange gate Uex will not change the total number occupation

when applied to arbitrary states. Suppose we have two qubits in |10〉, which represents that

the first spin orbital is occupied and the second spin orbital is not occupied. If we apply Uex

to this state we have:

Uex(θ)|10〉 = cosθ|10〉 − sinθ|01〉 (5.5)

which corresponds to a single excitation between one spin occupied and one virtual spin

orbitals.

We can also write down a particle preserving exchange gate U ′
ex between four qubits as

in Figure 1. Suppose we have four qubits in |1010〉, which represents the first and the third

spin orbitals are occupied while the second and the fourth spin orbitals are not occupied. If

we apply U ′
ex to this state we have:

U ′
ex(θ)|1010〉 = cosθ|1010〉 − sinθ|0101〉 (5.6)

which corresponds to a double excitation between two occupied and two virtual orbitals.

73



U ′
ex(θ) =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 cosθ 0 0 0 0 −sinθ 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 sinθ 0 0 0 0 cosθ 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



Figure 5.1. Matrix of U ′
ex(θ)

We can write down an operator U by Uex and U ′
ex to achieve single and double excitations

from the Hartree-Fock reference state:

|Φ〉 = U(~Θ)|φHF 〉 =
∏
i,j
Uex,i,j(θij)

∏
i,j,k,l

U ′
ex,i,j,k,l(θijkl)|φHF 〉 (5.7)

Uex,i,j represents Uex between qubits i j where qubit i represents the occupied orbital and

qubit j represents the virtual orbital. U ′
ex,i,j,k,l represents U ′

ex between qubits i j k l where

qubit i, k represent occupied spin orbitals and qubit j, l represent the virtual spin orbitals.
~Θ is the set of adjustable parameters. We can minimize 〈Φ|H|Φ〉 to get the ground state

energy by optimizing ~Θ .
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Uex(θ) and U ′
ex(θ) can be decomposed into elementary quantum gates with gate complex-

ityO(1) because the sizes of matrices of Uex(θ) and U ′
ex(θ) areO(1). A possible decomposition

of Uex(θ) is by Gray code [ 2 ]:

Figure 5.2. Decomposition of Uex(θ) by Gray code.

A possible decomposition of U ′
ex(θ) as in [ 114 ] is shown in Figure  5.3 . A number of

groups have shown how to reduce the gate complexity of coupled cluster methods [ 115 ]–[ 117 ]

on quantum computer and may be able to be applied to QCCSD VQE. Recently, O’Gorman

et al. [  118 ] show that by using fermionic swap networks one can reduce the circuit depth to

O(nk−1) when implementing set of k qubits gates on n logical qubits, which may reduce the

complexity of QCCSD VQE by a factor of n. This is a possible future improvement but out

of the scope of this paper. Recently, Yordanov et al [  114 ] proposed a new decomposition of

UCCSD VQE into two steps: first applying the qubit excitation gates, which are the particle

preserving exchange gates in our QCCSD VQE used for single and double excitations though

termed differently, then applying CNOT gates to include the parity information. In our

simulation, Uex(θ) and U ′
ex(θ) are implemented as single unitary gates in Qiskit [ 119 ].
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Figure 5.3. Decomposition of U ′
ex(θ) follows in [ 114 ]

5.2.1 Excitation List Selection

One important part of the proposed VQE is to choose the excitation list, or to decide

between which spin orbitals the excitation will occur. Spin preserving VQE ansatzes, which

preserve the net spin magnetization sz, have been widely studied [  120 ], [  121 ]. We use the

same strategy and choose the excitation list only allowing spin preserving exicitations. As

shown in [ 110 ], the ordering of excitation operators in the Trotterized UCCSD VQE may

have impact on the final results. To eliminate the effect of the operator ordering, we choose

the same ordering as in the implementation of first order trotterization UCCSD VQE in

Qiskit [ 119 ]. The ordering is also presented in the below algorithm.
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Algorithm 2 Coupled cluster singles and doubles VQE considering spin preserving
1: for orbitali in spin-up occupied orbitals do

2: for orbitalj in spin-up virtual orbitals do

3: Construct Uex between qubit i and j.

4: end for

5: end for

6: for orbitalk in spin-down occupied orbitals do

7: for orbitall in spin-down virtual orbitals do

8: Construct Uex between qubit k and l.

9: end for

10: end for

11: for orbitali in spin-up occupied orbitals and orbitalj in spin-up virtual orbitals do

12: for orbitalk in spin-down occupied orbitals and orbitall in spin-down virtual orbitals

do

13: Construct U ′
ex between qubit i j k and l.

14: end for

15: end for

16: for orbitali in spin-up occupied orbitals and orbitalk in spin-up virtual orbitals do

17: for orbitalj (j > i) in spin-up occupied orbitals and orbitall (l > k) in spin-up virtual

orbitals do

18: Construct U ′
ex between qubit i k j and l.

19: end for

20: end for

21: for orbitali in spin-down occupied orbitals and orbitalk in spin-down virtual orbitals do

22: for orbitalj (j > i) in spin-down occupied orbitals and orbitall (l > k) in spin-down

virtual orbitals do

23: Construct U ′
ex between qubit i k j and l.

24: end for

25: end for
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The term complexity of our ansatz scales as O(
(
Nocc

2

)
×

(
Nvirt

2

)
). The required elementary

quantum gates for Uex and U ′
ex are both O(1). Thus the gate complexity of our ansatz scales

as O(
(
Nocc

2

)
×

(
Nvirt

2

)
) < O(n4). One should note that, for linear connectivity, if no extra

strategies are applied, the straightforward compilation will make the complexity of proposed

QCCSD VQE scale up to O(n5). However, this complexity can be reduced by applying

strategies for the compilation as done for example in the generalized swap network [ 118 ].

Moreover, a recent study [ 120 ] shows that considering the total spin s preserving may also

help to achieve better accuracy, QCCSD VQE ansatz may also be able to be modified to

preserve the total spin s, which will be done in the future work.

5.2.2 Relation to UCCSD VQE Ansatz

Here, we present that QCCSD VQE ansatz is a simplified version of UCCSD VQE ansatz.

Consider a single excitation term in first order trotterization UCCSD VQE:

eθ(a†
i aj−a†

j ai) (5.8)

Without loss of generality, we can require i ∈ virt and j ∈ occ where virt represents

virtual orbitals and occ represents occupied orbitals. Furthermore we can set i > j and if

using Jordan-Wigner transformation we get:

e
iθ
2 σ

j
yσ

i
x⊗i−1

a=j+1σ
a
z e

−iθ
2 σj

xσ
i
y⊗i−1

a=j+1σ
a
z (5.9)

In equation  5.9 , ⊗i−1
a=j+1σ

a
z counts for the parity of qubits from j + 1 to i − 1. If we remove

the parity term we get:

e
iθ
2 σ

j
yσ

i
xe

−iθ
2 σj

xσ
i
y = Uex,j,i(−θ) (5.10)

Thus our particle conservation exchange gate Uex,j,i counts for the single excitation term

of qubits j i in first order trotterization UCCSD VQE without considering the parity of

qubits from j + 1 to i − 1. One should be aware that if different order of spin orbitals is used,
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the single excitation term with parity terms removed may equal to Uex(θ). Also, consider a

double excitation term in first order trotterization UCCSD VQE:

eθ(a†
i a

†
j akal−a†

l
a†

k
ajai) (5.11)

Without loss of generality, we can require i < j ∈ virt and l < k ∈ occ. Furthermore we

can choose the order j > k > i > l and if using Jordan-Wigner transformation we get:

e
−iθ

8 σl
xσ

i
xσ

k
xσ

j
y⊗i−1

a=l+1σ
a
z ⊗j−1

a=k+1σ
a
z e

−iθ
8 σl

xσ
i
yσ

k
xσ

j
x⊗i−1

a=l+1σ
a
z ⊗j−1

a=k+1σ
a
z

e
−iθ

8 σl
xσ

i
yσ

k
yσ

j
y⊗i−1

a=l+1σ
a
z ⊗j−1

a=k+1σ
a
z e

−iθ
8 σl

yσ
i
yσ

k
xσ

j
y⊗i−1

a=l+1σ
a
z ⊗j−1

a=k+1σ
a
z

e
iθ
8 σ

l
xσ

i
xσ

k
yσ

j
x⊗i−1

a=l+1σ
a
z ⊗j−1

a=k+1σ
a
z e

iθ
8 σ

l
yσ

i
xσ

k
xσ

j
x⊗i−1

a=l+1σ
a
z ⊗j−1

a=k+1σ
a
z

e
iθ
8 σ

l
yσ

i
xσ

k
yσ

j
y⊗i−1

a=l+1σ
a
z ⊗j−1

a=k+1σ
a
z e

iθ
8 σ

l
yσ

i
yσ

k
yσ

j
x⊗i−1

a=l+1σ
a
z ⊗j−1

a=k+1σ
a
z

(5.12)

In equation  5.12 ⊗i−1
a=l+1σ

a
z ⊗j−1

a=k+1 σ
a
z counts for the parity of qubits from l + 1 to i − 1

and from k + 1 to j − 1. If we remove the parity term we get:

e
−iθ

8 σl
xσ

i
xσ

k
xσ

j
ye

−iθ
8 σl

xσ
i
yσ

k
xσ

j
xe

−iθ
8 σl

xσ
i
yσ

k
yσ

j
ye

−iθ
8 σl

yσ
i
yσ

k
xσ

j
y

e
iθ
8 σ

l
xσ

i
xσ

k
yσ

j
xe

iθ
8 σ

l
yσ

i
xσ

k
xσ

j
xe

iθ
8 σ

l
yσ

i
xσ

k
yσ

j
ye

iθ
8 σ

l
yσ

i
yσ

k
yσ

j
x = U ′

ex,l,i,k,j(−θ)
(5.13)

Thus our particle preserving exchange gate U ′
ex,l,i,k,j counts for the double excitation term

of qubits l,k,i,j in first order trotterization UCCSD VQE without considering the parity of

qubits from l+ 1 to i − 1 and from k+ 1 to j − 1. One should be aware that if different order

of spin orbitals is used, the double excitation term with parity terms removed may equal

to U ′
ex(θ). QCCSD VQE is the simplified version of first order trotterization UCCSD VQE.

The reduced gate complexity of our VQE comes from removing the parity term in UCCSD

VQE. Recently S. E. Smart et al [  122 ] presented an efficient ansatz for two-electron system,

showing that fermionic double excitations can be simplified to qubit double excitations in

the two-electron system, which indicates the QCCSD VQE has the same double excitation

terms as the UCCSD VQE for a two-electron system.
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5.3 Numerical Simulation Results

In this section, we present numerical results of BeH2, H2O, N2, H4 and H6 by using

QCCSD VQE with gates Uex and U ′
ex. To compare performance of QCCSD VQE, we also

present the results by using first order trotterization UCCSD VQE implemented by Qiskit

[ 119 ]. For each numerical simulation, the orbital integrals are calculated using STO-3G mini-

mal basis by PySCF [ 96 ] and the Hamiltonian is obtained by Jordan-Wigner transformation.

The optimization is performed by the sequential least squares programming (SLSQP) algo-

rithm [  123 ]. The input state is the Hartree -Fock reference state and all parameters are

initialized as 0 for both ansatzes. The bounds for all parameters for both ansatzes are set

to [ − π, π]. The energy thresholds for convergence is set to 10−6 Hartree with maximum

500 iterations. The noiseless simulation is done by Qiskit [  119 ] with version 0.14.1. In the

figures in this section, QCCSD VQE represent the proposed qubit coupled cluster singles

and doubles VQE ansatz while UCCSD VQE represents the first order trotterization UCCSD

VQE ansatz implemented by Qiskit [ 119 ].

Complete active space (CAS) approach [  93 ], which divides the space to active spin orbitals

and inactive spin orbitals, has been applied to reduce the qubits of molecule Hamiltonian

in quantum simulation. To investigate the effect of the size of active space, we compare the

performance of QCCSD ansatz for different sizes of active spaces for the same molecule.

For BeH2 we choose three different active spaces: First 2 lowest energy spin orbitals are

always filled and first 2 highest energy spin orbitals are always empty, corresponding to 10

active spin orbitals with 4 electrons or 10 qubits Hamiltonian. First 2 lowest energy spin

orbitals are always filled, corresponding to 12 active spin orbitals with 4 electrons or 12

qubits Hamiltonian. No spin orbitals are always filled or always empty, corresponding to

14 active spin orbitals with 6 electrons or 14 qubits Hamiltonian. We compare the errors

between the ground state energies from the VQE results and the ground state energies from

the diagonalization of the corresponding Hamiltonian as in Figure  5.4 . We can see that,

although the size of the active space is increased,our QCCSD VQE achieves similar accuracy

as the first order trotterization UCCSD VQE.
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(a) (b)

(c)

Figure 5.4. VQE results of BeH2 by QCCSD VQE compared with first
order trotterization UCCSD VQE. (a) The errors of ground state energies of
10 qubits BeH2 Hamiltonian calculated by QCCSD VQE compared with first
order trotterization UCCSD VQE. (b) The errors of ground state energies of
12 qubits BeH2 Hamiltonian calculated by QCCSD VQE compared with first
order trotterization UCCSD VQE. (c) The errors of ground state energies of
14 qubits BeH2 Hamiltonian calculated by QCCSD VQE compared with first
order trotterization UCCSD VQE.

For H2O we choose three different active spaces: First 4 lowest energy spin orbitals

are always filled, corresponding to 10 active spin orbitals with 6 electrons or 10 qubits

Hamiltonian; First 2 lowest energy spin orbitals are always filled, corresponding to 12 active

spin orbitals with 8 electrons or 12 qubits Hamiltonian and no spin orbitals are always

filled or always empty, corresponding to 14 active spin orbitals with 10 electrons or 14

qubits Hamiltonian. We compare the errors between the ground state energies from the

VQE results and the ground state energies from the diagonalization of the corresponding

Hamiltonian as in Figure  5.5 for different Hamiltonian. For 10 qubits H2 Hamiltonian our

qubit coupled cluster VQE achieves almost the same accuracy as the first order trotterization

UCCSD VQE except at one point. For 12 and 14 qubits H2 Hamiltonian, with increased
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size of active space,our QCCSD VQE performs a little worse compared to the first order

trotterization UCCSD VQE the error increased from 10−5 to 10−3 Hartree, but the error is

still within or around the chemical accuracy.

(a) (b)

(c)

Figure 5.5. VQE results of H2O by QCCSD VQE compared with first order
trotterization UCCSD VQE. (a) The errors of ground state energies of 10
qubits H2O Hamiltonian calculated by QCCSD VQE compared with first order
trotterization UCCSD VQE. (b) The errors of ground state energies of 12
qubits H2O Hamiltonian calculated by QCCSD VQE compared with first order
trotterization UCCSD VQE. (c) The errors of ground state energies of 14
qubits H2O Hamiltonian calculated by QCCSD VQE compared with first order
trotterization UCCSD VQE.

For N2 we choose four different active spaces: First 8 lowest energy spin orbitals are

always filled and first 2 highest energy spin orbitals are always empty, corresponding to 10

active spin orbitals with 6 electrons or 10 qubits Hamiltonian; First 8 lowest energy spin

orbitals are always filled, corresponding to 12 active spin orbitals with 6 electrons or 12

qubits Hamiltonian; First 6 lowest energy spin orbitals are always filled, corresponding to

14 active spin orbitals with 8 electrons or 14 qubits Hamiltonian. First lowest energy 4 spin

orbitals are always filled, corresponding to 16 active spin orbitals with 10 electrons or 16
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qubits Hamiltonian. We compare the errors between the ground state energies from the

VQE results and the ground state energies from the diagonalization of the corresponding

Hamiltonian as in Figure  5.6 for different Hamiltonian. For 10 qubits N2 Hamiltonian our

QCCSD VQE achieves almost same or even better accuracy as the first order trotterization

UCCSD VQE except one point. For 12, 14 and 16 qubits N2 Hamiltonian, with increased size

of active space,our QCCSD VQE performs worse compared to the first order trotterization

UCCSD VQE. This indicates that the removal of parity terms in excitation operators may

affect accuracy of the the couple cluster method for larger system size.

(a) (b)

(c) (d)

Figure 5.6. VQE results of N2 by QCCSD VQE compared with first order
trotterization UCCSD VQE. (a) The errors of ground state energies of 10
qubits N2 Hamiltonian calculated by QCCSD VQE compared with first order
trotterization UCCSD VQE. (b) The errors of ground state energies of 12
qubits N2 Hamiltonian calculated by QCCSD VQE compared with first order
trotterization UCCSD VQE. (c) The errors of ground state energies of 14
qubits N2 Hamiltonian calculated by QCCSD VQE compared with first order
trotterization UCCSD VQE. (d) The errors of ground state energies of 16
qubits N2 Hamiltonian calculated by QCCSD VQE compared with first order
trotterization UCCSD VQE.
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For H4 chain we do not have any restrictions on the spin orbitals, corresponding to 8

active spin orbitals and 4 active electrons. We also show the error between the ground

state energies from VQE results and the ground state energies from the diagonalization of

the corresponding Hamiltonian as in Figure  5.7 .our QCCSD VQE achieves the same level

accuracy compared to the first order trotterization UCCSD VQE.
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Figure 5.7. The errors of ground state energies of H4 calculated by QCCSD
VQE compared with UCCSD VQE.

For H6 chain we do not have any restrictions on the spin orbitals, corresponding to 12

active spin orbitals and 6 active electrons. We also show the error between the ground state

energies from VQE results and the ground state energies from the diagonalization of the

corresponding Hamiltonian as in Figure  5.8 . our QCCSD VQE achieves same level accuracy

compared to the first order trotterization UCCSD VQE.
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Figure 5.8. The errors of ground state energies of H6 calculated by QCCSD
VQE compared with UCCSD VQE.
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5.4 Discussion and Conclusion
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Figure 5.9. The overlap |〈φHF |φground〉|2 where |φHF 〉 is the input Hartree-
Fock state. and |φground〉 is the exact ground state obtained by diagonalization
of the corresponding Hamiltonian for BeH2, H2O and N2 of different active
spaces. BeH2 10 represents the BeH2 10 qubits Hamiltonian. BeH2 12 rep-
resents the BeH2 12 qubits Hamiltonian. BeH2 14 represents the BeH2 14
qubits Hamiltonian. H2O 10 represents the H2O 10 qubits Hamiltonian. H2O
12 represents the H2O 12 qubits Hamiltonian. H2O 14 represents the H2O 14
qubits Hamiltonian. N2 10 represents the N2 10 qubits Hamiltonian. N2 12
represents the N2 12 qubits Hamiltonian. N2 14 represents the N2 14 qubits
Hamiltonian. N2 16 represents the N2 16 qubits Hamiltonian.

In simulations, we have shown that increasing the size of active space will have little effect

on the accuracy of the qubit coupled cluster VQE for BeH2. Our QCCSD VQE can still

achieve good results for larger active space for H2O but performs worse than UCCSD VQE

for N2. Here we present the overlap |〈φHF |φground〉|2 where |φHF 〉 is the input Hartree-Fock

state. and |φground〉 is the exact ground state obtained by diagonalization of the corresponding

Hamiltonian for BeH2, H2O and N2 of different active spaces in Figure  5.9 . We can see that

the overlaps for BeH2 with different sizes of active space are large, which may indicate

very few excitation operators and small amplitudes of excitation operators are needed to

approximate the exact ground state and removal of parity terms will have little effect on
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results. However, for N2, the overlap for N2 is small when the size of active space increases

and bond length is large, which may indicate that a large portion of excitation operators

and large amplitudes of excitation operators are needed to approximate the exact ground

state, thus removal of parity terms may have some effects on results.

In conclusion, we have introduced a new VQE ansatz based on the particle preserving

exchange gate [  108 ], [  113 ]. We have shown QCCSD VQE has reduced gate complexity

from up-bounded to O(n5) of UCCSD VQE to up-bounded to O(n4) if using Jordan-Wigner

transformation. In numerical simulations of BeH2, H2O, N2, H4 and H6, we have shown that

QCCSD VQE have achieved comparable accuracy compared to UCCSD VQE. With reduced

complexity and high accuracy, QCCSD VQE ansatz might provide a new promising direction

to implement electronic structure calculations on NISQ devices with chemical accuracy.
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