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I. INTRODUCTION

The development and use of quantum computers for chemical applications has
the potential for revolutionary impact on the way computing is done in the fu-
ture [1–7]. Major challenge opportunities are abundant (see next fifteen chapters).
One key example is developing and implementing quantum algorithms for solving
chemical problems thought to be intractable for classical computers. Other chal-
lenges include the role of quantum entanglement, coherence, and superposition
in photosynthesis and complex chemical reactions. Theoretical chemists have en-
countered and analyzed these quantum effects from the view of physical chemistry
for decades. Therefore, combining results and insights from the quantum infor-
mation community with those of the chemical physics community might lead to a
fresh understanding of important chemical processes. In particular, we will discuss
the role of entanglement in photosynthesis, in dissociation of molecules, and in the
mechanism with which birds determine magnetic north. This chapter is intended
to survey some of the most important recent results in quantum computation and
quantum information, with potential applications in quantum chemistry. To start
with, we give a comprehensive overview of the basics of quantum computing
(the gate model), followed by introducing quantum simulation, where the phase
estimation algorithm (PEA) plays a key role. Then we demonstrate how PEA com-
bined with Hamiltonian simulation and multiplicative inversion can enable us to
solve some types of linear systems of equations described by A�x = �b. Then our
subject turns from gate model quantum computing (GMQC) to adiabatic quantum
computing (AQC) and topological quantum computing, which have gained in-
creasing attention in the recent years due to their rapid progress in both theoretical
and experimental areas. Finally, applications of the concepts of quantum infor-
mation theory are usually related to the powerful and counter intuitive quantum
mechanical effects of superposition, interference, and entanglement.

Throughout history, man has learned to build tools to aid computation. From
abacuses to digital microprocessors, these tools epitomize the fact that laws of
physics support computation. Therefore, a natural question arises: “Which physi-
cal laws can we use for computation?” For a long period of time, questions such
as this were not considered relevant because computation devices were built ex-
clusively based on classical physics. It was not until the 1970s and 1980s when
Feynmann [8], Deutsch [9], Benioff [10], and Bennett [11] proposed the idea of
using quantum mechanics to perform calculation that the possibility of building a
quantum computing device started to gain some attention.

What they conjectured then is what we call today a quantum computer. A
quantum computer is a device that takes direct advantage of quantum mechani-
cal phenomena such as superposition and entanglement to perform calculations
[12]. Because they compute in ways that classical computers cannot, for certain
problems quantum algorithms provide exponential speedups over their classical
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counterparts. As an example, in solving problems related to factoring large num-
bers [13] and simulation of quantum systems [14–28], quantum algorithms are
able to find the answer exponentially faster than classical algorithms. Recently,
it has also been proposed that a quantum computer can be useful for solving lin-
ear systems of equations with exponential speedup over the best-known classical
algorithms [29]. In the problem of factoring large numbers, the quantum exponen-
tial speedup is rooted in the fact that a quantum computer can perform discrete
Fourier transform exponentially faster than classical computers [12]. Hence, any
algorithm that involves Fourier transform as a subroutine can potentially be sped
up exponentially on a quantum computer. For example, efficient quantum algo-
rithms for performing discrete sine and cosine transforms using quantum Fourier
transform have been proposed [30]. To illustrate the tremendous power of the
exponential speedup with concrete numbers, consider the following example: the
problem of factoring a 60-digit number takes a classical computer 3 × 1011 years
(about 20 times the age of universe) to solve, while a quantum computer can be
expected to factor a 60-digit number within 10−8 seconds. The same order of
speedup applies for problems of quantum simulation.

In chemistry, the entire field has been striving to solve a number of “Holy Grail”
problems since their birth. For example, manipulating matter on the atomic and
molecular scale, economic solar splitting of water, the chemistry of consciousness,
and catalysis on demand are all such problems. However, beneath all these prob-
lems is one common problem, which can be dubbed as the “Mother of All Holy
Grails: exact solution of the Schrödinger equation. Paul Dirac pointed out that
with the Schrödinger equation, “the underlying physical laws necessary for the
mathematical theory of a large part of physics and the whole of chemistry are thus
completely known and the difficulty is only that the exact application of these laws
leads to equations much too complicated to be soluble” [31]. The problem of solv-
ing the Schrödinger equation is fundamentally hard [32,33] because as the number
of particles in the system increases, the dimension of the corresponding Hilbert
space increases exponentially, which entails exponential amount of computational
resource.

Faced with the fundamental difficulty of solving the Schrödinger equations ex-
actly, modern quantum chemistry is largely an endeavor aimed at finding approx-
imate methods. Ab initio methods [34] (Hartree–Fock, Moller–Plesset, coupled
cluster, Green’s function, configuration interaction, etc.), semi-empirical methods
(extended Huckel, CNDO, INDO, AM1, PM3, etc.), density functional methods
[35] (LDA, GGA, hybrid models, etc.), density matrix methods [36], algebraic
methods [37] (Lie groups, Lie algebras, etc.), quantum Monte Carlo methods
[38] (variational, diffusion, Green’s function forms, etc.), and dimensional scaling
methods [39] are all products of such effort over the past decades. However, all
the methods devised so far have to face the challenge of unreachable computa-
tional requirements as they are extended to higher accuracy to larger systems. For
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example, in the case of full CI calculation, for N orbitals and m electrons there
are Cm

N ≈ Nm

m! ways to allocate electrons among orbitals. Doing full configuration
interaction (FCI) calculations for methanol (CH3OH) using 6-31G (18 electrons
and 50 basis functions) requires about 1017 configurations. This task is impossible
on any current computer. One of the largest FCI calculations reported so far has
about 109 configurations (1.3 billion configurations for Cr2 molecules [40]).

However, due to exponential speedup promised by quantum computers, such
simulation can be accomplished within only polynomial amount of time, which is
reasonable for most applications. As we will show later, using the phase estimation
algorithm, one is able to calculate eigenvalues of a given Hamiltonian H in time
that is polynomial in O(log N), where N is the size of the Hamiltonian. So in
this sense, quantum computation and quantum information will have enormous
impact on quantum chemistry by enabling quantum chemists and physicists to
solve problems beyond the processing power of classical computers.

The importance of developing quantum computers derives not only from the
discipline of quantum physics and chemistry alone, but also from a wider context
of computer science and the semiconductor electronics industry. Since 1946, the
processing power of microprocessors has doubled every year simply due to the
miniaturization of basic electronic components on a chip. The number of transistors
on a single integrated circuit chip doubled every 18 months, which is a fact known
as Moore’s law. This exponential growth in the processing power of classical com-
puters has spurred revolutions in every area of science and engineering. However,
the trend cannot last forever. In fact, it is projected that by the year 2020 the size of
a transistor would be on the order of a single atom. At that scale, classical laws
of physics no longer hold and the behavior of the circuit components obeys laws
of quantum mechanics, which implies that a new paradigm is needed to exploit
the effects of quantum mechanics to perform computation, or in a more general
sense, information processing tasks. Hence, the mission of quantum computing is
to study how information can be processed with quantum mechanical devices as
well as what kinds of tasks beyond the capabilities of classical computers can be
performed efficiently on these devices.

Accompanying the tremendous promises of quantum computers are the exper-
imental difficulties of realizing one that truly meets its above-mentioned theoret-
ical potential. Despite the ongoing debate on whether building a useful quantum
computer is possible, no fundamental physical principles are found to prevent a
quantum computer from being built. Engineering issues, however, remain. The
improvement and realization of quantum computers are largely interdisciplinary
efforts. The disciplines that contribute to quantum computing, or more generally
quantum information processing, include quantum physics, mathematics, com-
puter science, solid-state device physics, mesoscopic physics, quantum devices,
device technology, quantum optics, optical communication, and nuclear magnetic
resonance (NMR), to name just a few.
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A. Qubits and Gates

In general, we can think of information as something that can be encoded in the
state of a physical system. If the physical system obeys classical laws of physics,
such as a classical computer, the information stored there is of “classical” nature.
To quantify information, the concept of bit has been introduced and defined as the
basic unit of information. A bit of information stored in a classical computer is a
value 0 or 1 kept in a certain location of the memory unit. The computer is able to
measure the bit and retrieve the information without changing the state of the bit.
If the bit is at the same state every time it is measured, it will yield the same results.
A bit can also be copied and one can prepare another bit with the same state. A
string of bits represents one single number.

All these properties of bits seem trivial but in the realm of quantum information
processing, this is no longer true (Table I). The basic unit of quantum information is
a qubit. Physically, a qubit can be represented by the state of a two-level quantum
system of various forms, be it an ion with two accessible energy levels or a photon
with two states of polarization. Despite the diverse physical forms that a qubit can
take, for the most part the concept of “qubit” is treated as an abstract mathematical
object. This abstraction gives us the freedom to construct a general theory of
quantum computation and quantum information that does not depend on a specific
system for its realization [12].

Unlike classical bits, a qubit can be not only in state |0〉 or |1〉, but also a
superposition of both: α|0〉 + β|1〉. If a qubit is in a state of quantum superposition,
a measurement will collapse the state to either one of its component states |0〉 or
|1〉, which is a widely observed phenomenon in quantum physics. Suppose we
repetitively do the following: prepare a qubit in the same state α|0〉 + β|1〉 and
then measure it with respect to the basis state {|0〉, |1〉}. The measurement outcomes
would most probably be different—we will get |0〉 in some measurements and |1〉
in the others—even the state of the qubit that is measured is identical each time.
Furthermore, unlike classical bits that can be copied, a qubit cannot be copied due to
the no-cloning theorem, which derives from a qubit’s quantum mechanical nature

TABLE I
Comparison Between Classical Bits and Qubits

Classical Bit Qubit

State 0 or 1 |0〉, |1〉, or superposition
Measurement does not change Measurement changes the system

the state of the bit
Deterministic result Obtain different results with the same system
Can make a copy of bit (eavesdrop) Cannot clone the qubit (security)
One number for a string bit Store several numbers simultaneously due to superposition
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(see Ref. [12], p. 24 for details). Such no-cloning property of a qubit has been used
for constructing security communication devices, because a qubit of information is
impossible to eavesdrop. In terms of information storage, since a qubit or an array
of qubits could be in states of quantum superposition such as α00|00〉 + α01|01〉 +
α10|10〉 + α11|11〉, a string of qubits is able to store several numbers α00, α01, . . .

simultaneously, while a classical string of bits can only represent a single number.
In this sense, n qubits encode not n bits of classical information, but 2n numbers.
In spite of the fact that none of the 2n numbers are efficiently accessible because
a measurement will destroy the state of superposition, this exponentially large
information processing space combined with the peculiar mathematical structure
of quantum mechanics still implies the formidable potential in the performance of
some of computational tasks exponentially faster than classical computers.

Now that we have introduced the basic processing units of quantum
computers—the qubits, the next question is: How do we make them compute?
From quantum mechanics we learned that the evolution of any quantum system
must be unitary. That is, suppose a quantum computation starts with an initial
state |�initial〉, then the final state of the computation |�final〉 must be the result of
a unitary transformation U, which gives |�final〉 = U|�initial〉. In classical com-
puting, the basic components of a circuit that transforms a string {0, 1}n to another
string {0, 1}m are called gates. Analogously, in quantum computing, a unitary
transformation U that transforms a system from |�initial〉 to |�final〉 can also be de-
composed into sequential applications of basic unitary operations called quantum

gates (Table II). Experimentally, the implementation of a quantum gate largely
depends on the device and technique used for representing a qubit. For example,
if a qubit is physically represented by the state of a trapped ion, then the quantum
gate is executed by an incident laser pulse that perturbs the trapped atom(s) and
alters its state; if the qubit states are encoded in the polarization states of photons,
then a quantum gate consists of optical components that interact with photons and
alter their polarization states as they travel through the components.

If we use vectors to describe the state of a qubit, that is, using |0〉 to represent
(1, 0)T and |1〉 to represent (0, 1)T, a single-qubit quantum gate can be represented

TABLE II
Comparison Between Classical and Quantum Gates

Classical Logic Gates Quantum Gates

Each gate corresponds to Each quantum gate corresponds to a transformation
a mapping {0, 1}m → {0, 1}n |�〉 → |�′〉 or a rotation on the surface

of Bloch sphere ([12], p. 15)
Nonunitary Unitary
Irreversible Reversible
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using a 2 × 2 matrix. For example, a quantum NOT gate can be represented by
the Pauli X matrix

UNOT = X =
(

0 1

1 0

)
(1)

To see how this works, note that X|0〉 = |1〉 and X|1〉 = |0〉. Therefore, the
sheer effect of applying X to a qubit is to flip its state from |0〉 to |1〉. This is
just one example of single-qubit gates. Other commonly used gates include the
Hadamard gate H , Z rotation gate, phase gate S, and π

8 gate T :

H = 1√
2

(
1 1

1 −1

)
, S =

(
1 0

0 i

)
, T =

(
1 0

0 eiπ/4

)
(2)

If a quantum gate involves two qubits, then it is represented by a 4 × 4 matrix.
The state of a two-qubit system is generally in form of α00|00〉 + α01|01〉 +
α10|10〉 + α11|11〉, which can be written as a vector (α00, α01, α10, α11)T. In matrix
form, the CNOT gate is defined as

UCNOT =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎠ (3)

It is easy to verify that applying CNOT gate to a state |�0〉 = α00|00〉 +
α01|01〉 + α10|10〉 + α11|11〉 results in a state

UCNOT|�0〉 = α00|00〉 + α01|01〉 + α10|11〉 + α11|10〉 (4)

Hence, the effect of a CNOT gate is equivalent to a conditional X gate: If the
first qubit is in |0〉, then the second qubit remains intact; on the other hand, if the
first qubit is in |1〉, then the second qubit is flipped. Generally, the first qubit is
called the control and the second is the target.

In classical computing, an arbitrary mapping {0, 1}n → {0, 1}m can be executed
by a sequence of basic gates such as AND, OR, NOT, and so on. Similarly in
quantum computing, an arbitrary unitary transformation U can also be decomposed
as a product of basic quantum gates. A complete set of such basic quantum gates is
a universal gate set. For example, Hadamard, phase, CNOT, and π/8 gates form
a universal gate set ([12], p. 194).

Now that we have introduced the concepts of qubits and quantum gates and
compared them with their classical counterpart, we can see that they are the very
building blocks of a quantum computer. However, it turns out that having qubits
and executable universal gates is not enough for building a truly useful quantum
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computer that delivers its theoretical promises. So what does it really take to build
such a quantum computer? A formal answer to this question is the following seven
criteria proposed by DiVincenzo [41]:

• A scalable physical system with well-characterized qubits.
• The ability to initialize the state of the qubits to a simple fiducial state.
• Long (relative) decoherence times, much longer than the gate operation time.
• A universal set of quantum gates.
• A qubit-specific measurement capability.
• The ability to inter convert stationary and flying qubits.
• The ability to faithfully transmit flying qubits between specified locations.

For a detailed review of state-of-the-art experimental implementation based on
the preceding criteria, refer to Ref. [42]. The take-home message is that it is clear
that we can gain some advantage by storing, transmitting, and processing informa-
tion encoded in systems that exhibit unique quantum properties, and a number of
physical systems are currently being developed for quantum computation. How-
ever, it remains unclear which technology, if any, will ultimately prove successful
in building a scalable quantum computer.

B. Circuits and Algorithms

Just as in classical computing, logic gates are cascaded to form a circuit. A quantum
circuit is a sequence of quantum gates. When an algorithm needs to be implemented
with a quantum computer, it must first be translated to a quantum circuit in order
to be executed on the quantum hardware (qubits). Figure 1 is an example of a
quantum circuit. Each horizontal line represents a qubit and every box on the line
is a quantum gate applied on that qubit. If the box is connected with a vertical
line that joins it to the line(s) with solid circles, then the box is a controlled gate
operation and the qubit(s) that it is joined to are the control qubit(s). Just like a
CNOT gate, only when the control qubit (s) is (are all) in |1〉 state will the controlled
operation be applied onto the target qubit.

x3〉 • • H y1〉||

|

|

|

|

x2〉 • H Rπ/2 y2〉

x1〉 H Rπ/2 Rπ/4 y3〉

Figure 1. Quantum circuit for quantum Fourier transform on the quantum state |x1, x2, x3〉.
Starting from the left, the first gate is a Hadamard gate H that acts on the qubit in the state |x1〉, and
the second gate is a |x2〉-controlled phase rotation Rθ(a|0〉 + b|1〉) → (a|0〉 + beiθ |1〉) on qubit |x1〉,
where θ = π/2. The rest of the circuit can be interpreted in the same fashion.
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C. Teleportation

Quantum teleportation exploits some of the most basic and unique features of quan-
tum mechanics, which is quantum entanglement, essentially implies an intriguing
property that two quantum correlated systems cannot be considered independent
even if they are far apart. The dream of teleportation is to be able to travel by
simply reappearing at some distant location. Teleportation of a quantum state en-
compasses the complete transfer of information from one particle to another. The
complete specification of a quantum state of a system generally requires an infinite
amount of information, even for simple two-level systems (qubits). Moreover, the
principles of quantum mechanics dictate that any measurement on a system imme-
diately alters its state, while yielding at most one bit of information. The transfer
of a state from one system to another (by performing measurements on the first
and operations on the second) might therefore appear impossible. However, it was
shown that the property of entanglement in quantum mechanics, in combination
with classical communication, can be used to teleport quantum states. Although
teleportation of large objects still remains a fantasy, quantum teleportation has
become a laboratory reality for photons, electrons, and atoms [43–52].

More precisely, quantum teleportation is a quantum protocol by which the in-
formation on a qubit A is transmitted exactly (in principle) to another qubit B. This
protocol requires a conventional communication channel capable of transmitting
two classical bits, and an entangled pair (B, C) of qubits, with C at the location
of origin with A and B at the destination. The protocol has three steps: measure
A and C jointly to yield two classical bits; transmit the two bits to the other end
of the channel; and use the two bits to select one of the four ways of recovering B

[53,54].
Efficient long-distance quantum teleportation is crucial for quantum commu-

nication and quantum networking schemes. Ursin and coworkers [55] have per-
formed a high-fidelity teleportation of photons over a distance of 600 m across the
River Danube in Vienna, with the optimal efficiency that can be achieved using lin-
ear optics. Another exciting experiment in quantum communication has also been
done with one photon that is measured locally at the Canary Island of La Palma,
whereas the other is sent over an optical free-space link to Tenerife, where the Op-
tical Ground Station of the European Space Agency acts as the receiver [55,56].
This exceeds previous free-space experiments by more than an order of magni-
tude in distance, and is an essential step toward future satellite-based quantum
communication.

Recently, we have proposed a scheme for implementing quantum teleportation
in a three-electron systems [52]. For more electrons, using Hubbard Hamiltonian,
in the limit of the Coulomb repulsion parameter for electrons on the same site
U → +∞, there is no double occupation in the magnetic field; the system is
reduced to the Heisenberg model. The neighboring spins will favor the anti parallel
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configuration for the ground state. If the spin at one end is flipped, then the spins on
the whole chain will be flipped accordingly due to the spin–spin correlation. Such
that the spins at the two ends of the chain are entangled, a spin entanglement can
be used for quantum teleportation, and the information can be transferred through
the chain. This might be an exciting new direction for teleportation in molecular
chains [57].

II. QUANTUM SIMULATION

A. Introduction

As already mentioned, simulating quantum systems by exact solution of the
Schrödinger equation is a fundamentally hard task that the quantum chemistry com-
munity has been trying to tackle for decades with only approximate approaches.
The key challenges of quantum simulation include the following (see next five
chapters) [28]:

1. Isolate qubits in physical systems. For example, in a photonic quantum com-
puter simulating a hydrogen molecule, the logical states |0〉 and |1〉 corre-
spond to horizontal |H〉 and vertical |V 〉 polarization states [58].

2. Represent the Hamiltonian H . This is to write H as a sum of Hermitian
operators, each to be converted into unitary gates under the exponential
map.

3. Prepare the states |ψ〉. By direct mapping, each qubit represents the fermionic
occupation state of a particular orbital. Fock space of the system is mapped
onto the Hilbert space of qubits.

4. Extract the energy E.

5. Read out the qubit states.

A technique to accomplish challenge 2 in a robust fashion is presented in Sec-
tion II.B.2. Challenge 4 is accomplished using the phase estimation quantum al-
gorithm (see details in Section II.B). Here, we can mention some examples of
algorithms and their corresponding quantum circuits that have been implemented
experimentally: (a) the IBM experiment, which factors the number 15 with nu-
clear magnetic resonance (NMR) (for details see Ref. [59]); (b) using quantum
computers for quantum chemistry [58].

B. Phase Estimation Algorithm

The phase estimation algorithm (PEA) takes advantage of quantum Fourier trans-
form ([12], see chapter by Gaitan and Nori) to estimate the phase ϕ in the eigenvalue
e2πiϕ of a unitary transformation U. For a detailed description of the algorithm,
refer to Ref. [60]. The function that the algorithm serves can be summarized as the
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following: Let |u〉 be an eigenstate of the operator U with eigenvalue e2πiϕ. The al-
gorithm starts with a two-register system (a register is simply a group of qubits) in
the state |0〉⊗t|u〉. Suppose the transformation U2k

can be efficiently performed for
integer k, then this algorithm can efficiently obtain the state |ϕ̃〉|u〉, where |ϕ̃〉 ac-
curately approximates ϕ to t − 
log(2 + 1

2ε
)� bits with probability of at least 1 − ε.

1. General Formulation

The generic quantum circuit for implementing PEA is shown in Fig. 2. Section 5.2
of Ref. [12] presents a detailed account of how the circuit functions mathematically
to yield the state |ϕ̃〉, which encodes the phase ϕ. Here we focus on its capability
of finding the eigenvalues of a Hermitian matrix, which is of great importance in
quantum chemistry where one often would like to find the energy spectrum of a
Hamiltonian.

Suppose we let U = eiAt0/2t
for some Hermitian matrix A, then eiAt0 |uj〉 =

eiλjt|uj〉, where λj and |uj〉 are the j-th eigenvalue and eigenvector of matrix
A. Furthermore, we replace the initial state |u〉 of register b (Fig. 2) with an
arbitrary vector |b〉 that has a decomposition in the basis of the eigenvectors of A:
|b〉 = ∑n

j βj|uj〉. Then the major steps of the algorithm can be summarized as the
following.

1. Transform the t-qubit register C (Fig. 2) from |0〉⊗t to 1√
2t

∑2t−1
τ=0 |τ〉 state

by applying Hadamard transform on each qubit in register C.

2. Apply the U2k
gates to the register b, where each U2k

gate is controlled
by the (k − 1)th qubit of the register C from bottom. This series of con-
trolled operations transforms the state of the two-register system from

1√
2t

∑2t−1
τ=0 |τ〉 ⊗ |b〉 to 1√

2t

∑2t−1
τ=0 |τ〉 ∑n

j=1 eiλjτt/2t
βj|uj〉.

3. Apply inverse Fourier transform FT† to the register C. Because every basis
state |τ〉 will be transformed to 1√

2t

∑2t−1
k=0 e−2πiτk/2t |k〉 by FT†, the final

|0〉 H . . . •

†

.........

Reg.  C FT|0〉 H • . . . |ϕ̃〉

|0〉 H • . . .

|0〉 H • . . .

Reg.  b |u〉 / U20
U21

U22 . . . U2t−1 |u〉

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

Figure 2. Schematic of the quantum circuit for phase estimation. The quantum wire with a “/”
symbol represents a register of qubits as a whole. FT† represents inverse Fourier transform, whose
circuit is fairly standard ([12], see chapter by Gaitan and Nori).
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state of the PEA is proportional to
∑2t−1

k=0
∑n

j=1 ei(λjt0−2πk)τ/2t
βj|k〉|uj〉.

Due to a well-known property of the exponential sum, in which sums of
the form

∑N−1
k=0 exp(2πik r

N
) vanish unless r = 0 mod N, the values of k

are concentrated on those whose value is equal or close to t0
2π

λj . If we let
t0 = 2π, the final state of system is

∑
j βj|λ̃j〉|uj〉 up to a normalization

constant.

In particular, if we prepare the initial state of register b to be one of matrix
A’s eigenvector |ui〉, according to the procedure listed above, the final state of
the system will become |λ̃i〉|ui〉 up to a constant. Hence, for any |ui〉 that we can
prepare, we can find the eigenvalue λj of A corresponding to |ui〉 using a quantum
computer. Most importantly, it has been shown that [17] quantum computers are
able to solve the eigenvalue problem significantly more efficiently than classical
computers.

2. Implementation of Unitary Transformation U

Phase estimation algorithm is often referred to as a black box algorithm because
it assumes that the unitary transformation U and its arbitrary powers can be
implemented with basic quantum gates. However, in many cases U has a structure
that renders finding the exact decomposition U = U1U2...Um either impossible or
very difficult. Therefore, we need a robust method for finding approximate circuit
decompositions of unitary operators U with minimum cost and minimum fidelity
error.

Inspired by the optimization nature of the circuit decomposition problem,
Daskin and Kais [61,62] have developed an algorithm based on group leader
optimization technique for finding a circuit decomposition U = U1U2...Um with
minimum gate cost and fidelity error for a particular U. Hence, there are two fac-
tors that need to be optimized within the optimization: the error and the cost of
the circuit. The costs of a one-qubit gate and a control gate (two-qubit gate) are
defined as 1 and 2, respectively. Based on these two definitions, the costs of other
quantum gates can be deduced. In general, the minimization of the error to an ac-
ceptable level is more important than the cost in order to get more reliable results
in the optimization process. The circuit decompositions for U = eiAt presented in
Fig. 3b for the particular instance of A in Eq. (6) are found by the algorithm such
that the error ||U ′ − U|| and the cost of U ′ are both minimized.

3. Group Leaders Optimization Algorithm

The group leaders optimization algorithm (GLOA) described in more detail in
Refs [61,62] is a simple and effective global optimization algorithm that models the
influence of leaders in social groups as an optimization tool. The algorithm starts
with dividing the randomly generated solution population into several disjunct
groups and assigning for each group a leader (the best candidate solution inside
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†
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√
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∑
j ( | 〉︸︷︷︸
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λ2 =2

|u2j 〉)
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⎩
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⎪⎪⎪⎪⎩
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(b)

Figure 3. Quantum circuit for estimating the eigenvalues of A, which is the 8 × 8 matrix shown
in Eq. (6). (a) The overall circuit implementing the phase estimation algorithm. (b) Decomposition of

the gate eiA
t0
4 in terms of basic gates.

the group). The algorithm basically is built on two parts: mutation and parameter
transfer. In the mutation part, a candidate solution (a group member that is not
leader) is mutated by using some part of its group leader, some random part, and
some part of this member itself. This mutation is formulated as

new member = r1 part of the member

∪ r2 part of its leader (5)

∪ r3 part of random

where r1, r2, and r3 determine the rates of the member, the group leader, and
the newly created random solution into the newly formed member, and they sum
to 1. The values of these rates are assigned as r1 = 0.8 and r2 = r3 = 0.1. The
mutation for the values of the all angles in a numerical string is done according
to the arithmetic expression: anglenew = r1 × angleold + r2 × angleleader + r3 ×
anglerandom, where angleold, the current value of an angle, is mutated: anglenew,
the new value of the angle, is formed by combining a random value and the
corresponding leader of the group of the angle and the current value of the angle
with the coefficients r1, r2, and r3. The mutation for the rest of the elements in
the string means the replacement of its elements by the corresponding elements
of the leader and a newly generated random string with the rates r2 and r3. In the
second part of the algorithm, these disjoint groups communicate with each other by
transferring some parts of their members. This step is called parameter transfer. In
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this process, some random part of a member is replaced with the equivalent part of a
random member from a different group. The amount of this communication process
is limited with some parameter that is set to 4×maxgates

2 − 1, where the numerator is
the number of variables forming a numeric string in the optimization. During the
optimization, the replacement criterion between a newly formed member is and an
existing member is defined as follows: If a new member formed by a mutation or
a parameter transfer operation gives less error-prone solution to the problem than
the corresponding member, or they have the same error values but the cost of the
new member is less than this member, then the new member takes the former one’s
place as a candidate solution; otherwise, the newly formed member is disregarded.

4. Numerical Example

In order to demonstrate how PEA finds the eigenvalues of a Hermitian matrix,
here we present a numerical example. We choose A as a Hermitian matrix
with the degenerate eigenvalues λi = 1, 2 and corresponding eigenvectors
|u11〉 = | + ++〉, |u12〉 = | + +−〉, |u13〉 = | + −+〉, |u14〉 = | − ++〉, |u21〉 =
| − −−〉, |u22〉 = | − −+〉, |u23〉 = | − +−〉, |u24〉 = | + −−〉:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.5 −0.25 −0.25 0 −0.25 0 0 0.25

−0.25 1.5 0 −0.25 0 −0.25 0.25 0

−0.25 0 1.5 −0.25 0 0.25 −0.25 0

0 −0.25 −0.25 1.5 0.25 0 0 −0.25

−0.25 0 0 0.25 1.5 −0.25 −0.25 0

0 −0.25 0.25 0 −0.25 1.5 0 −0.25

0 0.25 −0.25 0 −0.25 0 1.5 −0.25

0.25 0 0 −0.25 0 −0.25 −0.25 1.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6)

Here |+〉 = 1√
2

(|0〉 + |1〉) and |−〉 = 1√
2

(|0〉 − |1〉) represent the Hadamard

states. Furthermore, we let �b = (1, 0, 0, 0, 0, 0, 0, 0)T. Therefore, |b〉 = |000〉 =∑
j βj|uj〉 and each βj = 1

2
√

2
. Figure 3 shows the circuit for solving the 8 × 8

linear system. The register C is first initialized with Walsh–Hadamard transfor-
mation and then used as the control register for Hamiltonian simulation eiAt0

on the register B. The decomposition of the two-qubit Hamiltonian simulation
operators in terms of basic quantum circuits is achieved using group leader
optimization algorithm [61,62]. The final state of system is

∑
j βj|λj〉|uj〉 =

1
2
√

2

∑4
i=1(|01〉|u1i〉 + |10〉|u2i〉), which encodes both eigenvalues 1 (as |01〉) and

2 (as |10〉) in register C (Fig. 3).
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5. Simulation of the Water Molecule

Wang et al.’s algorithm [19] can be used to obtain the energy spectrum of molecular
systems such as water molecule based on the multiconfigurational self-consistent
field (MCSCF) wave function. By using a MCSCF wave function as the initial
guess, the excited states are accessible. The geometry used in the calculation is
near the equilibrium geometry (OH distance R = 1.8435a0 and the angle HOH =
110.57◦). With a complete active space type MCSCF method for the excited-state
simulation, the CI space is composed of 18 CSFs, which requires the use of five
qubits to represent the wave function. The unitary operator for this Hamiltonian
can be formulated as

ÛH2O = eiτ(Emax−H)t (7)

where τ is given as

τ = 2π

Emax − Emin
(8)

Emax and Emin are the expected maximum and minimum energies. The choice of
Emax and Emin must cover all the eigenvalues of the Hamiltonian to obtain the
correct results. After finding the phase φj from the phase estimation algorithm,
the corresponding final energy Ej is found from the following expression:

Ej = Emax − 2πφj

τ
(9)

Because the eigenvalues of the Hamiltonian of the water molecule are between
−80 ± ε and −84 ± ε (ε ≤ 0.1), taking Emax = 0 and Emin = −200 gives the
following:

Û = e
−i2πH

200 t (10)

Figure 4 shows the circuit diagram for this unitary operator generated by using
the optimization algorithm and procedure as defined. The cost of the circuit is

Figure 4. The circuit design for the unitary propagator of the water molecule.



16 SABRE KAIS

TABLE III
Energy Eigenvalues of the Water Molecule

Phase Found Energy Exact Energy

0.4200 −84.0019 −84.0021
0.4200 −84.0019 −83.4492
0.4200 −84.0019 −83.0273
0.4200 −84.0019 −82.9374
0.4200 −84.0019 −82.7719
0.4200 −84.0019 −82.6496
0.4200 −84.0019 −82.5252
0.4200 −84.0019 −82.4467
0.4144 −82.8884 −82.3966
0.4144 −82.8884 −82.2957
0.4144 −82.8884 −82.0644
0.4144 −82.8884 −81.9872
0.4144 −82.8884 −81.8593
0.4144 −82.8884 −81.6527
0.4144 −82.8884 −81.4592
0.4144 −82.8884 −81.0119
0.4122 −82.4423 −80.9065
0.4122 −82.4423 −80.6703

44, which is found by summing up the cost of each gates in the circuit. Because
we take Emax as zero, this deployment does not require any extra quantum gate
for the implementation within the phase estimation algorithm. The simulation of
this circuit within the iterative PEA results in the phase and energy eigenvalues
given in Table III: The left two columns are, respectively, the computed phases
and the corresponding energies, while the rightmost column of the matrix is the
eigenvalues of the Hamiltonian of the water molecule (for each value of the phase,
the PEA is run 20 times).

III. ALGORITHM FOR SOLVING LINEAR SYSTEMS A�x = �b

A. General Formulation

The algorithm solves a problem where we are given a Hermitian s-sparse N×N

matrix A and a unit vector �b (Fig. 5). Suppose we would like to find �x such that
A�x = �b. The algorithm can be summarized as the following major steps [29]:

1. Represent the vector �b as a quantum state |b〉 = ∑N
i=1bi|i〉 stored in a quan-

tum register (termed register b). In a separate quantum register (termed
register C) of t qubits, initialize the qubits by transforming the register to
state |�〉C from |0〉 up to error ε�.
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|0〉 Ry

√
1− C2

λ2
j
|0〉 + C

λ j
|1〉

|0〉 / W Rzz • • • Rzz W |0〉

|0〉 / W • e−iH0t0 eiH0t0 • W |0〉

|0〉 / W • FT† • • FT • W |0〉

|b〉 / e−iAt0 eiAt0 |b〉
︸ ︷︷ ︸

Uncomputation

Figure 5. Generic quantum circuit for implementing the algorithm for solving linear systems of
equations. The registers from the bottom of the circuit diagram upwards are, respectively, registers b,
C, m, and l. The qubit on the top of the figure represents the ancilla bit.

2. Apply the conditional Hamiltonian evolution
∑T−1

τ=0 |τ〉〈τ|C ⊗ eiAτt0/T up
to error εH.

3. Apply quantum inverse Fourier transform to the register C. Denote the basis
states after quantum Fourier transform as |k〉. At this stage in the superposi-
tion state of both registers, the amplitudes of the basis states are concentrated
on k values that approximately satisfy λk ≈ 2πk

t0
, where λk is the kth eigen-

value of the matrix A.

4. Add an ancilla qubit and apply conditional rotation on it, controlled
by the register C with |k〉 ≈ |λk〉. The rotation transforms the qubit to√

1 − C2

λ2
j

|0〉 + C
λj

|1〉. This key step of the algorithm involves finding the

reciprocal of the eigenvalue λj quantum mechanically, which is not a trivial
task on its own. Now we assume that we have methods readily available
to find the reciprocal of the eigenvalues of matrix A and store them in a
quantum register.

5. Uncompute the register b and C by applying Fourier transform on reg-
ister C followed by the complex conjugates of same conditional Hamil-
tonian evolution as in step 2 and Walsh–Hadamard transform as in the
first step.

6. Measure the ancilla bit. If it returns 1, the register b of the system is in
the state

∑n
j=1 βjλj

−1|uj〉 up to a normalization factor, which is equal to

the solution |x〉 of the linear system A�x = �b. Here |uj〉 represents the jth
eigenvector of the matrix A and let |b〉 = ∑n

i=1 βj|uj〉.
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|0〉 Ry ( 2π
2m−1 ) Ry ( π

2m−1 )

|0〉 H •

FT†
× •

U†

|0〉 H • × •

|0〉

eiAt0 /4 eiAt0 /2|0〉

|0〉

(a)

X H • • Z H V †

• V Z Z V † Y X

T T V † Y • V S

(b)

Figure 6. Quantum circuit for solving A�x = �b with A8×8 being the matrix shown in Eq. (6).
(a) The overall circuit. From bottom up are the two qubits for |b〉, zeroth qubit in register C for encoding
the eigenvalue, first qubit in register C for eigenvalue, and ancilla bit. U† represents uncomputation.

(b) Decomposition of the gate eiA
t0
4 in terms of basic gates.

B. Numerical Example

For this example we choose A as the same Hermitian matrix as the one in
Eq. (6). Furthermore, we let �b = (1, 0, 0, 0, 0, 0, 0, 0)T. Therefore, |b〉 = |000〉 =∑

j βj|uj〉 and each βj = 1
2
√

2
. To compute the reciprocals of the eigenvalues, a

quantum swap gate is used (Fig. 6) to exchange the values of the zeroth and first
qubit. By exchanging the values of the qubits, one inverts an eigenvalue of A, say
1 (encoded with |01〉), to |10〉, which represents 2 in binary form. In the same way,
the eigenvalue 2 (|10〉) can be inverted to 1 |01〉.

Figure 6 shows the circuit for solving the 8 × 8 linear system. The register C is
first initialized with Walsh–Hadamard transformation and then used as the control
register for Hamiltonian simulation eiAt0 on the register B. The decomposition of
the two-qubit Hamiltonian simulation operators in terms of basic quantum circuits
is achieved using group leader optimization algorithm [61,62].

The final state of system, conditioned on obtaining |1〉 in the ancilla bit, is
1

2
√

10
(6|000〉 + |001〉 + |010〉 + |100〉 − |111〉), which is proportional to the exact

solution of the system �x = (0.75, 0.125, 0.125, 0, 0.125, 0, 0, −0.125)T.
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IV. ADIABATIC QUANTUM COMPUTING

The model of adiabatic quantum computation (AQC) was initially suggested by
Farhi, Goldstone, Gutman, and Sisper [63] for solving some classical optimization
problems. Several years after the proposition of AQC, Aharonov, Dam, Kempe,
Landau, Lloyd, and Regev [64] assessed its computational power and established
that the model of AQC is polynomially equivalent to the standard gate model
quantum computation. Nevertheless, this model provides a completely different
way of constructing quantum algorithms and reasoning about them. Therefore, it
is seen as a promising approach for the discovery of substantially new quantum
algorithms.

Prior to the work by Aharonov et al. [64], it had been known that AQC can
be simulated by GMQC [65,66]. The equivalence between AQC and GMQC is
then proven by showing that standard quantum computation can be efficiently
simulated by adiabatic computation using 3-local Hamiltonians [64]. While the
construction of three-particle Hamiltonians is sufficient for substantiating the the-
oretical results, it is technologically difficult to realize. Hence, significant efforts
have been devoted to simplifying the universal form of Hamiltonian to render it
feasible for physical implementation [64,67–70].

From the experimental perspective, current progress [71,72] in devices based
on superconducting flux qubits has demonstrated the capability to implement
Hamiltonian of the form ihiσ

z
i + i�iσ

x
i + i,jJijσ

z
i σ

z
j . However, this is not

sufficient for constructing a universal adiabatic quantum computer [71]. It is
shown [68] that this Hamiltonian can be rendered universal by simply adding
a tunable 2-local transverse σxσx coupling. Once tunable σxσx is available, all
the other 2-local interactions such as σzσx and σxσz can be reduced to sums of
single σx, σz spins and σxσx, σzσz couplings via a technique called Hamilto-
nian gadgets. In Section IV.3, we will present a more detailed review of this
subject.

A. Hamiltonians of n-Particle Systems

In the standard GMQC, the state of n qubits evolves in discrete time steps by
unitary operations. Physically, however, the evolution is continuous and is gov-
erned by the Schrödinger equation: −i d

dt
|ψ(t)〉 = H(t)|ψ(t)〉, where |ψ(t)〉 is the

state of n qubits at time t and H(t) is a Hermitian 2n × 2n matrix called the
Hamiltonian operating on the n-qubit system; it governs the dynamics of the sys-
tem. The fact that it is Hermitian derives from the unitary property of the discrete
time evolution of the quantum state from t1 to a later time t2. In some context,
the eigenvalues of Hamiltonians are referred to as energy levels. The ground-
state energy of a Hamiltonian is its lowest eigenvalue and the corresponding



20 SABRE KAIS

eigenvector(s) are the ground state(s). The spectral gap �(H) of a Hamiltonian H

is defined as the difference between lowest eigenvalue of H and its second lowest
eigenvalue.

We say that a Hamiltonian H is k-local if H can be written as
∑

A HA where
A runs over all subsets of k particles. In other words, HA is a tensor product of
a Hamiltonian on A with identity on the particles outside A. Note that although a
k-local Hamiltonian H operating on n qubits dwells in the Hilbert space of dimen-
sion 2n, it can be described by 22knk = poly(n) numbers.

B. The Model of Adiabatic Computation

To perform useful computations, the model of AQC hinges on a well-known prin-
ciple called adiabatic theorem [73,74]. Consider a system with a time-dependent
Hamiltonian H(s), where s ∈ [0, 1] is the normalized time parameter. The system
is initialized at t = 0 in the ground state of H(0) (assuming that for any s the
ground state of H(s) is unique). Then we let the system evolve according to the
Hamiltonian H(t/T ) from time t = 0 to T . We refer to such process as an adiabatic

evolution according to H for time T . The adiabatic theorem ensures that for T

sufficiently large, the final state of the system is very close to the ground state
of H(1). The minimum T required for this process is a function of the minimum
spectral gap �(H(s)), as is stated in the adiabatic theorem:

Theorem 1 (The Adiabatic Theorem [75]) Let Hinit and Hfinal be two Hamil-
tonians acting on a quantum system and consider the time-dependent Hamiltonian
H(s) := (1 − s)Hinit + sHfinal. Assume that for all s, H(s) has a unique ground
state. Then for any fixed δ > 0, if

T ≥ �

( ||Hfinal − Hinit||1+δ

εδ mins∈[0,1]{�2+δ(H(s))}
)

(11)

then the final state of an adiabatic evolution according to H for time T (with an
approximate setting of global phase) is ε-close in l2-norm to the ground state of
Hfinal. The matrix norm is the spectral norm ||H || := maxw||Hw||/||w||.

Based on Eq. (11), a reasonable definition of the running time of the adia-
batic algorithm is T ·maxs||H(s)||, because we must take into account the physical
trade-off between time and energy [64]. (The solution to the Schrödinger equa-
tion remains the same if time is divided by some factor and at the same time the
Hamiltonian is multiplied by the same factor.) Hence, in order to show that an
adiabatic algorithm is efficient, it is enough to use Hamiltonian of at most poly(n)
norm, and show that for all s ∈ [0, 1] the spectral gap �(H(s)) is at least inverse
polynomial in n.
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C. Hamiltonian Gadgets

A perturbation gadget or simply a gadget Hamiltonian refers to a Hamiltonian con-
struction invented by Kempe, Kitaev, and Regev [67] first used to approximate
the ground states of k-body Hamiltonians using the ground states of two-body
Hamiltonians. Gadgets have been used and/or extended by several authors includ-
ing Oliveira and Terhal [76–79]. Recent results have been reviewed in the article
by Wolf [80]. Gadgets have a range of applications in quantum information theory,
many-body physics, and are mathematically interesting to study in their own right.
They have recently come to occupy a central role in the solution of several impor-
tant and long-standing problems in quantum information theory. Kempe, Kitaev,
and Regev [81] introduced these powerful tools to show that finding the ground
state of a 2-local system (i.e., a system with at most two-body interactions) is in the
same complexity class QMA as finding the ground-state energy of a system with
k-local interactions. This was done by introducing a gadget that reduced 3-local to
2-local interactions. Oliveira and Terhal [76] exploited the use of gadgets to ma-
nipulate Hamiltonians acting on a 2D lattice. The work in [76,81] was instrumental
in finding simple spin models with a QMA-complete ground-state energy problem
[78]. Aside from complexity theory, Hamiltonian gadget constructions have im-
portant application in the area of adiabatic quantum computation [76,77,81]. The
application of gadgets extends well beyond the scope mentioned here.

V. TOPOLOGICAL QUANTUM COMPUTING

Topological quantum computation seeks to exploit the emergent properties of
many-particle systems to encode and manipulate quantum information in a man-
ner that is resistant to error. This scheme of quantum computing supports the gate
model of quantum computation. Quantum information is stored in states with mul-
tiple quasi particles called anyons, which have a topological degeneracy and are
defined in the next section. The unitary gate operations that are necessary for quan-
tum computation are carried out by performing braiding operation on the anyons
and then measuring the multiquasipartite states. The fault tolerance of a topologi-
cal quantum computer arises from the nonlocal encoding of the quasipartite states,
which render them immune to errors by local perturbations.

A. Anyons

Two-dimensional systems are qualitatively different [82] from three-dimensional
ones. In three-dimensional space, only two symmetries are possible: the time-
dependent wave function of bosons is symmetric under exchange of particles while
that of fermions is antisymmetric. However, in a two-dimensional case when two
particles are interchanged twice in a clockwise manner, their trajectory in space-
time involves a nontrivial winding, and the system does not necessarily come back
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to the same state. The first realization of this topological difference dates back to
the 1980s [83,84] and it leads to a difference in the possible quantum mechanical
properties for quantum systems when particles are confined to two dimensions.
Suppose we have two identical particles in two dimensions. When one particle
is exchanged in a counterclockwise manner with the other, the wave function
ψ(�r1, �r2) can change by an arbitrary phase: ψ(�r1, �r2) → eiφψ(�r1, �r2). The special
cases where φ = 0, π correspond to bosons and fermions, respectively. Particles
with other values of φ are called anyons [85].

B. Non-Abelian Braid Groups

In three-dimensional space, suppose we have N indistinguishable particles and we
consider all possible trajectories in the space-time (or four-dimensional worldli-
ness), which take these N particles from initial positions �r1, �r2, . . . , �rN at time t0
to final positions �r′

1, �r′
2, . . . , �r′

N at time tf . Then the different trajectories fall into
topological classes corresponding to the elements of the permutation group SN ,
with each element specifying how the initial positions are permuted to obtain the
final positions. The way the permutation group acts on the states of the system
defines the quantum evolution of such a system. Fermions and bosons correspond
to the only two one-dimensional irreducible representations of the permutation
group of N identical particles.

In two-dimensional space, the topological classes of the trajectories that take
these particles from initial positions �r1, �r2, . . . , �rN at time t0 to final positions
�r′

1, �r′
2, . . . , �r′

N at time tf are in one-to-one correspondence with the elements of
the braid group BN . An element of the braid group can be visualized by consider-
ing the trajectories of particles as world lines in (2 + 1)-dimensional space-time
originating at initial positions and terminating at final positions (Fig. 7a). The
multiplication of two elements of the braid group is the successive execution of
the corresponding trajectories (i.e., the vertical stacking of the two drawings). As
shown in Fig. 7b, the order in which they are multiplied is important because
the group is non-abelian, which means multiplication is not commutative. Alge-
braically, the braid group can be represented in terms of elementary braid oper-
ations, or generators σi, with 1 ≤ i ≤ N − 1. σi is a counterclockwise exchange
of the ith and (i + 1)th particles. σ−1

i is therefore a clockwise exchange of the ith
and the (i + 1)th particles. The σi’s satisfy the defining relations (Fig. 7c)

σiσj = σjσi if |i − j| ≥ 2

σiσi+1σi = σi+1σiσi+1 if 1 ≤ i ≤ n − 1
(12)

The richness of the braid group is that it supports quantum computation. To
define the quantum evolution of a system, we specify how the braid group acts on
the states of the system. An element of the braid group, say σ1, which exchanges
particles 1 and 2, is represented by a g × g unitary matrix ρ(σ1) acting on these
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Figure 7. Graphical representation of elements of the braid group. (a) The two elementary braid
operations σ1 and σ2 on three particles. (b) Because σ2σ1 /= σ1σ2, the braid group is non-abelian.
(c) The braid relation.

states,

ψα → [ρ(σ1)]αβψβ (13)

Clearly, if ρ(σ1) and ρ(σ2) do not commute, the particles obey non-abelian
braiding statistics. In this case, braiding quasiparticles will cause nontrivial ro-
tations within the degenerate many-quasiparticle Hilbert space. Furthermore, it
will essentially be true at low energies that the only way to make nontrivial uni-
tary operations on this degenerate space is by braiding quasiparticles around each
other. Hence, no local perturbation can have nonzero matrix elements within this
degenerate space.

C. Topological Phase of Matter

The non-abelian braiding statistics discussed in Section V.B indicates a theoretical
possibility, but not any information on the occasions where such braiding statistics
may arise in nature. Electrons, photons, and atoms are either fermions or bosons
in two-dimensional space. However, if a system of many electrons (or bosons,
atoms, etc.) confined to a two-dimensional plane has excitations that are localized
disturbances of its quantum mechanical ground state, known as quasiparticles,
then these quasiparticles can be anyons. When a system has anyonic quasiparticle
excitations above its ground state, it is in a topological phase of matter.
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Topological quantum computation is predicated on the existence in nature of
topological phases of matter. Topological phases can be defined as (i) degenerate
ground states, (ii) gap to local excitations, (iii) abelian or non-abelian quasiparti-
cle excitations. Because these topological phases occur in many-particle physical
systems, field theory techniques are often used to study these states. Hence, the
definition of topological phase may be stated more compactly by simply saying
that a system is in a topological phase if its low-energy effective field theory is a
topological quantum field theory (TQFT), that is, a field theory whose correlation
functions are invariant under diffeomorphisms. For a more detailed account of
recent development in TQFT and topological materials, see the work of Vala and
coworkers (see chapter by Watts et al.).

D. Quantum Computation Using Anyons

The braiding operation ρ(σi) defined in Eq. (13) can be cascaded to perform quan-
tum gate operation. For example, Georgiev [86] showed that a CNOT gate can be
executed on a six-quasiparticle system (for details refer to Ref. [86] or a compre-
hensive review in Ref. [87]):

ρ(σ−1
3 σ4σ3σ1σ5σ4σ

−1
3 ) =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎠ (14)

In the construction by Georgiev, quasiparticles 1 and 2 are combined to be qubit
1 via an operation called fusion. Similarly, quasiparticles 5 and 6 are combined to
be qubit 2. We will not be concerned about the details of fusion in this introduction.
Interested readers can refer to Ref. [87], Section II for more information. Apart
from CNOT, single-qubit gates are also needed for universal quantum computation.
One way to implement those single-qubit gates is to use nontopological operations.
More details on this topic can be found in Ref. [88].

VI. ENTANGLEMENT

The concept of entanglement can be defined based on a postulate of quantum
mechanics. The postulate states that the state space of a composite physical system
is the tensor product of the states of the component physical systems. Moreover,
if we have systems numbered 1 through n, and the system number i is prepared
in the state |ψi〉, then the joint state of the total system is |ψ〉 = |ψ1〉 ⊗ |ψ2〉
⊗ . . . ⊗ |ψn〉. However, in some cases |ψ〉 cannot be written in the form of a
tensor product of states of individual component systems. For example, the well-
known Bell state or EPR pair (named after Einstein, Podolsky, and Rosen for their
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initial proposition of this state [89]) |ψ〉 = 1√
2

(|00〉 + |11〉) cannot be written in
form of |a〉 ⊗ |b〉. States such as this are called entangled states. The opposite case
is a disentangled state.

In fact, entanglement in a state is a physical property that should be quanti-
fied mathematically, which leads to a question of defining a proper expression
for calculating entanglement. Various definitions have been proposed to mathe-
matically quantify entanglement (for a detailed review see Refs. [5,90]). One of
the most commonly used measurement for pairwise entanglement is concurrence

C(ρ), where ρ is the density matrix of the state. This definition was proposed by
Wootters [91]. The procedure for calculating concurrence is the following (for
more examples illustrating how to calculate concurrence in detail, refer to Refs.
[5,92,93]):

• Construct the density matrix ρ.
• Construct the flipped density matrix, ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy).
• Construct the product matrix ρρ̃.
• Find eigenvalues λ1, λ2, λ3, and λ4 of ρρ̃.
• Calculate concurrence from square roots of eigenvalues via

C = max
(
0,

√
λ1 − √

λ2 − √
λ3 − √

λ4
)

(15)

Physically, C = 0 means no entanglement in the two-qubit state ρ and C = 1
represents maximum entanglement. Therefore, any state ρ with C(ρ) > 0 is an
entangled state. An entangled state has many surprising properties. For example,
if one measures the first qubit of the EPR pair, two possible results are obtained:
0 with probability 1/2, where postmeasurement the state becomes |00〉, and 1
with probability 1/2, where postmeasurement the state becomes |11〉. Hence, a
measurement of the second qubit always gives the same result as that of the first
qubit. The measurement outcomes on the two qubits are therefore correlated in
some sense. After the initial proposition by EPR, John Bell [94] proved that the
measurement correlation in the EPR pair is stronger than could ever exist between
classical systems. These results (refer to Ref. [12], Section 2.6 for details) were
the first indication that laws of quantum mechanics support computation beyond
what is possible in the classical world.

Entanglement has also been used to measure interaction and correlation in
quantum systems. In quantum chemistry, the correlation energy is defined as the
difference between the Hartree–Fock limit energy and the exact solution of the
nonrelativistic Schrödinger equation. Other measures of electron correlation exist,
such as the statistical correlation coefficients [95] and, more recently, the Shannon
entropy [96]. Electron correlations strongly influence many atomic, molecular, and
solid properties. Recovering the correlation energy for large systems remains one



26 SABRE KAIS

of the most challenging problems in quantum chemistry. We have used the entan-
glement as a measure of the electron–electron correlation [5,92,93] and show that
the configuration interaction (CI) wave function violates the Bell inequality [97].
Entanglement is directly observable via macroscopic observable called entangle-
ment witnesses [98]. Of particular interest is how entanglement plays a role in
conical intersections and Landau–Zener tunneling and whether ideas from quan-
tum information such as teleportation can be used to understand spin correlations
in molecules [99].

Since the original proposal by DeMille [100], arrays of ultracold polar
molecules have been counted among the most promising platforms for the im-
plementation of a quantum computer [101–103]. The qubit of such an array is
realized by a single dipolar molecule entangled via its dipole–dipole interaction
with the rest of the array’s molecules. Polar molecule arrays appear as scalable to a
large number of qubits as neutral atom arrays do, but the dipole–dipole interaction
furnished by polar molecules offers a faster entanglement, one resembling that
mediated by the Coulomb interaction for ions. At the same time, cold and trapped
polar molecules exhibit similar coherence times as those encountered for trapped
atoms or ions. The first proposed complete scheme for quantum computing with
polar molecules was based on an ensemble of ultracold polar molecules trapped in
a one-dimensional optical lattice, combined with an inhomogeneous electrostatic
field. Such qubits are individually addressable, thanks to the Stark effect, which is
different for each qubit in the inhomogeneous electric field. In collaboration with
Wei, Friedrich, and Herschbach [93], we have evaluated entanglement of the pen-
dular qubit states for two linear dipoles, characterized by pairwise concurrence, as
a function of the molecular dipole moment and rotational constant, strengths of the
external field and the dipole–dipole coupling, and ambient temperature. We also
evaluated a key frequency shift, δω, produced by the dipole–dipole interaction.
Under conditions envisioned for the proposed quantum computers, both the con-
currence and δω become very small for the ground eigenstate. In principle, such
weak entanglement can be sufficient for operation of logic gates, provided the res-
olution is high enough to detect the δω shift unambiguously. In practice, however,
for many candidate polar molecules it appears a challenging task to attain adequate
resolution. Overcoming this challenge, small δω shift, will be a major contribution
to implementation of the DeMille proposal. Moreover, it will open the door for
designing quantum logical gate: one-qubit gate (such as the rotational X, Y, Z
gates and the Hadamard gate) and two-qubit quantum gates (such as the CNOT
gate) for molecular dipole arrays. The operation of a quantum gate [104] such as
CNOT requires that manipulation of one qubit (target) depends on the state of an-
other qubit (control). This might be characterized by the shift in the frequency for
transition between the target qubit states when the control qubit state is changed.
The shift must be kept smaller than the differences required to distinguish among
addresses of qubit sites. In order to implement the requisite quantum gates, one
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might use algorithmic schemes of quantum control theory for molecular quantum
gates developed by de Vivie-Riedle and coworkers [105–107], Herschel Rabitz,
and others [108–112].

Recent experimental discoveries in various phenomena have provided further
evidence of the existence of entanglement in nature. For example, photosynthesis
is one of the most common phenomena in nature. Recent experimental results show
that long-lived quantum entanglement are present in various photosynthetic com-
plexes [113–115]. One such protein complex, the Fenna–Matthews–Olson (FMO)
complex from green sulfur bacteria [116,117], has attracted considerable exper-
imental and theoretical attention due to its intermediate role in energy transport.
The FMO complex plays the role of a molecular wire, transferring the excita-
tion energy from the light-harvesting complex (LHC) to the reaction center (RC)
[118–120]. Long-lasting quantum beating over a timescale of hundreds of fem-
toseconds has been observed [121,122]. The theoretical framework for modeling
this phenomenon has also been explored intensively by many authors [123–145].

The FMO complex, considered as an assembly of seven chromophores, is a
multipartite quantum system. As such, useful information about quantum correla-
tions is obtained by computing the bipartite entanglement across any of the cuts
that divide the seven chromophores into two subsystems, seen in Fig. 8. Similarly,
if we take the state of any subsystem of the FMO complex, we can compute the
entanglement across any cut of the reduced state of that subsystem [128].

Figure 8. The quantum entanglement evolution for the pairwise entanglement in the FMO
complex with the site 1 initially excited. The left panel shows the entanglement with all pairs. Based
the amplitude of the concurrence, all pairs had been divided into four groups, from the largest pairs
(a) to the smallest pairs (d). The solid line indicates the entanglement computed via the convex roof
approach [147], while the dotted line shows the evolution calculated through the concurrence method.
The right panel is the geometry structure of the FMO complex.
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Pairwise entanglement plays the dominant entanglement role in the FMO com-
plex. Because of the saturation of the monogamy bounds, the entanglement of any
chromophore with any subset of the other chromophores is completely determined
by the set of pairwise entanglements. For the simulations in which site 1 is initially
excited, the dominant pair is sites 1 and 2, while in the cases where 6 is initially ex-
cited sites 5 and 6 are most entangled. This indicates that entanglement is dominant
in the early stages of exciton transport, when the exciton is initially delocalized
away from the injection site. In addition, we observe that the entanglement mainly
happens among the sites involved in the pathway. For the site 1 initially excited
case, the entanglement of sites 5, 6, and 7 is relatively small compared with the
domain pairs.

Although the final state is the same for both initial conditions, the role of sites
3 and 4 during the time evolution is different. For the initial condition where site
1 is excited, the entanglement is transferred to site 3 and then from site 3 to site
4. While for the site 6 initially excited case, sites 4 and 5 first become entangled
with site 6 and then sites 3 and 4 become entangled. This is due to the fact that site
3 has strong coupling with sites 1 and 2, while site 4 is coupled more strongly to
sites 5, 6, and 7. The initial condition plays an important role in the entanglement
evolution, the entanglement decays faster for the cases where site 6 is initially
excited compared with cases where the site 1 is initially excited. Increasing the
temperature unsurprisingly reduces the amplitude of the entanglement and also
decreases the time for the system to go to thermal equilibrium. Recently [146],
using the same formalism, we have calculated the pairwise entanglement for the
LH2 complex, as seen in Fig. 9.

Apart from photosynthesis, other intriguing possibilities that living systems
may use nontrivial quantum effects to optimize some tasks have been raised,
such as natural selection [148] and magnetoreception in birds [149]. In particular,
magnetoreception refers to the ability to sense characteristics of the surrounding
magnetic field. There are several mechanisms by which this sense may operate
[150]. In certain species, the evidence supports a mechanism called radical pair

(RP). This process involves the quantum evolution of a spatially separated pair of
electron spins [151,152]. The basic idea of the RP model is that there are molecular
structures in the bird’s eye that can each absorb an optical photon and give rise to a
spatially separated electron pair in a singlet spin state. Because of the different local
environments of the two electron spins, a singlet–triplet evolution occurs. This evo-
lution depends on the inclination of the molecule with respect to Earth’s magnetic
field. Recombination occurs from either the singlet or triplet state, leading to differ-
ent chemical products. The concentration of these products constitutes a chemical
signal correlated to Earth’s field orientation. Such a model is supported by several
results from the field of spin chemistry [153–156]. An artificial chemical compass
operating according to this principle has been demonstrated experimentally [157],
and the presence of entanglement has been examined by a theoretical study [158].
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Not only is entanglement found in nature, but it also plays a central role in
the internal working of a quantum computer. Consider a system of two qubits 1
and 2. Initially, qubit 1 is in the state |ψ1〉 = |+〉 = 1√

2
(|0〉 + |1〉) and qubit 2 is

in the state |ψ2〉 = |0〉. Hence, the initial state of the system can be written as
|�0〉 = |ψ1〉 ⊗ |ψ2〉 = 1√

2
(|00〉 + |10〉). Now apply a CNOT on qubits 1 and 2

with qubit 1 as the control and qubit 2 as the target. By definition of CNOT gate in
Section I.A, the resulting state is 1√

2
(|00〉 + |11〉), which is the EPR pair. Note that

the two qubits are initially disentangled. It is due to the CNOT operation that the
two qubits are in an entangled state. Mathematically UCNOT cannot be represented
as A ⊗ B, because if it could, (A ⊗ B)(|ψ1〉 ⊗ |ψ2〉) = (A|ψ1〉 ⊗ B|ψ2〉) would
still yield a disentangled state.

CNOT gate is indispensable for any set of universal quantum gates. Therefore,
if a particular computation process involves n qubits that are initially disentangled,
most likely all the n qubits need to be entangled at some point of the computation.
This poses a great challenge for experimentalists because in order to keep a large
number of qubits entangled for an extended period of time, a major issue needs to
be resolved—decoherence.

VII. DECOHERENCE

So far in our discussion of qubits, gates, and algorithms we assume the ideal
situation where the quantum computer is perfectly isolated when performing com-
putation. However, in reality this is not feasible because there is always interaction
between the quantum computer and its environment, and if one would like to read
any information from the final state of the quantum computer, the system has to be
open to measurements at least at that point. Therefore, a quantum computer is in
fact constantly subject to environmental noise, which corrupts its desired evolution.
Such unwanted interaction between the quantum computer and its environment is
called decoherence, or quantum noise.

Decoherence has been a main obstacle to building a quantum computing device.
Over the years, various ways of suppressing quantum decoherence have been
explored [159]. The three main error correction strategies for counteracting the
errors induced by the coupling with the environment include the following (see
chapter by Lidar):

• Quantum error correction codes (QECCs), which uses redundancy and an
active measurement and recovery scheme to correct errors that occur during
a computation [160–164]

• Decoherence-free subspaces (DFSs) and noiseless subsystems, which rely
on symmetric system–bath interactions to end encodings that are immune to
decoherence effects [165–170]
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• Dynamical decoupling, or “bang-bang” (BB) operations, which are strong
and fast pulses that suppress errors by averaging them away [171–175]

Of these error correction techniques, QECCs require at least a five physical
qubit to one logical qubit encoding [163] (neglecting ancillas required for fault-
tolerant recovery) in order to correct a general single-qubit error [162]. DFSs also
require extra qubits and are most effective for collective errors, or errors where
multiple qubits are coupled to the same bath mode [170]. The minimal encoding
for a single qubit undergoing collective decoherence is three physical qubits to
one logical qubit [168]. The BB control method requires a complete set of pulses
to be implemented within the correlation time of the bath [171]. However, it does
not necessarily require extra qubits.

Although the ambitious technological quest for a quantum computer has faced
various challenges, as of now no fundamental physical principle has been found
to prevent a scalable quantum computer from being built. Therefore, if we keep
this prospect, one day we will be able to maintain entanglement and overcome
decoherence to a degree such that scalable quantum computers become reality.

VIII. MAJOR CHALLENGES AND OPPORTUNITIES

Many of the researchers in the quantum information field have recognized quan-
tum chemistry as one of the early applications of quantum computing devices. This
recognition is reflected in the document “A Federal Vision for Quantum Informa-
tion Science,” published by the Office of Science and Technology Policy (OSTP) of
the White House. As mentioned earlier, the development and use of quantum com-
puters for chemical applications has potential for revolutionary impact on the way
computing is done in the future. Major challenges and opportunities are abundant;
examples include developing and implementing quantum algorithms for solving
chemical problems thought to be intractable for classical computers. To perform
such quantum calculations, it will be necessary to overcome many challenges in
experimental quantum simulation. New methods to suppress errors due to faulty
controls and noisy environments will be required. These new techniques would
become part of a quantum compiler that translates complex chemical problems into
quantum algorithms. Other challenges include the role of quantum entanglement,
coherence, and superposition in photosynthesis and complex chemical reactions.

Many exciting opportunities for science and innovation can be found in this
new area of quantum information for chemistry including topological quantum
computing (see chapter by Watts et al.), improving classical quantum chemistry
methods (see chapter by Kinder et al.), quantum error corrections (see chapter
by Lidar), quantum annealing with D-Wave machine [176], quantum algorithms
for solving linear systems of equations, and entanglement in complex biological
systems (see chapter by Mazziotti and Skochdopole). With its 128 qubits, the
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D-Wave computer at USC (the DW-1) is the largest quantum information processor
built to date. This computer will grow to 512 qubits (the chip currently being
calibrated and tested by D-Wave Inc. (D. A. Lidar, private communication, USC,
2012)), at which point we may be on the cusp of demonstrating, for the first time
in history, a quantum speedup over classical computation. Various applications
of DW-1 in chemistry include, for example, the applications in cheminformatics
(both in solar materials and in drug design) and in lattice protein folding, and the
solution of the Poisson equation and its applications in several fields. While the
DW-1 is not a universal quantum computer, it is designed to solve an important
and broad class of optimization problems—essentially any problem that can be
mapped to the NP-hard problem of finding the ground state of a general planar
Ising model in a magnetic field.

This chapter focused mainly on the theoretical aspects of quantum information
and computation for quantum chemistry and represents a partial overview of the
ongoing research in this field. However, a number of experimental groups are
working to explore quantum information and computation in chemistry: using ion
trap (see chapter by Merrill and Brown) [177], NMR (see chapter by Criger et
al.) [178–182], trapped molecules in optical lattice (see chapter by Côté) [183],
molecular states (see chapter by Gollub et al.) [184,185], and optical quantum
computing platforms (see chapter by Ma et al.) [186,187], to name just a few. For
example, Brown and coworkers [177] proposed a method for laser cooling of the
AlH+ and BH molecules. One challenge of laser cooling molecules is the accurate
determination of spectral lines to 10−5 cm−1. In their work, the authors show
that the lines can be accurately determined using quantum logic spectroscopy and
sympathetic heating spectroscopy techniques, which were derived from quantum
information experiments. Also, Dorner and coworkers [188] perform the simplest
double-slit experiment to understand the role of interference and entanglement in
the double photoionization of H2 molecule. Moreover, many more areas of overlap
have not been reviewed in detail here, notably coherent quantum control of atoms
and molecules. However, we hope this chapter provides a useful introduction to the
current research directions in quantum information and computation for chemistry.

Finally, I would like to end this chapter by quoting Jonathan Dowling [189]:
“We are currently in the midst of a second quantum revolution. The first one gave
us new rules that govern physical reality. The second one will take these rules and
use them to develop new technologies. Today there is a large ongoing international
effort to build a quantum computer in a wide range of different physical systems.
Suppose we build one, can chemistry benefit from such a computer? The answer
is a resounding YES!”
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