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Electronic Isomerism: Symmetry Breaking and
Electronic Phase Diagrams for Diatomic
Molecules at the Large-Dimension Limit
Qicun Shi,[b] Sabre Kais,[a, b] Françoise Remacle,[a, c] and Raphael D. Levine*[a]

We present symmetry-breaking and electronic-structure phase
diagrams for two-center molecules with one and two electrons in
the limit of a space of large dimensions. For one electron, the phase
diagram in the internuclear distance ± nuclear charge (R ± Z) plane
has two different stable phases. One corresponds to the electron
equidistant from the two nuclei ; the other where the electron is
localized on one of the nuclei. The phase diagram for two electrons
with two equally charged centers shows three different stable
phases corresponding to different electronic-structure configura-
tions. This phase diagram is characterized by a bicritical point.
When the charges are unequal, the phase diagram shows only two
stable phases, covalent and ionic. This phase diagram is charac-

terized by a tricritical point, where the first-order transition line
meets with the second-order transition line. The role of the inter-
electron Coulombic repulsion in giving rise to different electronic
structures and the distinction between a continuous deformation
of one structure into another versus a discontinuous, so-called first-
order, transition, where two isomers can coexist, are emphasized.
The connection to the spectroscopic notion of intersecting
potential energy curves is discussed.
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Introduction

Polyatomic molecules in their ground electronic state can have
more than one stable configuration (isomer). An example of two
isomers are cyclohexadiene and hexatriene, where the ring is
open or closed, Figure 1. Typically, the different isomers are
obtained by varying the interatomic distances (directly or
indirectly; see ref. [1] for the details of an indirect route for the
isomerization as shown in Figure 1). In the Born ± Oppenheimer

Figure 1. An experimentally realizable[1] scheme for electrocyclic ring opening in
cyclohexadiene.[27] The indirect route, through two conical intersections, allows
one minimum on the ground potential energy surface to be reached from
another. gd and gd* refer to the ground electronic states of the two isomers,
ae and re refer to two excited states.

approximation[2, 3] these distances are treated as parameters of
the electronic Hamiltonian. Changing the parameters changes
the Hamiltonian, and more than one electronic conformation is
therefore potentially possible. We have recently discussed the
options for more subtle tunings of the electronic Hamiltonian by
using quantum dots and discussed the rather rich phase diagram
of isomers that is thereby made possible.[4]

Our work on quantum dots suggests that the different isomers
correspond to different distributions of electronic charge over
the nuclear framework. In particular, the quantum phase
transition that we believe has been seen experimentally[5]

corresponds to a transition from a localized to a delocalized
distribution of charge. We have pointed out that such a
transition can be discerned even in a diatomic molecule. But,
in an ordinary diatomic molecule, this transition is not sharp.
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Technically, a measure of the uneven charge distribution is the
ratio of the ªcharge ordersº[2] of the two atoms. In a two-state
problem, it is given as C2/C1� tan(q), where the angle q is
defined in terms of the energy difference DE between the two
centers and their coupling V by DE/V� cot(2q), as shown in
Figure 2. The rapid variation is quite evident, but unless one has
the benefit of familiarity with the more general case, it would not
be persuasive to call it a ªtransitionº. So, we searched for an
alternative way to discuss the possible quantum phase space,
with special reference to the effect of variations in the two-site
energies. (By ªsite energyº we mean the energy of the electron
when it is on one center and the other center is considered far
away.)

Figure 2. The division of the total electronic charge (one unit) between two
centers which differ in their site energies by DE as a function of DE (scaled by the
coupling V between the two centers), DE/V� cot(2q) with C2/C1� tan(q). The
Figure is computed for the ground state. For the excited state, the picture is
reversed and can be visualized by reflecting this Figure along the DE� 0 vertical
and then along the tan(q)� 0 horizontal axes. In the following, we will vary the
site energies by varying the nuclear charge.

Dimensional scaling[6] does seem to offer the required tool. In
this approach, the dimension D of the space available for the
motion of the electron is increased above the physical value, D�
3. As has been often discussed, in the large-dimension limit, the
method recovers the Lewis picture of the chemical bond with
electrons localized in the bonding region.[7] Moreover, the first
correction of order 1/D is equivalent to Langmuir's picture of
electrons harmonically oscillating about their equilibrium posi-
tion.

We supplement the large-D analysis by the technical notion of
a quantum phase transition.[8] For the moment, we carry the
analysis for the electronic ground state (namely at the limit of
temperature approaching zero) so that the problem reduces to
the determination of the singularities of the energy (rather than
of the free energy). The combination of a large-D limit and an
analysis of the singularities in the phase plane has been
previously applied to homonuclear diatomic molecules,[9] and
we also refer to ref. [10] for a more general review.

One might question if the large-D limit is sufficient for
a discussion of electronic isomerism because one expects

that rearrangement of the charge distribution is driven
by a competition between the kinetic and potential energy
terms with the kinetic energy favoring delocalization. As is
known, and as will be shown below, the simplicity of
the large-D limit is afforded because the electron behaves
as if it has a mass which scales as D and therefore
only the electrostatic terms of the Hamiltonian survive
in the large-D limit. This is almost but not quite correct.
It will be shown that the rotational part of the kinetic
energy does remain in the large-D limit and that it suffices to
recover the expected transition from the localized to delocalized
states.

In this Article, we only point out the connection between the
quantum phase transitions that we identify and the quantum-
chemical notion of curve crossing.[11, 12] Specifically, we comment
that what is known as a ªsecond-orderº phase transition, when
present for two electronic configurations, has a molecular analog
in the Renner ± Teller intersection.[11±14] This is a continuous
transition where the energies diverge quadratically from their
intersection. The ªfirst-orderº phase transition has as its molec-
ular analog the Jahn ± Teller intersection, also known nowadays
as a conical intersection, where the energies diverge linearly[15]

from the point of the intersection. We draw attention to these
analogies early because we discuss phase transitions in a
diatomic molecule. The very familiar noncrossing rule[16±18]

seems, at first sight, to disallow such intersections. Here, we
only point out that we are not in conflict with the usual proofs of
the rule because these specifically depend on only one
parameter being varied. As soon as more than one parameter
is considered, intersections are possible.[15] An Appendix pro-
vides the technical backing of this point for our problem. We are
aware that there is a rich literature dealing with the validity of
the noncrossing rule in diatomic molecules (see, for example,
refs. [19, 20]). We only note that the usual proofs do not apply to
our case because we allow more than one parameter to vary. It is
in this context that the notion of ªdesigner atomsº,[4] where one
can tune the parameters of the Hamiltonian, becomes partic-
ularly relevant.

There were three parameters in the study[4, 21] of electronic
isomerism for assemblies of quantum dots. We discuss here the
correspondence between these and the parameters of the
Hamiltonian when it is written in terms of Coulombic forces
between electrons and nuclei. We do so for the special case of a
two-center, one or two electron, molecule that will be analyzed
in detail later. The first parameter governs the magnitude of
the ionization potential of a single center. We here take the
charge Z on the nucleus as the corresponding parameter.
Since each isolated center has one electron, the Bohr formula
tells us that the ionization potential scales as Z. The second
parameter is the magnitude of the Coulombic repulsion
between two electrons. This repulsion will here be treated
exactly. The third parameter is the electronic coupling between
the two centers. This parameter was varied by varying the
distance R between the centers. Herein, we do the same. The
electrostatic attraction of an electron to the ªotherº center is
written explicitly and so it is a function of the separation
between the two centers.
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The Large-D Hamiltonian for Two Coulomb
Centers with Charges Za and Zb

We treat the case of one and two electrons in the field of two
Coulomb centers of charges Za and Zb at the large-dimensional
limit.[6] The Born ± Oppenheimer approximation is used to
separate the electronic and nuclear motion, so that the
electronic energy ED(R) becomes parametrically dependent upon
the internuclear distance R. The Hamiltonian is specified using D-
dimensional cylindrical coordinates (1, z), so that the nuclei a
and b are located on the z-axis at ÿR/2 and R/2 with charges Za

and Zb, respectively. Electrons 1 and 2 are located at (11, z1) and
(12 , z2), with a dihedral angle f specifying their relative
azimuthal orientation about the molecular axis. The D-dimen-
sional electronic Schrödinger equation in atomic units is
given by Equation (1),[9] where l2

Dÿ2 is the D-dimensional
generalized orbital angular-momentum operator and V�
V(11,12 ,z1,z2 ,f,Za,Zb) is the potential energy of the electron ± nu-
cleus and electron ± electron interactions.�
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An effective Hamiltonian at the large-D limit can be obtained
by analogy to the introduction of a radial Hamiltonian in the
ordinary, D�3, case. It is convenient to scale all coordinates by a
factor with quadratic dependence on dimension. The scaling
factor is chosen to give finite energies in the limit D!1 , while
reducing to unity at D� 3.[6] We obtain, in units of 1/k2 (k�
(Dÿ1)/2) Hartree for energy and k2 Bohr radii for distances, the
following effective large-D two electron Hamiltonian, Equa-
tion (2).

h1 � h1�h2�
1

r12

(2)

Here, h i (i�1, 2) is the one-electron molecular Hamiltonian,
Equation (3), and r12 is given by Equation (4).
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The following points concerning the form of the effective
Hamiltonian in the D!1 limit are worthy of special note. First,
for the case of only one electron. The full Hamiltonian is then
given by Equation (3). This effective one-electron Hamiltonian
has only the centrifugal energy term as the remnant of the
kinetic energy. Otherwise, the only other term in the Hamiltonian
is the Coulomb attraction to the two centers. Therefore,
evaluating the ground-state electronic energy for D!1
reduces to determining the minimum of a function. Already
here, we note that in Equation (3) the kinetic and potential
energy terms act in opposite directions: Lowering the kinetic
energy favors delocalizing the electron while the potential

energy terms favor the electron being near to one of the two
centers. For two electrons, the Hamiltonian is the sum of two
one-electron terms plus the Coulomb repulsion between the
two electrons. That the interelectron repulsion is retained at its
full value is important to us because, as we already empha-
sized,[4] this repulsion adds many new features to the phase
diagram. We shall indeed verify this expectation below.

In the Hartree ± Fock approximation, we set the dihedral angle
f at 908.[22] This is done because the Hartree ± Fock wave-
function, constructed as a product of one-electron orbitals, lacks
any explicit dependence on the angle f. Hence, this angle enters
only in the Jacobian volume element, and so, in the large-D limit,
the angle is fixed at 908.[6] In reading those figures below which
show the configuration for two-electron systems, one should
keep in mind that the electrons are symmetrically located in two
perpendicular planes.

Generally, the Hamiltonian is conserved under rotation PÃ rot

around the zÃ-axis and under reflection PÃref . At Za�Zb there is an
additional symmetry of inversion PÃ inv about the origin z�0. For
the eigenfunction of the Hamiltonian we also require the
exchange of coordinates between the two electrons. In the case
of one-electron molecules, the operation of exchanging two
charges is equivalent to that of combining with PÃ inv and PÃrot or
PÃ ref .

For finding the minimum-energy structure and exploring the
symmetry breaking of the different electronic configurations, it is
convenient to introduce spherical coordinates.[23] The trans-
formation from cylindrical coordinates (1i, zi) to spherical
coordinates (li, mi) is simply given by Equations (5 ± 8).

li � rai� rbi (5)

mi � raiÿ rbi (6)

where

r2
ai � r2

i �
�

zi�
R

2

�
2

(7)

r2
bi � r2

i �
�

ziÿ
R

2

�
2

. (8)

We will specify the possible electronic isomers by the
coordinates 1 and z of the electrons.

For each specific symmetry, there exists a lowest-energy
electronic configuration of the Hamiltonian for a given Za, Zb, and
R. The scaling transformation to the above Equations shows that
the scaled energy depends on the ratio of the charges q�Za/Zb.
We calculate the energy by fixing q and varying both Za and R.
The lowest energy is the one which is the global minimum with
respect to the four variables l1, l2 , m1, and m2 in the Hartree ±
Fock approximation, where cosf�0. Hence any point in the
(R, Za) plane corresponds to a bound state and the whole plane
represents the whole bound space which may be composed of
specific regions.

To find the global energy minimum, we used the boundary
conditions of the spheroidal coordinates, R� li<1 and ÿR�
mi�R. We choose the initial values of li and mi for a lowest-



Electronic Isomerism ARTICLES

CHEMPHYSCHEM 2001, 2, 434 ± 442 437

energy configuration inside a rectangular mesh ÿR/g�mi�R/g
and gR�li�gR�R0 , with g� 1.001 and R0�5 (a.u.). The interval
of one side of the mesh is 2R/fg at f�20. If there is no negative
energy value found then we doubled R0 and f. This defined mesh
assists us in getting a good initial guess for the optimized
variables before using Powell's quadratically convergent meth-
od.[24] The intervals of R and Za are fixed at 0.001 (a.u.). The
criterion for 11�12 and z1� z2 was set in such a way that the
absolute deviation is smaller than 1� 10ÿ8 in quadruple-
precision calculations.

Phase Diagrams for One Electron in the Field of
Two Coulomb Centers

Figure 3 a shows the (R, Za) phase diagram of one electron in the
field of two equally charged centers, q�Za/Zb� 1. The phase
diagram exhibits two phases: one where the electron is localized
at z�0, the (1, 0) phase, and the other where the electron is

Figure 3. a) Phase diagram in the (R, Za) plane for one electron in the field of two
equally charged centers q�Za/Zb� 1 at the large-dimensional limit. b) The two
different phases (1, 0) and (1, z) are shown by plotting the corresponding
potential energy. The phase (1, 0) has a single minimum while the phase (1, z) is
characterized by a double minimum.

localized on one or the other nucleus with z=0, the (1, z) phase.
The phase (1, 0) is characterized by a single minimum in the
potential energy, as shown in Figure 3 b. The symmetry breaking,
which splits the single minimum in the united atom limit into a
double minimum in the separated atom limit, occurs along a
critical line, Za� (3

���
3
p

/4)/R. It is interesting to compare this
continuous transition to the behavior in the phase space of a
classical electron between two centers.[25] One sees a separatrix
bounding the region where the electron moves between the
two centers. Outside of this region, the electron is primarily on
either side. We have speculated[25] that these two regions
correspond to an electron moving ªthrough bondº and ªthrough
spaceº, respectively, using the terminology favored in electron-
transfer theory.

The D!1 phase transition from an ionic to a covalent
structure for one electron in the field of two centers of equal
charge is the extreme limit of the familiar situation[3] of the

changes in the charge distribution as one moves from separated
centers to the united-atom limit.

The transition from one phase to the other is a continuous
phase transition.[26] By this, we mean that as we move across the
phase plane the energies of the two isomers merge continuously
as we cross the boundary. For the two phases shown, the (1, z)
phase corresponds to ever smaller values of z until one
reaches the boundary line on which it becomes identical to
the (1, 0) phase. The transition is continuous for any Za, as shown
by an example in Figure 4. Such continuous changes in
the electronic structure as, say, the internuclear distance is
varied are familiar in many contexts and typically one does
not think of them as corresponding to different isomers. Below,
we shall identify first-order transitions where there is an abrupt
and discontinuous change. For a first-order transition, which we
will indicate by a dashed line, two different structures can
coexist.

Figure 4. The energy-merging points for one electron in the field of two equally
charged centers, q�Za/Zb� 1, for a) R� 1.30 and Zc

a� 1.00 and b) Za� 1.00 and
Rc� 1.30.

We have checked that the transition is continuous in two
directions (eÃR , 0) and (0, eÃZa

) for each point on the boundary line.
For example, in Figure 4 we show the energy merging points for
R�1.30 and for Za�1.00 at fixed q�1. As we already mentioned
in the Introduction, for a second-order phase transition one
expects the two energies to diverge quadratically as one moves
away from the boundary line. This is very evident in Figure 4.

For unequal charges, Za=Zb, on the two centers there is only
one phase which corresponds to the electron localized on the
higher charge center. This is to be contrasted with the familiar
D�3 case, Figure 2, which shows a more gradual shift of the
charge localization. In the D!1 limit, the ramp function shown
in Figure 2 becomes an outright step function. The electron is
either on the left or on the right side of the molecule, depending
on the sign of DE.

The one-electron case has served to verify that the D!1
limit does reproduce what we expect and we turn now to the far
richer case of two electrons, a case where the Coulombic
repulsion between the two electrons is explicitly present in the
effective Hamiltonian of Equation (2).
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Phase Diagrams for Two Electrons in the Field of
Two Coulombic Centers

For two electrons in the field of two equally charged centers, q�
1, a study of the eigenvalues of Hessian matrix reveals the
following:[9] There are three different electronic phases (1, 0;
1, 0), (1, z ; 1, ÿ z), and (11, 0; 12 , 0) as shown in Figure 5. The

Figure 5. The phase diagram in the (R, Za) plane for two electrons in the field of
two equally charged centers q�Za/Zb� 1 at the large-dimensional limit. The
continuous lines represent continuous phase transitions while the dashed line is a
first-order phase transition line. The electron-dot representations of the three
different stable phases are also shown.

phase (1, 0 ; 1, 0) corresponds to the symmetric electronic
structure configuration where the two electrons are located in
the symmetry plane z� 0 (z is defined by Equations (7) and (8)),
at equal distances 1 from the two nuclei. The phase (1, z ; 1, ÿ z)
has an nonsymmetric electronic configuration, the electrons are
not in the symmetry plane z�0 but occupy symmetric positions
with respect to this plane. Another different nonsymmetric
electronic configuration is (11, 0; 12 , 0). This phase corresponds
to both electrons in the symmetry plane z� 0 but with at
different distances from the molecular axis. The electron-dot
representation of the three different phases are also shown in
Figure 5.

Inspection of Figure 5 helps in interpreting the nature of the
three phases. Two of these, (1, 0; 1, 0), and (11, 0; 12 , 0) are in the
united-atom limit, R!0. That there are two structures in this
limit is the simplest illustration of the importance of the
Coulombic repulsion between the two electrons. When the
charge on the nucleus is high, it overcomes the repulsion and
the stable configuration is symmetric,(1, 0; 1, 0). But when the
charge is lowered the repulsion dominates, and it is more
favorable for the two electrons to occupy inequivalent locations.
As the two centers move apart, the covalent structure (1, z ; 1,
ÿ z) dominates. In this structure, the two electrons are sym-
metrically placed, such that ra1� rb2 and rb1� ra2 .

If the stability lines of two different phases are coincident,
then the phase transition is continuous. In such a case, one
structure continuously deforms into the other as one ap-
proaches the boundary line. But, if the stability lines are not
coincident, a coexistence phase appears, where two or more

structures correspond to local minima of the energy. A first-order
phase transition line is therefore defined as the line where the
global minimum is degenerate with two different phases having
the same energy. This is when we say that two, or more, isomers
are possible.

The results of examining the stability limits of the different
phases, are also shown in Figure 5. The solid boundary lines
separate the regions where the transition is continuous, and the
first-order transitions are indicated as dashed boundary lines.
Detailed numerical calculations show that there is a bicritical
point at (R, Za)� (1.00, 0.63). The bicritical point is the point
where the first-order transition line splits into two critical lines.

For the case of unequal charges q=1, such as HeH�-like
systems, the electronic phase diagram is completely different
from the case q�1. Figure 6 shows that there are only two
different phases: the covalent phase (11, z1; 12 , z2) and the ionic
phase (1, z ; 1, z). The solid line represents a continuous phase
transition while the dashed one represents a first-order phase
transition. The special point where the first-order line meets with
the continuous line has particular critical properties and is called
tricritical point. This point was calculated as the point where the
symmetric solution degenerates at (R, Za)� (1.36, 1.30).

Figure 6. The phase diagram in the (R, Za) plane for two electrons in the field of
two unequally charged centers, q�Za/Zb� 2, at the large-dimensional limit. The
continuous line represents a continuous phase transition while the dashed line is
a first-order phase transition line. The phase diagram is characterized by a
tricritical point. The electron-dot representations of the two different stable
phases are also shown.

Figure 7 shows the merging on the energy line corresponding
to the two different phases. This is characteristic of a continuous
phase transition, whereas Figure 8 shows the crossings of the
two energy lines as it should be in a first-order phase transition.
The phase diagram for q� 2 is typical for all systems of q=1. The
electronic phase diagrams as the parameter q varies between 1.6
and 4 are shown in Figure 9. For systems with q> 2 a crossover
phenomenum occurs ; there is a value of R for which the system
jumps from first-order phase transitions to continuous phase
transitions.

There are a number of interesting features in the phase
diagram for the case of two electrons. The most important one
for us is the first-order phase transition between the ionic and
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Figure 7. The energy-merging points for two electrons in the field of two
unequally charged centers, q�Za/Zb� 2, for a) Rc� 1.10 and Zc

a� 1.14 and
b) Za� 1.14 and Rc� 1.10.

Figure 8. The energy-intersection points for two electrons in the field of two
unequally charged centers, q�Za/Zb� 2, for a) Za� 1.45 and Rc� 1.97 and
b) R� 1.97 and Zc

a� 1.45.

covalent phases, which is possible when the charges on the two
centers are not the same. As can be seen from Figures 5 ± 9, the
transition is possible both when the internuclear distance R is
varied for fixed site energies or when the energies are varied at a
fixed distance.

Discussion

The motivation for this examination of the phase diagram of
two-electron systems was to explore the interplay of three
physical parameters, the difference in the energy of the two
sites, the strength of the electronic coupling between the two
sites, and the interelectronic Coulombic repulsion. For hydro-
genlike atoms the site energy scales as Z2. The fractional
difference in the energy of the two sites can therefore be
measured by qÿ 1, where q, as earlier defined, is the charge
imbalance. The interelectronic repulsion is here taken at its full,
unscreened value. We know that the binding energy of Hÿ is
about 0.75 eV. The charging energy[4, 21] of a hydrogen atom is
therefore high and so the strong repulsion is realistic. The third

Figure 9. The phase diagram in the (R, Za) plane for two electrons for different
values of q. The continuous line represents a continuous phase transition while
the dashed line is a first-order phase transition line. The phase diagram is
characterized by a tricritical point. The electron-dot representations of the two
different stable phases are also shown.

parameter is here realized as the Coulombic attraction of
electron 1 to nucleus b and of electron 2 to nucleus a. This surely
scales with the distance between the two sites. So the phase
diagram one ultimately would like to inspect is the one showing
qÿ1 versus either R or a decreasing function of R. The two
choices are dictated by different considerations. The parameter R
is a variable subject to experimental control. A decreasing
function of R is of more interest to theorists because the strength
of the electronic coupling between the two sites increases as R
decreases. The results are shown in Figures 10 and 11. In order to

Figure 10. The phase diagram in the (qÿ 1, exp[ÿR] ) plane for two electrons for
fixed value of Zb� 1. The continuous line represents a continuous phase transition
while the dashed line is a first-order phase transition line.

relate the Figures to what is plotted in other contexts, one
should first note that the ªorderedº regime, which corresponds
to the two charges being equal, q�1, is at the bottom of the
plot. Moving up the ordinate corresponds to increasing dissim-
ilarity of the two sites; the abscissa points in the direction of
weaker electronic coupling between them. As long as the two
sites are identical or nearly so, the covalent phase prevails,
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Figure 11. The phase diagram in the (qÿ 1, exp[ÿR]) plane for two electrons for
fixed value of Zb� 2.

provided that the coupling strength is high. As the coupling
strength is decreased there is a second-order (continuous) phase
transition to an ionic state. This is what is also found for D� 3.
The one apparent difference is that for D�3 and q� 1 the
transition will be to an ionic state with one electron on each site.
For higher values of q the covalent phase is invariably dominant.
In the range 0.51<q< 0.8 and strong coupling, there is a first-
order phase transition: As R decreases and the coupling
increases, the ionic localized state changes discontinuously into
a covalent phase. If the charges on the two centers are higher,
Figure 11, the first-order phase transition occurs even for lower
values of q.

Concluding Remarks

Scaling the dimension is, at first sight, a not very transparent
operation. But, as the extensive literature shows,[6] what it
effectively does is to increase the mass of the electron such that,
in the large-D limit, only the centrifugal part of the kinetic energy
remains. The electrons then settle into what is known as a Lewis
structure so that their configuration is easily seen. Using this
approach, we have discussed both discontinuous and continu-
ous changes in the arrangement of the electrons. We have
mapped these changes for a diatomic molecule, not only as
function of the internuclear distance but also in terms of the
Coulombic energies of attraction to the two centers. We also
paid special attention to the role of the electrostatic repulsion
between the electrons.

The discontinuous changes, called first-order phase transi-
tions, deserve a special comment. Along a boundary, shown as a
dashed line in Figures 6 and 9 ± 11, two distinct electronic states
have the same energy. This is what is known in spectroscopy as a
conical intersection and is usually taken to be not possible for a
diatomic molecule; the proof is by the ªnoncrossingº rule.
However, the conventional proof assumes that only one
molecular parameter is varies and that a two-state approxima-

tion (or, equivalently, a perturbation theory approximation) is
sufficient. There are refined proofs of the noncrossing rule (such
as ref. [20]). Our study, with more analytical details being given in
the Appendix, shows that such intersections are possible when
more than one parameter can be varied.

Appendix

In spheroidal coordinates (l, m), the general form of the
Hamiltonian at the large-dimension limit for two-electron
molecules with two charged centers Za and Zb takes the form
of Equation (9), where i labels the two electrons 1 and 2 and q�
Za/Zb is fixed, R is the distance between the two charged centers,
and r12 is the distance between the two electrons.
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i � q

 !

� 2 R

r12

(9)

Ground-state energy is the minimum of h , Equation (10).

E1�Za; R� � min
l1 ; m1 ; l2 ; m2

h (10)

This condition leads to four variational equations, Equa-
tions (11) and 12, with i, j�1, 2 and i=j.

@h

@li

� 4 li R2

�l2
i ÿ R2�2 �m2

i ÿ R2�

� 2 �2 li mi �1 ÿ q� � l2
i �1 � q� � m2

i �1 � q�� Za

�l2
i ÿ m2

i �2 q

� 2 R �mi mj lj ÿ li R2�
�r12�3

� 0

(11)

@h

@mi

� 4mi R2

�m2
i ÿ R2�2 �l2

i ÿ R2�

� 2 ��l2
i � m2

i � �q ÿ 1� ÿ 2 li mi �1 � q�� Za

�l2
i ÿ m2

i �2 q

� 2 R �li lj mj ÿ mi R2�
�r12�3

� 0

(12)

The stability condition: The minimum energy condition
Equation (10) implies that for a given solution of Equations (11)
and (12) all the eigenvalues of the 4�4 Hessian matrix must be
positive. The Hessian matrix of h is symmetrical and, as a
function of the four variables l1, m1, l2 , and m2 , there

are 4� 4 matrix elements of the form
@2h

@l2
i

,
@2h

@m2
i

,
@2h

@li@mi

, and

@2h

@li@mj

. The explicit expressions for these matrix elements are

given by Equations (13) ± (22).
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@2h

@l2
1

� 4 �3l2
1R2 � R4�

�l2
1 ÿ R2�3 �m2

1 � R2�

� R �12 �l2 m1 m2 ÿ l1 R2�2 ÿ 4 R2 �ÿ2 l1 l2 m1 m2 � �l2
1 � l2

2 � m2
1 � m2

2� R2 ÿ 2 R4��
2 �r12�5

ÿ 4 �ÿ3 l2
1m1 �qÿ 1� ÿ m3

1 �qÿ 1� � l3
1 �1� q� � 3 l1 m2

1 �1� q�� Za

�l2
1 ÿ m2

1�3 q

(13)

@2h

@l1 @m1

� ÿ8 l1 m1 R2

�l2
1 ÿ R2�2 �m2

1 ÿ R2�2

� 2 R �ÿ2 l2
1 l2 m2 R2 � l2 m2 R2 �l2

2 ÿ 2 m2
1 � m2

2 ÿ 2 R2� � l1 m1 �l2
2 m2

2 � 3 R4��
�r12�5

� 4 �ÿ�l3
1 �qÿ 1�� ÿ 3 l1 m2

1 �qÿ 1� � 3 l2
1 m1 �1� q� � m3

1 �1� q�� Za

�l2
1 ÿ m2

1�3 q

(14)

@2h

@l1 @l2

� 2 R �m1 m2 R2 �m2
1 � m2

2 ÿ 2 l2
1 ÿ 2 l2

2 ÿ 2 R2� � l1 l2 �m2
1 m2

2 � 3 R4��
�r12�5

(15)

@2h

@l1 @m2

� 2 R �l2 m1 R2 �l2
2 � m2

1 ÿ 2 l2
1 ÿ 2 m2

2 ÿ 2 R2� � l1 m2 �l2
2 m2

1 � 3 R4��
�r12�5

(16)

@2h

@m2
1

� 4 �3 m2
1 R2 � R4�

�m2
1 ÿ R2�3 �ÿl2

1 � R2�

� R �12 �l1 l2 m2 ÿ m1 R2�2 ÿ 4 R2 �ÿ2 l1 l2 m1 m2 � �l2
1 � l2

2 � m2
1 � m2

2� R2 ÿ 2 R4��
2 �r12�5

ÿ 4 �ÿ3 l2
1 m1 �qÿ 1� ÿ m3

1 �qÿ 1� � l3
1 �1� q� � 3 l1 m2

1 �1� q�� Za

�l2
1 ÿ m2

1�3 q

(17)

@2h

@m1 @l2

� 2 R �l2 m1 �l2
1 m2

2 � 3 R4� � l1 m2 R2 �l2
1 � m2

2 ÿ 2 l2
2 ÿ 2 m2

1 ÿ 2 R2��
�r12�5

(18)

@2h

@m1 @m2

� 2 R �m1 m2 �l2
1 l2

2 � 3 R4� � l1 l2 R2 �l2
1 � l2

2 ÿ 2 �m2
1 � m2

2 � R2���
�r12�5

(19)

@2h

@l2
2

� 4 �3 l2
2 R2 � R4�

�l2
2 ÿ R2�3 �ÿm2

2 � R2� �
4 R �3 �l1 m1 m2 ÿ l2 R2�2 ÿ R2 �r12�2�

2 �r12�5

ÿ 4 �ÿ3 l2
2 m2 �qÿ 1� ÿ m3

2 �qÿ 1� � l3
2 �1� q� � 3 l2 m2

2 �1� q�� Za

�l2
2 ÿ m2

2�3 q

(20)

@2h

@l2 @m2

� ÿ8 l2 m2 R2

�l2
2 ÿ R2�2 �m2

2 ÿ R2�2

� 2 R �l2 m2 �m2
1 l2

1 � 3 R4� � l1 m1 R2 �l2
1 � m2

1 ÿ 2 �l2
2 ÿ m2

2 ÿ R2���
�r12�5

� 4 ��1ÿ q� l2 �l2
2 � 3 m2

2� � �1� q� m2 �m2
2 � 3 l2

2�� Za

�l2
2 ÿ m2

2�3 q

(21)

@2h

@m2
2

� 4 �3 m2
2 R2 � R4�

�m2
2 ÿ R2�3 �ÿl2

2 � R2� �
4 R �3 �l1 l2 m1 ÿ m2 R2�2 ÿ R2 �r12�2�

2 �r12�5

ÿ 4 ��1ÿ q� m2 �m2
2 � 3 l2

2� � �1� q� l2 �l2
2 � 3 m2

2�� Za

�l2
2 ÿ m2

2�3 q

(22)

Symmetry-breaking configurations can be
determined by studying the stability of the
different solutions of the variational equations,
Equations (11) and (12), as a function of Za, q,
and R. We actually used Equations (9) ± (22) to
describe the stability of the nonsymmetrical
electronic configurations. For the symmetrical
structures l2� l1� l and m2�m1�m, which are
equivalent to 11�12�1 and z1� z2� z, the
Hessian matrix elements take a much simpler
form. Extensive analytical and numerical calcu-
lations show that there are only three different
solutions corresponding to a global minimum
for q� 1 and only two solutions corresponding
to a global minimum for q> 1 in the region R�
0 and q� 1.

For the case q� 1, the variational equations
take a simpler form which allows for some
analytical results.[9] One possible solution of
Equations (11) and (12) is the symmetric solution
with l1� l2�l and m1�m2�0. This solution
corresponds to the symmetric electronic struc-
ture configuration where the two electrons are
located in the symmetry plane z�0 with equal
distances from the two nuclei. The symmetric
solution of Equations (11), which relates l to R
and Za is given by Equation (23).

Za(R, l) � ��l
2 ÿ R2�1=2 � 25=2� l3

2 �l2 ÿ R2�2 (23)

This solution is a minimum in the region
where all the eigenvalues of the Hessian matrix
are positive. In this case, the two smallest
eigenvalues of the Hessian matrix are given by
Equations (24) and (25).

L�sym�
1 � 4 �R2 � 3l2�

�l2 ÿ R2�3 ÿ
8 Za

l
3 ÿ

1

21=2�l2 ÿ R2�3=2 (24)

L�sym�
2 � 4

R2�l2 ÿ R2� ÿ
8 Za

l
3 ÿ

l
2 � R2

21=2 R2�l2 ÿ R2�3=2 (25)

The stability limits are given by the condition
L�sym�

i � 0 and Equation (23). These Equations
give two cubic polynomials in which their roots
are the stability limit lines of the symmetric
solution. The point at which both eigenvalues
are equal to zero gives the bicritical point (R�
1, Za�0.63).

The symmetry-breaking solution of the varia-
tional equations can be obtained by defining
l1� l, l2�al, and m1�m2� 0. This solution
corresponds to both electrons in the symmetry
plane z� 0 but at different distances from the
molecular axis. Another different, nonsymmetric
electronic configuration is given by the condi-
tions l1�l2�l and m1�m�ÿm2 . This solution
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corresponds to the electrons not being in the symmetry plane
z�0 but occupying symmetric positions with respect to this
plane. These three different solutions for the case q�1 are
shown in Figure 5.
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