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Abstract

We show that symmetry breaking of the electronic structure configurations for the Hartree—Fock hydrogen molecule at
the large-dimension limit can be described as standard phase transitions. The phase diagram in the internuclear distance—
nuclear charge plane shows three different stable phases corresponding to different electronic structure configurations. This
phase diagram is characterized by a bicritical point where the two continuous phase transition lines join a first order

transition line.

1. Introduction

Dimensional scaling methods involve generalizing
a problem to D-dimensional space and treating D as
a free parameter. Typically, the limit D — « yields
dramatic simplification in the analysis of a wide
class of problems, and often an analytic solution can
be obtained in that limit. Finite-D corrections then
can be taken into account by introducing a system-
atic perturbation expansion in 1 /D [1]. At the end of
the calculations, one sets D = 3 to obtain the ‘‘real
world’’ solution. Yaffe has shown that this expan-
sion, not surprisingly, is semiclassical in nature, but
distinct from the WKB theory [2]. Dimensional per-
turbation and scaling techniques have recently at-
tracted considerable attention. Encouraging results
have been obtained for a diverse class of problems.

! On leave from: Facultad de Matematica, Astronomia y Fisica,
Universidad Nacional de Cérdoba, Cindad Universitaria, 5000
Coérdoba, Argentina.

These range from quantum chromodynamics, nuclear
physics, and critical phenomena to challenging prob-
lems in both quantum and statistical mechanics [3].

In the application of dimensional scaling to elec-
tronic structure, the limit D — o reduces to a semi-
classical electrostatic problem in which the electrons
assume fixed positions relative to the nuclei and to
each other in the D-scaled space [1]. This configura-
tion corresponds to the minimum of an effective
potential which includes Coulomb interactions as
well as centrifugal terms arising from the generalized
D-dependent kinetic energy. Typically, in the large-D
regime the electronic structure configuration under-
goes symmetry breaking for certain ranges of nuclear
charges [4] or molecular geometries [5]. The large-D
limit is just a zeroth order approximation; finite-D
corrections can then be taken into account by intro-
ducing a systematic perturbation expansion in 1/D
for both bound [6] and unstable states [7].

Recently [8], we have shown that symmetry
breaking of electronic structure configurations at the
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large-D limit is completely analogous to mean field
theories of phase transitions and critical phenomena
in statistical mechanics [9]. For N-electron atoms in
weak magnetic and electric fields at the large-dimen-
sion limit, this analogy is shown by allowing the
nuclear charge to play a role analogous to tempera-
ture in statistical mechanics [10]. For the exact solu-
tion of N-electron atoms at the large-dimension limit,
the symmetry breaking is shown to be a first order
phase transition. For the special case of two-electron
atoms, the first order transition shows a triple point
where three phases with different symmetry exist.
Treatment of the Hartree—Fock solution reveals a
different kind of symmetry breaking where a second
order phase transitions exist for N = 2. The
Hartree—Fock two-electron atoms in weak external
electric field exhibit a critical point with mean field
critical exponents (B=73, a=0,, §=3, and
y=DI8l

Symmetry breaking of the molecular electronic
structure configurations at the large-dimension limit
show similar phase transitions. For the hydrogen
molecular ion the analogy to standard phase transi-
tions was shown by allowing the inverse internuclear
distance to play a role analogous to temperature in
statistical mechanics. This system also exhibits a
critical point, with the same mean field critical expo-
nents [8].

In this Letter, we report the symmetry breaking
and phase diagram for the Hartree—Fock hydrogen
molecule at the large-D limit. Our calculations indi-
cate that there are three stable phases, with two
continuous phase transition lines joining a first order
transition line at a bicritical point.

2. Hartree-Fock hydrogen molecule

The treatment of the hydrogen molecule in D-
dimensional cylindrical coordinates is a straightfor-
ward generalization of the usual treatment at D = 3
[11). The nuclei a and b are located on the z axis at
—R/2 and R/2, respectively, with equal charges
Z,~=27,=Z/2. The electrons are located at ( p,, z,)
and ( p,, z,), with a dihedral angle ¢ specifying
their relative azimuthal orientation about the molecu-

lar axis. In the Hartree—Fock approximation we set
this angle at 90° [12]. The Born-Oppenheimer ap-
proximation is used to separate the electronic and
nuclear motion, with the electronic energy EL(R)
then parametrically dependent upon the internuclear
distance R. The D-dimensional electronic Schro-
dinger equation in Hartree—Bohr atomic units is
given by
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where #7_, is the D-dimensional generalized
orbital angular momentum operator and V(p,, p,,
Z,» Z,, ¢) is the potential energy of the electron—
nucleus and electron—electron interactions. By incor-
porating the square root of the Jacobian into the
wavefunction via ¥ — J~ /2, one may separate the
centrifugal energy from other kinetic terms and also
render the volume element of the transformed wave-
function @ independent of dimension. The centrifu-
gal energy becomes singular in the limit D — ¢, but
this dimension dependence can be removed by scal-
ing all coordinates by a factor with quadratic depen-
dence on dimension. The scaling factor is chosen to
give finite energies in the limit D — o, while reduc-
ing to unity at D = 3. This results in units of 1/x?
hartree for energy and x? bohr radii for distances,
where k =(D —1)/2 [1].

The scaled effective Hamiltonian for the
Hartree—Fock hydrogen molecule at the large-D limit
is readily obtained from Eq. (1) [12]
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where Z is the total charge and r,; and r,; are the
electron—nucleus distances:

77 (2)

ra=1ypt+(z,+R/2),

ry=Vp2+(Z,—R/2). (3)
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Evaluating the ground state electronic energy for
D — o reduces simply to determining the minimum
of the scaled effective Hamiltonian . For finding
this minimum and studying symmetry breaking of
the different electronic structure configurations it is
convenient to introduce spheroidal coordinates
(A;, ;). These coordinates are related to the cylin-
drical coordinates by

Ai=ry vy, W=T, Ty

s (NoRNR -p) A

P 4R? » HT R
i=1,2. (4)

In these coordinates, the Hamiltonian takes the
form

2 2R? 2ZA,
Fu= Z 2 2 2_ 2y 2 Iz
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2R
* 2042 2 2 2 4q1/2°
[RP(AT + i+ A3+ w3) =202 1y py —2RY]
(5)
The ground state energy is given by
E(R,Z)= min  Z,. (6)

{)\1-Mp)\zv#2)
This condition leads to four variational equations:
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=0, (8)

where i=1,2; j=1, 2, j# i. The minimum condi-
tion of Eq. (6) implies that, for a given solution of
Egs. (7) and (8), all the eigenvalues of the 4 X 4
Hessian matrix must be positive.

2

372

3. Symmetry breaking

For fixed total charge Z = 2, corresponding to the
hydrogen molecule, the potential energy surface has
a single minimum for small internuclear distance R
while for large R the surface splits into two minima.
The symmetry breaking which splits the single mini-
mum in the united atom limit into the symmetric
double minima in the separated atom limit occurs at
a critical internuclear distance. Herschbach and co-
workers [5] have investigated the symmetry breaking
of electronic structure for the H, molecule at the
large-D limit. They have found that at R = 0, the
effective potential has a single minimum located at
z, = 2, =0. The minimum begins to split into two
minima antisymmetric in z when R reaches the
inner critical point at R™=0.9111 and then split
further into two more minima, symmetric in z, when
R reaches the outer value R*= 1.9136. It is interest-
ing to note that the antisymmetric solution in z is
always the global minimum for all values of R. The
two antisymmetric wells correspond to covalent
structures while the two symmetric wells correspond
to ionic structures, with both electrons on one or the
other nucleus. That is, the effective potential exhibits
the familiar chemical concept of resonance among
valence bond structures, HH "o H:HoH'H™.
Loeser and co-workers [12] have found similar re-
sults for symmetry breaking of the Hartree—Fock H,
molecule at the large-D limit.

In this study, we will concentrate on symmetry
breaking and the phase diagram of the Hartree—Fock
H,-like molecules with charge Z and internuclear
distance R. This approximation has fewer variational
parameters than the exact solution and qualitatively
exhibits a similar phase diagram.

Symmetry breaking configurations can be deter-
mined by studying the stability of the different solu-
tions of the variational equations, Egs. (7) and (8), as
a function of both the nuclear charge Z and the
internuclear distance R. An extensive analytical and
numerical study shows that there are only three
different solutions corresponding to a global mini-
mum in the region R >0 and Z > 1.

One possible solution of Eqs. (7) and (8) is the
symmetric solution with A, = A, =Aand u,=p, =
0. This solution corresponds to the symmetric elec-
tronic structure configuration where the two elec-
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trons are located in the symmetry plane z=0, at
equal distances from the two nuclei. The symmetric
solution of Eq. (7) gives A implicitly in terms of R
and Z:

[( A2—RH 4 25/2] A3
(X —R?)’ '
This solution is a minimum in the region where
all the eigenvalues of the Hessian matrix are posi-

tive. In this case, the two smallest eigenvalues of the
Hessian matrix are given by

4(R*+3)%) 4z 1

Z(R, A) = (9)
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The stability limits are given by the condition A™
=0 and Eg. (9). These equations give two cubic
polynomials where their roots are the stability limit

lines of the symmetric solution. Both eigenvalues are
equal to zero at the point (R, Z,.)

R,.=1, Z, =81/64=1.2656; (12)

as we will show later, this point has the characteris-
tics of a multicritical point.

The symmetry breaking solution of the variational
equations can be obtained by defining

Alz/\, )t2=C!A, IJ«[=[L2=0. (13)

We will call this nonsymmetric electronic configura-
tion phase A, which corresponds to both electrons in
the symmetry plane z=0, but with different dis-
tances from the molecular axis.

As in the symmetric phase, u;,=0 is a trivial
solution for Egs. (8), which leaves us with only two
equations to be solved. Egs. (7) give

2A z
A
- [(1+a?)A?-2R?

]3/2 =0, (14)

2ali V4
- (Q‘ZAZ—RZ)Z + a?
aA
[ +ary-282]"

= 0. (15)

Another different nonsymmetric electronic config-
uration, referred to as phase B, is given by the
condition
MN=0=A m=p=—p,. (16)
In this phase, the electrons are not in the symmetry
plane z = 0, but instead occupy symmetric positions
with respect to this plane. This configuration corre-
sponds to a covalent structure, with r,, =r,, and
Yy =T, The electron-dot representations of the
three different phases; symmetric phase, phase A and
phase B are shown in Fig. 1.

We have found two additional solutions to the
variational Egs. (7) and (8). One solution has A, =
A, = A and u, = p, = u, which corresponds to ionic
structures with both electrons on one or the other
nucleus. The other solution is the total nonsymmetric
solution with A, # A, and w, # u,. These additional
solutions correspond to local minima for certain
values of R and Z, but never become the global
minimum.

ece;

symmetric phase
@ —@
z z
eq phase A
éez
o : @
z z
®s *%:  phaseB
o— @
z z

Fig. 1. Electron-dot representations of the three different stable
phases corresponding to different electronic structure configura-
tions: symmetric phase, phase A and phase B.
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4. Phase diagram

As in the mean-field variational theory of phase
transitions in statistical mechanics, the phase dia-
gram is constructed by studying the stability of the
different phases. If the stability limit of two different
phases are coincident, then it corresponds to a sec-
ond order phase transition. But if the stability lines
are not coincident, a coexistence phase region ap-
pears, where two or more solutions correspond to
local minima of the energy. A first order phase
transition line is defined as the line where the global
minimum is degenerate, with two different phases
having the same energy.

Studying the eigenvalues of the Hessian matrix
reveals the following: for R < R_ the line AY™ =0,
which corresponds to the stability line of the non-
symmetric phase A, is a second order phase transi-
tion line. For Z > Z_ the line AY™ = 0, which corre-
sponds to the stability line of the nonsymmetric
phase B, is also a second order phase transition line.
The stability lines of the nonsymmetric phases for
R = R_ are not coincident. Therefore there is a first
order phase transition line between the nonsymmet-
ric phases A and B. The point where the first order
transition line splits into two continuous phase transi-
tion lines is a multicritical point, in this case a

2.5 v T v iTT

L S i e e e
| Phase B
Symmetric 1
20 Phase ]
Z ¥ =0 )
\l-‘Bae 0 -
1.5 -
[ J
L w.o Bicritical paint 4
A ~
L ~ J
~
| %=0 Phase A \\\\\
1.0 T TP e & S
0.0 1.0 R 2.0 3.0

Fig. 2. Phase diagram in the R—Z plane. The continuous lines
represent second order phase transitions while the dashed line is a
first order phase transition line. The bicritical point and the critical
point which corresponds to the limiting case of the two-electron
atom (R = 0) is also shown.

bicritical point [13]. Finally, the line Z=1 corre-
spond to the ionization line in the symmetric phase
A, where one of the electrons is at infinite distance.
It is interesting to note that the total nonsymmetric
solution for Z=1 at R=3V3 /4, corresponding to
the HJ critical point [8], is localized in the zone
where the phase B is the global minimum.

As in standard phase transitions, we can charac-
terize a phase by an order parameter. The order
parameter is nonzero only in the region of the phase
diagram where the symmetry is broken. In the sym-
metric phase, the order parameter must be zero.

Phases A and B have different symmetry proper-
ties, and therefore must be characterized by different
order parameters. The phase A is stable for small
values of the nuclear charge Z and the internuclear
distance R. The symmetry breaking occurs when
both electrons move to the symmetry plane z=0,
giving an electronic structure configuration similar to
the two-electron atom. In this phase the order param-
eter correspond to the united atom order parameter
and is given by [8]

Vo=(A—A) /A, (17)

where A, = max(A,, A,).

The phase B zone corresponds to larger values of
R and the symmetry breaking leads to configurations
where one electron near nucleus a and the other near
nucleus b. In this phase ¥, = 0 and the order param-
eter corresponds to the separated atom limit. The
order parameter for phase B is defined as

Wy =(n —~n)/2R. (18)

The phase diagram with the three different phases
and the values of the order parameters in each phase
is shown in Fig. 2. At the bicritical point the two
order parameters go simultaneously to zero. Fig. 3
shows the variation with R of the coordinate r,
(r, exhibits equivalent behavior) for both electrons
at the global minimum of the effective potential for
three different values of the total nuclear charge Z.
In Fig. 3a, with Z=1.6>Z,_, for R<R,_ up to the

Fig. 3. Variation with R of the coordinate r, for both electrons
corresponding to the global minimum of the effective potential,
for three values of the total nuclear charge: (a) Z=1.6, (b)
Z=13,and (c) Z=1.1.
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symmetry breaking point R (Z = 1.6), the effective
potential has a single minimum corresponding to the
symmetric electronic configuration. As R varies be-
yond this point, the minimum begins to split into two
equivalent minima with the electron ‘“1’* (‘*2’*) near
the nucleus ‘‘@’’ and electron “‘2 (‘1) in a
symmetric position near the nucleus “‘b’’. Fig. 3b
shows the variation of r, with R for an intermediate
value of the nuclear charge, Z= 1.3. As R varies,
two continuous transitions occur, from phase A to
the symmetric phase to phase B. For Z=1.1, the
transition from phase A to phase B is a first order
phase transition, with a discontinuous change in the
electron—nuclear distance as shown in Fig. 3c.

5. Discussion

In the traditional area of critical phenomena, un-
der simple circumstances, a phase transition is
reached when the temperature approaches a special
value, T, keeping the ordering field equal to zero. In
many cases, with additional parameters, the transi-
tion point turns into a line or a surface. In this
situation, some properties of the transition change
abruptly along the transition line or surface. The
points where these lines or surfaces join may have
special critical proprieties, and are called multicriti-
cal points [13]. In this paper, we show that the
symmetry breaking of electronic structure configura-
tions of the Hartree—Fock hydrogen molecule at the
large-D limit exhibit multicritical phenomena. The
phase diagram was characterized by a bicritical point
where the two continuous phase transition lines join
a first order transition line.

For molecules at the large-D limt, the potential
energy curves are purely repulsive, which occurs
because the D — o limit lacks exchange, and higher
order terms in a 1/D perturbation expansion are
required to obtain chemical bonding in D=3
molecules. Good approximations for bonding can be
obtained by simply augmenting the large-D result
with an exchange energy [14], by uniform scaling
and interpolation procedures [12], or by charge
renormalization methods [15]. Recently, Herschbach
and co-workers [16] have found that the four one-
and two-electron diatomic molecules (H3 , H,, HHe *
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and HeZ™) have similar scaled potential energy
curves. The D =3 potential energy can be derived
from the large-D limit via

E(R) = ER) /(1 ~ AR®e™*%), (19)

where A and a are scaled parameters depending on
the equilibrium distance and minimum energy val-
ues. It is interesting to note that this scaled factor
depends only on the internuclear distance. Since in
the construction of the phase diagram, the internu-
clear distance is not a variational parameter, we
expect that the phase diagram at the large-D limit to
be qualitatively similar to the D = 3 phase diagram.
This study of phase transitions for the Hartree—Fock
hydrogen molecule might shed a light on the origin
of the corresponding-states correlation of intermolec-
ular potential energy curves.

The analogy between electronic structure prob-
lems and the traditional ideas of phase transitions
and critical phenomena offers a new point of view
for looking at molecular processes such as ioniza-
tion, dissociation and the formation of the chemical
bond. Although we have focused upon symmetry
breaking at the large-D limit, research is underway
to examine this phase diagram at D = 3 by using a
simple D-dimensional variational wavefunction and
including higher order terms in 1 /D expansion [17].
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