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Abstract

We present a finite size numerical renormalization group approach to obtain low-lying electronic excitations in atoms and
molecules. Results show that the method is reasonably accurate for estimating the electronic excitations for carbon and
silicon atoms. The method is general and has potential applicability for molecular systems. q 1998. Published by Elsevier
Science B.V. All rights reserved.

1. Introduction

Ž .The self-consistent field SCF approximation,
which is based on the idea that we can approxi-
mately describe an interacting fermion system in
terms of an effective single-particle model, remains
the major approach for quantitative calculations for
large systems. There are mainly two different kinds
of SCF approaches for electronic structure calcula-

Ž .tions: the Hartree–Fock HF approximation and the
Ž .Kohn–Sham KS method, which is the basis for

modern density functional theory. The HF approxi-
mation treats the exchange energy exactly but ig-
nores correlation, while in the KS approach formally
both the exchange and correlation energies are in-
cluded but in practice the exact functional form of
the exchange correlation potential is yet unknown.

The HF approximation usually yields good zeroth
order approximation results for the ground state and
in the asymptotic limit of large molecules scales
approximately as N 2, where N is the number of
basis functions involved in the calculation. Recently,

much effort has been made in the development of
w xlinear scaling quantum calculations 1,2 . Recovering

the remaining error in the total energy, the correla-
tion energy, is the main driving force for introducing
new methods for calculating electronic structure. A
wide variety of techniques are currently available for
predicting accurate correlation energies, including

Ž .configuration interaction CI , many-body perturba-
Ž .tion theory MP2, MP3, MP4, etc. , multi-configura-

Ž .tion Hartree–Fock MCSCF , coupled cluster meth-
Ž . w x w xods CC 3 electron propagator methods 4 , quan-

w x w xtum Monte Carlo 5 , dimensional scaling 6 and
w xdensity functional methods 7,8 .

A variety of methods have been previously pro-
posed to introduce correlation energy in HF calcula-

w xtions. Examples include the g-Hartree approach 9 ,
w xthe soft-Coulomb hole effective interaction 10 and

w xdimensional renormalization 11 . All these ap-
proaches, however, fall under the same generaliza-
tion of finding an effective Hamiltonian such that the
eigenvalues of the effective Hamiltonian approaches

w xthe exact Hamiltonian eigenvalues 12 . Freed and
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co-workers have developed the ab initio effective
valence shell Hamiltonian method, a fully correlated
ab initio many-body perturbation method which also
produces the true forms of the effective Hamiltoni-
ans that are modeled by semiempirical methods. This
approach was applied with very good results for

w xatoms and molecules 13 .
While there are numerous highly successful meth-

ods for obtaining the ground state energies, a reliable
method for obtaining the low-lying excited states is
one of the major outstanding problems of quantum
chemistry. This study will attempt to use the numeri-

Ž .cal renormalization group RG approach which has
w xbeen developed recently by one of us 14,15 , for

interacting finite Fermi systems, to treat electronic
excitations. This new RG approach which takes into
account the correlation effects is used in this letter to
obtain low-lying electronic excitations in atoms. As
examples, we present detailed calculations for carbon
and silicon atoms. The method is general and can be
applied to molecular systems.

2. Renormalization group approach

w xIn the RG method developed by Wilson 16,17 ,
states above a certain energy, called the ‘‘cutoff’’
energy L, are removed from the theory, and the
Hamiltonian is modified to produce the same results
for all physical measurements that involve the re-
maining modes. This procedure is called ‘‘integrat-
ing out the high-energy states’’, a terminology based
on the path-integral representation of statistical me-
chanics. The parameters that specify the different
interaction strengths in the Hamiltonian change
Ž .‘‘flow’’ as L is reduced. Some interaction strengths
flow to zero and are thus unimportant for the low-en-
ergy description, these are called irrelevant, while
others remain important in the low-energy effective
theory. The RG has been applied with enormous
success to classical statistical mechanical systems
undergoing second-order phase transitions. It has
only recently become possible, due to a combination
of theoretical and computational advances, to apply
the RG method to systems containing many elec-
trons.

The difference between classical phase transitions
and electronic problems lies in the fact that the

low-energy and long-distance behavior of phase tran-
sitions is governed by only a few relevant variables,
which makes it easy to keep track of the effective
interactions. However, an accurate treatment of the
electronic problem requires us to keep track of all
low-energy four-point interactions. A formalism for
treating electronic systems using RG has recently

w xbeen developed by Shankar 18 . Based on this gen-
eral formalism, a numerical RG method has been

w xdeveloped recently by one of us 14,15 to analyze
the electronic properties of clusters. The heart of the
RG method is to find the best possible effective
description of the system at every energy scale
Ž .especially low energies , in terms of effective sin-
gle-particle energies and effective interactions.

Let us now turn to the concrete details of the
implementation of this program.

In this study we start by separating the Hamilto-
nian into a Hartree–Fock part H and a part that0

involves residual electronic interactions V. The RG
program consists of the following well-defined steps
w x Ž .14,15 : 1 Diagonalize H to get the single-particle0

Ž . Ž .energies e and wave-functions c r , 2 Reex-a a

press the full Hamiltonian in terms of these single
particle levels. The Hamiltonian now looks like

Hs e c† cÝ a a , s a , s
a , s

q V X c† c†
X c X c 1Ž .Ý abgd , ss a , s b , s g , s d , s

X
abgd , ss

where c and c† represent the annihilation anda , s a , s

creation operators for the state a with spin s and the
V X are the matrix elements of the two-bodyabgd , ss

Ž .interaction. 3 Now we start integrating out the
high-energy states one by one. We end up with a

Ž .new effective Hamiltonian, and finally: 4 Just re-
peat the step for the next highest energy and con-
tinue till all the states have been integrated. Note that
high-energy excitations can occur from occupied
states far below the HOMO or to unoccupied states
far above the HOMO. The operational difference

w xbetween RG and perturbation theory 19 is that the
corrected matrix elements V X

X , rather than theabgd , ss

original matrix elements, are used in subsequent
Ž .steps. 5 The third-order RG approach presented

here has an important internal validity criterion. At
any stage of the calculation, one can check the ratio
of the third-order to second-order contributions to
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the LUMO energies and interactions. If this ratio is
small, it indicates that renormalized perturbation the-
ory converges well, and we can expect the errors to
be small. However if this ratio approaches 1 then we
can expect all orders in renormalized perturbation
theory to contribute equally, and the entire scheme
breaks down.

It turns out to be most convenient to compute the
perturbative corrections in a path-integral formula-
tion. The reason is that once a state has been inte-
grated out the problem is, strictly speaking, no longer
Hamiltonian. One is forced to introduce interactions
nonlocal in time between the remaining states. One
then starts with the partition function of the original
Hamiltonian problem and converts it in the standard

w xway to a Grassmann path integral 18

b

w xZsTr expybH s Dh Dh exp dtH Ha , s a , s
0

E
= h h yH h ,h 2Ž .Ý a , s a , s a , s a , sž /Et

a , s

Žwhere b stands for the inverse temperature taken to
` at the end of the computation to recover ground

.state properties . The h and h are anticommut-a , s a , s

ing Grassmann numbers corresponding to c† anda , s

c . A new quantity z, the wave-function renormal-a , s

ization, makes its appearance when states are inte-
grated out. This corresponds to the overlap of the
true eigenstates with the single-particle-like states.
The flow of z is also kept track of as L decreases.
Path-integral perturbation theory is standard and has
a one-to-one correspondence with the usual Hamilto-
nian perturbation approaches.

This novel RG technique has been tested with
w xexcellent results for chains 20,14 and two clusters,

w x w xC 21,14 and C 15 using H the tight-binding12 60 0

Hamiltonian.

3. Applications for electronic excitations in atoms

To illustrate the application of the RG technique
to electronic structure of atoms, we compute the low
excitations for carbon and silicon atoms. In order to
carry out the RG procedure, we started with the HF
basis set for the two atoms. In the HF structure for
the neutral atoms, the partially full p level gets

energetically split between the full and the empty
states, and the symmetry is lost. To retain the sym-
metry, we started with the HF solution for the
closed-shell doubly ionized atoms, C 2q and Si2q.
For C 2q, we used the Double-Zeta basis set of
Ž . w x w x 2q9s,5 p contracted to 4 s,2 p 24 , while for Si

Ž .we used a Double-Zeta basis set of 11s,7p con-
w x w xtracted to 6 s,4 p 24 . The matrix elements of the

two-body Coulomb interaction were obtained from
w xthe Gaussian92 25 program. We then added two

electrons into the lowest unoccupied molecular or-
Ž .bital LUMO , and obtained the RG-improved effec-

tive single-particle energies, interactions and wave
functions renormalizations z. In this context it is
important that for two particles propagating in the
LUMO, there is a two-body composite operator wave
function renormalization z which is distinct from2

the single-particle z.
Ž .Now one carries out the following steps: i order

the different single particle states such that states
farthest from the LUMO are integrated first. For
example, in our HF calculation for C 2q, the states
with their energies in atomic units were e s1 s

y12.65, e sy1.69, e sy0.86, e sy0.20,2 s 2 p 3 p

e sy0.14, e s22.34. States 1s and 2 s are oc-3 s 4 s

cupied, while the others are empty. 2 p is the LUMO,
and we set the chemical potential m exactly at e .2 p

Based on the energies we chose the order of integra-
Ž .tion to be 4 s, 1s, 2 s, 3s, 3 p, 2 p, ii now we start

integrating out the high-energy states using the stan-
dard rules of path-integral diagrammatics. Let us call

Žthe state currently being integrated out h to denote
.high energy and as the yet unintegrated states l. We

separate the action as SsS qS qS , where S ish l i i

the coupling between the low and high energy sec-
tors. We perform the Grassman integration of h hhh

by taking recourse to the cumulant expansion

1 12 3² : ² : ² : ² :expS sexp S q S q S q PPP� 4c ci i i i2 6

3Ž .

where all averages are taken in the ensemble of h,
the subscript c means connected diagrams, and we
go to third order in S . We have generated a newi

effective action for the low energy sector, which
implies new effective single-particle energies, quasi-
particle residues and matrix elements. As an exam-
ple, consider the first nontrivial self-energy correc-
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w xtion, the sunrise diagram 22,23 . The formulas for
the corrections to the energy e and z area a

V Žnminy1 .V Žnminy1 .
a bgd dgba

de sa y1Žn y1. Žn y1. Žn y1.b g dz z zŽ .b g d

N 1yN 1yN q 1yN N NŽ .Ž . Ž .b g d b g d

Žn y1. Žn y1. Žn y1.b g de qe ye yea b g d

V Žnminy1 .V Žnminy1 .
a bgd dgbay1

d z sŽ .a y1Žn y1. Žn y1. Žn y1.b g dz z zŽ .b g d

N 1yN 1yN q 1yN N NŽ .Ž . Ž .b g d b g d
4Ž .2Žn y1. Žn y1. Žn y1.b g de qe ye yeŽ .a b g d

Ž .The internal lines bgd range over all previ-
ously integrated levels. Note the important point is
that the most recent renormalized values are used for
the matrix elements, energies and z. For example, nb

refers to the RG step at which b was integrated out
Ž Žnby1 .thus making e the most recent value of itsb

. Ž . Ž .energy and n smin n ,n ,n , iii repeat themin b g d

step for the next highest energy and continue till all
the states have been integrated. To repeat, the opera-
tional difference between this perturbative RG and

w xnaive perturbative methods 19 is that the corrected
matrix elements, rather than the original matrix ele-
ments, are used in subsequent steps. This corre-
sponds to summing all third-order skeleton graphs
for the interaction, and all second-order skeleton
graphs for the single particle energy and z, and

Ž .finally iv in order to find the energy of two elec-
trons in the LUMO, we look for the poles of the
two-body propagator. This involves the additional
computation of the wave function renormalization z2

of the composite operator.
We find that the validity criterion of RG is well

satisfied: The ratio of third-order to second-order for
the LUMO matrix elements never exceeds 0.22. For
both atoms, we obtain the correct order of ground
and excited states. Table 1 compares the experimen-

w xtal number 26 for the splitting between the ground
state and the first excited state with the results of
different calculational schemes, including basis set

Ž . w x Ž . Žreduction BSR 27,28 , Hartree–Fock HF V.
.Staemmler, private communication , Configuration

Interaction with Single and Double excitations
Ž . Ž .CISD V. Staemmler, private communication and

Table 1
Comparison of different calculational schemes for the splitting
between the ground state and the first excited state for carbon and
silicon atoms

System Expt. RG BSR HF CISD CCSD
3 1C: P ™ D 1.26 1.11 1.20 1.55 1.50 1.50
3 1Si: P ™ D 0.78 0.87 1.72 1.08 1.04 1.04

All energies are in eV.

Coupled Clusters with Single and Double Excitations
Ž . Ž .CCSD V. Staemmler, private communication .
Furthermore, the ionization potentials are reproduced
with remarkable accuracy, the experimental numbers

Ž . Ž . w xbeing 11.26 eV carbon and 8.15 eV silicon 26 ,
with the RG producing 11.51 eV and 8.15 eV respec-
tively. The RG is expected to get better as system

Žsize increases recall that it gives exact answers for
low-energy long-distance correlations functions for
macroscopic systems undergoing critical phenomena
w x.16,17 , while purely perturbative methods are ex-
pected to get worse. Higher angular momentum states
are not included in the calculations, since they are
not present in the basis set. However, more than

Žsingle and double excitations are included in the
.third-order diagrams , and so as expected the RG

results are better than CCSD with the same basis set.
While results for carbon with larger basis set have

w xbeen available for some time 29 , comparable results
for silicon are lacking. If we included higher angular
momentum states, or in general a larger basis set, we
would obtain better results. However, our goal is not
to obtain the best possible results for carbon, but to
show the feasibility and general applicability of the
method.

4. Discussion

The advantages of RG over other approximation
Ž .schemes can be summarized as follows: i RG takes

systematic account of the contributions of higher
energy states to processes happening at low energies.
We start integrating out the highest energy states
first because they are expected to have the least
effect on the low-energy states. However, they have
a significant effect on the states close to them, and
RG allows these effects to propagate to the lowest
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Ž .states. ii RG can handle degeneracies easily. In
fact, all the cases to which the RG technique has

w xbeen applied 14,15 have ground state degeneracies
due to a partially filled HOMO and the new tech-
nique specifies the correct ground state due to resid-

Ž .ual electronic interactions. iii Excited state proper-
ties can be obtained by stopping the RG process
before all states are integrated out. One obtains an
effective theory of the lowest few states, which can
be solved to obtain excited state energies, oscillator

Ž .strengths etc. iv Third-order RG contains an inter-
nal validity criterion. At each RG step one compares
the third order correction to the second order one. As
long as this ratio is small the perturbative RG is well
behaved. In RG one does not have to do extra work
to determine the validity of the approximation. In
order to obtain a similar criterion for CISD or CCSD,
one would have to do another calculation which
takes triple excitations into account to determine the

Ž .error. v Finite-temperature calculations are a trivial
extension of the method described above, with fre-
quency integrations in diagrams being replaced by

w xMatsubara sums 22,23 . To obtain results in a E or
w xa B field 30 , one can either carry out the calcula-

tions by modifying the energy eigenstates, or by
computing response functions in the unperturbed sys-
tem.

Finally, it is appropriate to discuss the relation-
ship of this RG method to other RG approaches for
electronic structure. The first such approach used a

w xmesh in real space 31 and the idea of real-space RG
Ž .coarse-graining the mesh but proved to be compu-
tationally expensive. Recently, White has developed

w xthe density matrix RG 32 , which works excellently
in one-dimensional condensed Fermi systems, but is
computationally prohibitive in two or higher dimen-
sions. Since this again contains the idea of piecing
together identical subunits, it is unclear how it is to

Žbe applied to atoms however, it could be applied to
.chains of identical atoms very easily . There has also

been work on BSR using a threshold criterion for
matrix elements, and treating the effect of the ne-

w xglected states variationally 33 , which produces very
good results. Most recently, a beautiful adaptive RG
technique has been developed which could be ap-

w xplied to systems in any dimension 34 , in which a
basis set is chosen so as to make the two-body
interaction matrix elements between the high- and

low-energy subspaces small. However, to our knowl-
edge, this has not been applied to chemical systems.

Finally, the RG, like MP perturbation calcula-
tions, is a polynomial-time algorithm. Without taking
account of symmetries the computation time goes as
N 8, which is very high. In practice, however, sym-

Žmetries such as the conservation of angular momen-
.tum and parity enormously reduce the number of

Žmatrix elements to be recomputed. The C 6060
. w xinteracting p-electrons computation 15 took one

hour on an SGI workstation. Carbon and silicon take
less than a minute each. These are extremely encour-
aging results and give us hope that the finite size RG
method may turn out to be very useful in analyzing
low-lying excitations for atoms and molecules.
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