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Abstract

The minimum energy structures, stability, and symmetry breaking of Lennard-Jones binary clusters have been calculated
using the pivot method. We found that the cluster dimer displays distinct symmetry breaking and *‘phase changes’’ when the
interaction between the clusters is different from that within the clusters. The zero temperature phase diagram shows
first-order phase transitions between a phase with symmetry of the cluster dimer to phases with symmetry of the giant

cluster. © 1997 Published by Elsevier Science B.V.

1. Introduction

There have been extensive theoretical and experi-
mental efforts recently to unravel the structure, dy-
namics and phase changes in atomic and molecular
clusters [1-4]. One area of special emphasis in theo-
retical research is the study of structure and dynam-
ics of binary clusters using molecular dynamics (MD)
[5], Monte Carlo (MC) [6] and local density func-
tional approximation (LDA) [7].

The interaction between clusters plays a crucial
role in the stability of cluster assembled material [8].
Saito and Ohnishi [7] have reported that a dimer of
cluster, (Na,q),, is energetically stable and explains
the abundance of Na; in sodium-cluster mass spec-
tra. More recently, there have been a number of
studies of the structure and dynamics of (Cg)y
clusters [9,10], as well as of pure clusters bound by
van der Waals interactions [11,12].

Symmetry breaking and phase transformation pro-
cesses have been extensively investigated in atomic
and molecular clusters [13,14]. Studies of such clus-
ters attempted to establish the connection between

phase transitions exhibited by bulk matter and their
analogous ‘‘phase changes’’ for finite systems [15].
As discussed by Berry [15], finite systems exhibit
some of the same solid-like and liquid-like behavior
of bulk solids and liquids but have many phase-like
properties that do not extend to bulk matter. These
symmetry breaking and phase transitions are differ-
ent from phase transitions at the absolute zero tem-
perature. In the latter case, we are dealing with
symmetry breaking of the ground state energy as
some parameter entering the hamiltonian is varied
{16,17].

In this letter, we report the structure, stability, and
symmetry breaking of the ground state energy of a
simple model system consisting of two identical
Lennard-Lones (LJ) clusters labeled A and B. The
two clusters have the same LJ parameters, €, = €,.
The cross interaction, €,p, is varied to explore the
‘‘phase changes’” and the formation of a stable
dimer. All of the studies presented below are re-
stricted to equal number of particles, N, = Ny, where
the total number of particles N = N, + N, was cho-
sento be N=7+ 7= 14 and of a ‘*‘magic’’ number
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N =13 + 13 = 26. All the structure calculations car-
ried out by the pivot method for global optimization
[18,19].

2. Computational details

We consider a binary cluster of N particles con-
taining equal number of particles of species A and
B, with N, = Ny = N/2, interacting pairwise through
LJ potential given by

V(ry=e(1/r*=2/r°), (1)
where the value of the well depth € depends on if
both particles belong to cluster A (e = ¢,), cluster B
(e =€), or to different clusters (e = €, ;). For sim-
plicity, we assume that the two clusters are equiva-
lent, that is €, = €5 = 1, but the interaction between
the two clusters is different from the interaction
within the clusters €,,# . In cluster assembled
material, the interaction between clusters might be
weaker than the interaction within the cluster, for
example, the interaction between the Cg, molecules
in fcc Cg, solid is much weaker than that within the
C¢ molecule [20]. Therefor, it is very important to
investigate the structure changes of a cluster dimer
by changing the strength of the intra-cluster poten-
tial. In order to study the stability of the binary dimer
we have calculated the binding energy E which is
given by
E= ) V(rn)+ X V(r,)

i<jeA k<icB

+ X V(r) - ERT - ERT. (2)

i€AkeB

where E}\‘,j"‘ and E,{‘,‘;m are the energies of the iso-
lated homogeneous LJ clusters of N, and N, parti-
cles.

We investigated the minimum energy structures
of the cluster dimer as a function of both the interac-
tion parameter €,, and the separation distance be-
tween the two center of mass R,

1 M

FBZ’]‘B’ (3)

i

1 M
Ris=IRypl, Ryp= FA Xi:"iA -
where the vectors r/* and r? are the positions of the
particles for species A and B respectively
In all the calculations, we have used the pivot
method [18,19] to obtain the minimum energy struc-

tures. The pivot algorithm for the location of a global
minimum uses a series of randomly placed probes in
phase space, moving the worst probes to the near
better probes iteratively until the system converges.
The approach chooses as visiting distribution the
generalized g-distribution based on the Tsallis en-
tropy [21], which has been recently used with good
results in simulated annealing methods [22,23]. In
our previous studies of homogeneous LJ clusters, we
have found that the optimum value of g is very near
q = 2.5, so the value of g = 2.5 was used in all the
calculations. After the convergence criteria was
reached, a deterministic gradient algorithm [24] was
used to obtain a better accuracy.

3. Results and discussions

We calculated the total binding energy for two
different kind of clusters, one with N, =N, =7 and
another with a *‘magic’” number N, = N, = 13, cor-
responding to the completion of a stable icosahedral
structure [2]. The binding energy E as a function of
the interaction between the clusters, €, 5, is shown in
Fig. 1. This figure shows clearly a symmetry break-
ing, where the first derivative of the energy is dis-
continuous at a critical €, 5, which is €, = 0.389 for
N, =Ny =7 and for N, =N, =13 there are two
critical €, 5, €/ =0.466 and € =0.713.

In order to understand this symmetry breaking,
we show in Fig. 2 the behavior of the separation
distance between the two center of mass of clusters,
R, p, as a function of the interaction €,,. As shown
in this figure, near the critical €_ there is a discontin-
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Fig. 1. The binding energy E versus €, for Ny = N; =7 and
Ny = Ng=13.
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uous change in the separation distance between the
two clusters. By examining the minimum energy
structures as a function of €,,, we found that for
€,p < €, = 0.389 the cluster dimer is the stable struc-
ture for Ny = Ny =7 while for €, > €, = 0.389 the
giant cluster is the stable structure. For N, = N, = 13
with €, < €") = 0.466 we have a stable dimer clus-
ter while for €,, > €!” = 0.713 the giant cluster is
the stable structure. For €V =0.466 < €,, < €/¥ =
0.713 a new phase appears which corresponds to a
giant cluster but with different configuration than the
homogeneous cluster. This behavior, where the first
derivative of the energy dE/de€, , is discontinuous
at the critical €, is characteristic of a first order
phase transition, or more accurately as discussed by
Berry [25], for finite systems as ‘‘phase changes’’.
To investigate the symmetry properties of the
different phases, we plot in Fig. 3 the binding energy
of the cluster with N, = Ny =7 as a function of the
separation distance R, for three values of €, with
€,5=05>€., €,3=€,=0389 and €,;,=03<
€. In all the cases there exist many local minima,
but for € > €, there is no stable dimer in this phase
and the global minimum has the symmetry of the
giant cluster, the homogeneous phase. On the other
hand, for €, < €, the global minimum corresponds
to a stable dimer. For €, = €., one can see almost
three degenerate minima, the one on right corre-
sponds to the cluster dimer while the one on the right
to the giant cluster. The minimum in the middle
corresponds to a new configuration which is not a
global minimum for N, = N =7 but for larger clus-
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Fig. 2. The separation distance between the two centers of mass
R, as a function of €45 for Ny = Ny =7 and N, = Ny =13.
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Fig. 3. The binding energy E versus the separation distance
between the two centers of mass of clusters R, for Ny= Ny =7
with €45, =03<€,=0.389, €,p5=¢, and €,53,=0.5> €.

ters it becomes a global minimum for some values of
€,5- This new phase with € < ¢,, < €* appears
as a global minimum for N, = Ny = 13 as shown in
Figs. 1 and 2. These different local and global
minima could be of important value for molecular
dynamics and Monte Carlo studies on the equilib-
rium structure and stability of the cluster dimer as a
function of the temperature.

In summary, in this letter we reported a symmetry
breaking that is a ‘‘phase change’’ at zero tempera-
ture for LJ clusters of different sizes. At T=0, the
ground state of a finite system of LJ clusters exhibit
a symmetry breaking as a function of €,,. For both
clusters of N, = N; =7 and N, = Ny = 13, the sym-
metry breaking is a first-order *‘7'= O phase transi-
tion’” since the first derivative of the energy
dE/de, is discontinuous at €,. For both clusters
we show that one can form a stable cluster dimer if
€, < €, and the cluster orientation dependence plays
an important role as the two clusters approach each
other.
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