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Abstract

Ž .By means of the pivot method, an optimization work on water clusters H O , with 2(N(33, is carried out using an2 N

ab initio rigid molecule model, the Matsuoka–Clementi–Yoshimine potential, and an empirical flexible molecule model, the
Stillinger–Rahman potential. The results show that, under certain conditions, the pivot method algorithm is likely to yield
optimized structures that are related to one another in such a manner that they form families. The structures in a family can
be thought of as formed from the aggregation of single units to some specific structures. In addition, the sequences present
an apparent asymptotic behavior. q 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Water clusters have been studied since long ago
in order to analyze the interactions between water
molecules and to develop a deeper understanding of
liquid and solid phases of bulk water. Many experi-
mental works concentrate mainly on small water

w xclusters with N(10 1–7 , whereas theoretical stud-
w xies cover this range and beyond 8–24 . Among

these theoretical studies several potential functions
are used to describe the global minimum structures
and energies of small clusters as well as to study the

w xproperties of liquid water 24–32 . The nature of
these potentials ranges from purely ab initio to to-
tally empirical, and the accuracy of their predictions
shows different degree of success. One thing in
common among these potentials is the complexity of
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the surfaces they span. This fact creates the necessity
of having efficient methods to explore such surfaces
when the global minimum structures are searched.

w xRecently, Wales and Hodges 22 applied the
basin-hopping method to optimize the TIP4P poten-

w xtial 25 for clusters of up to 21 water molecules
obtaining the global minimum structures of clusters
with N(20. Then, they used the putative TIP4P
global minima to relax the new ASP-W4 potential
w x32 . A similar analysis is carried out in the present
work, but using the pivot method which is an algo-

w xrithm of easy implementation 33 . In this method,
the phase space is initially seeded with a number of
random probes, though a priori information about the
system can be very useful. Then, the probes are
paired according to a nearest neighbor arrangement
to immediately choose the probes with the lower
energies in each pair as the pivot probes; the others
being relocated around the pivots utilizing a general-

w xized q-distribution function 33 . The process is re-
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peated by the algorithm until the stopping criteria is
reached.

The pivot method has not been previously used
for water clusters, and here is applied to two well-
known potentials that are very different in nature.
One of these potentials is the Matsuoka–Clementi–

Ž . w xYoshimine MCY potential 27 that is an ab initio
rigid molecule model, the other potential is a central

Ž . w xforce potential by Stillinger and Rahman SR 29
that is an empirical flexible molecule model. The
details of these potentials can be found elsewhere
w x27,29 . It is known that they suffer from some
deficiencies, as for example many-body effects, that
prevent them from giving accurate results. However,
they still can predict structural properties of the
condensed phases of water; the MCY potential being
more reliable than the SR potential in this respect
w x34 . The use of the two different potentials is to
compare the behavior of structural properties in the
finite-size case. Besides, to a first test of the pivot
method algorithm in the water cluster optimization
problem, they are good representatives of two gen-
eral models, rigid or flexible water molecules, of
somewhat simple functional forms with relatively
low computational costs.

In the following, the potentials are optimized for
clusters with 2 up to 33 water molecules.

2. Results and discussion

The application of the pivot method to the MCY
potential determines a cyclic structure for the trimer,
tetramer, and pentamer; a cage-like structure for the
hexamer and heptamer; a D cubic structure for the2 d

Žoctamer; and a cubic structure for the nonamer with
.a S underlying octamer . All these in agreement4

w xwith previous works 15,17,19 . Here D and S2 d 4

are point group symmetry forms of the octamer.
For the SR potential, the algorithm determines a

cyclic structure for the trimer and the tetramer, and a
D cubic structure for the octamer in accordance2 d

w xwith previous reports 13,23 . The structure for the
SR pentamer is found to be a fused ring type that is

w xalso found by Plummer et al. 13 . These authors also
report a cage-like structure lower in energy than that
of the fused rings. All the cage-like structures found
by the pivot method are about 1 kcal moly1 higher

in energy than that of the fused rings. The structure
of the SR hexamer is a distorted triagonal prism
Ž w x.structure II of Ref. 8 even lower in energy than

w xthat given by Guvenç and Anderson 23 . The SR¨
heptamer has the same cage-like structure to that of
the MCY heptamer while the SR nonamer is cubic
Ž .with a D underlying octamer .2 d

The results for larger clusters show that the found
minimum structures of the clusters present a certain
regular behavior for both potentials. That is, the
clusters are built from some specific structures and
have the cyclic tetramers as building units. Further-

Fig. 1. Some clusters of group 3. MCY left, SR right. Going from
top to bottom, it can be seen that each cluster differs in size by a
cyclic tetramer from the cluster immediately below. Note that the
decamers embedded in the 18-mers are structural isomers of the
decamers at the top of the figure.
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Fig. 2. Clusters of group 3. MCY left, SR right. The aggregation
of cyclic tetramer tends to form a D fused-cube branch.2 d

more, the clusters are arranged in such a way that
they form four different groups characterized by a
parameter k . The groups can be expressed as:i

N s4nqk , 1Ž .i i

where N is the number of molecules of a cluster ini

the group i; n, which takes on positive integers, is
the number of tetramers that comprise the cluster;
and k , which assumes integer values from 0 to 3, isi

a parameter. Indeed, these values for k represent thei

number of extra molecules to be added to the build-
ing tetramers.

Ž .It is clear from Eq. 1 that the specific structures
from which the clusters of each group are built are:
the tetramer for group 1, the pentamer for group 2,
the hexamer for group 3, and the heptamer for group
4. The dimer and trimer can be included in groups 3

and 4, respectively, if n is allowed to take also on 0
in these two groups.

Fig. 1 shows some representative clusters of group
Ž .3 k s2 . Going from top to bottom in the figure, it3

is noted that each cluster differs in size by a cyclic
tetrameric unit from the cluster immediately below.
This behavior is observed again in clusters of groups
1 and 2, but not in clusters of group 4. Another
feature common to groups 1, 2, and 3 is that the
process of joining cyclic tetramers to a structure to
build larger clusters favors the formation of a D2 d

fused-cube branch. Fig. 2 shows this feature clearly
for clusters of group 3. To be more specific, if the
cyclic tetramers are attached to the left branch of the
22-mers in Fig. 2, the energies of the resultant
26-mers and 30-mers are higher than those of the
respective 26-mers and 30-mers shown in the same
figure. The structures of group 4 are not simply
related to each other, which is an indication of the
complexity of the potential surfaces for these clusters
using both MCY and SR potentials. However, most
of these structures present a backbone of D fused2 d

cubes where the extra molecules adhere.
Table 1 shows the energies of some selected

configurations compared to the energies of the re-
spective D fused-cube structures found by the2 d

Table 1
y1 ŽEnergies in kcal mol of some selected configurations see Fig.

.3

Cluster MCY SR

10-mer
D fused cubes y84.714 y84.9292 d

Pentagonal prism y85.693 y87.165
12-mer

D fused cubes y107.294 y110.1642 d

Hexagonal prisms y104.781 y106.570
15-mer

D fused cubes y134.912 y137.5132 d

Face-sharing pentagonal prisms y135.929 y142.585
20-mer

D fused cubes y188.468 y196.4882 d

Face-sharing pentagonal prisms y187.080 y198.364
Edge-sharing pentagonal prisms y189.183 y191.157
Dodecahedron y182.214 y183.586

30-mer
D fused cubes y290.538 y302.4682 d

Face-sharing pentagonal prisms y289.493 y309.993
Face-sharing hexagonal prisms y287.023 y308.710
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pivot method. Some of these structures are shown in
Fig. 3. It can be concluded that the pivot method
does not necessarily reach the global minimum struc-
tures. An explanation for this can be given consider-
ing the prior information used by the algorithm to

w xoptimize a new structure 33 . To optimize a struc-
ture with N010, the algorithm uses as input the
structure of smaller clusters: octamer, nonamer, and
so on. These smaller clusters are of cubical form.
This situation, together with the fact that the opti-

Fig. 3. Some selected structures whose energies are given in Table
Ž . Ž .1. a 20-mer edge-sharing pentagonal prisms. b 20-mer face-

Ž .sharing pentagonal prisms. c 30-mer face-sharing hexagonal
prisms. As shown in Table 1, these structures may have stabiliza-
tion energies lower than those of the respective fused-cube struc-
tures.

Fig. 4. Energy per molecule ´ in kcal moly1 of the fused-cube
structures versus the number of tetramers n comprising the clus-

Ž .ters. Note how the curves, including that of group 4 k s3 ,4

seem to converge on the same limit.

mized clusters tend to form a fused-cube branch,
suggests that the pivot method is likely to optimize a
family of structures if the input consists solely of
structures belonging to the same family. In the pre-
sent case, the structural family consists of linear
chains of cyclic tetramers, or fused cubes, whose
optimized structures comprise D octamers and2 d

constitute four different groups described by the set
Ž .of Eq. 1 .

Fig. 4 shows two plots, one for each potential, of
< <the energy per molecule ´s ErN versus the num-

ber of tetramers n comprising the clusters which is
Ž .defined in Eq. 1 . The data corresponding to clusters

with N)33 are obtained by adding cyclic tetramers
to the fused-cube branches of the biggest representa-
tive structures of each group, with the exception of
that of group 4. Also, the data corresponding to the
MCY nonamer in group 2 are those of a D type2 d
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structure like the data of the other structures in the
same group. Clearly in Fig. 4, the points correspond-
ing to groups 1, 2, and 3 span smooth curves,
respectively, and each of these curves seems to tend
towards the same limit when n goes to infinity. For
the points representing group 4 which are shown in
more detail, the situation is a little different. They do
not span a smooth curve, but their dispersion from a
smooth one appears to be fairly small. This picture
arises when the possible structures, of the same
family, of every particular cluster in a given group
have similar energies per molecule ´ that span very
closed curves once in plots like those of Fig. 4. It
appears, however, that the points of group 4 follow
the same tendency as that noted for the points of
groups 1, 2, and 3 when n increases.

Fig. 5. Energy per molecule ´ in kcal moly1 versus the number
of water molecules N in the clusters. fshp, face-sharing hexagonal
prisms; fspp, face-sharing pentagonal prisms; and fc, fused cubes.
Although the crossings are potential dependent, the fused-cube
sequences appear to converge on a lower limit of ´ in both cases.

The fact that the lowest energy structures found
for the MCY octamer and nonamer are of type D2 d

and S , respectively, along with the data shown in4

Table 1, suggests that the phenomenon of crossing is
possible. After all, the stable cubical structure of the
octamer and the most stable phase of ice at Ts0
and Ps0, hexagonal ice I , do not appear to belongh

to the same family of structures. Fig. 5 shows some
crossings among curves of different families where
N is the number of water molecules in the cluster. It
is clear that the crossings are potential dependent,
but it is also clear that the face-sharing pentagonal
prism curve and the face-sharing hexagonal prism
curve tend to a higher limit of ´ than that which the
fused-cube curve does. This last feature is more
remarkable for the SR curves. Also in the SR case,
there is a noticeable crossing between the face-shar-
ing prism curve and the face-sharing hexagonal prism
curve. This is not observed for the MCY case within
the studied range.

3. Conclusions

If optimizing the potential surface of a water
cluster is already an intricate task, no less difficult is
attempting to find a connection between the proper-
ties of the water clusters. Despite this, the obtained
results give some clues. The first observation is on

Ž .Eq. 1 , which gives an account of the members of a
given family of structures. It seems reasonable to
think that any family can be represented by a set of

Ž .identities of the type of Eq. 1 . Moreover, as shown
in Figs. 1 and 3, it seems also reasonable to think
that the members of any family may form from the
aggregation of some particular units. This idea is
directly related to the field of Cluster Assembled
Materials which deals with bulk materials whose

w xbuilding blocks consist of clusters 35 . Although the
building units dealt with in the present work are
cyclic, there is no need for these to be so in all the
existing families. In fact, if the idea of clusters
formed from basic units is kept in mind, the results
suggest that the cyclic units interact better if they
form linear structures. Therefore, to think of a con-
nection between the finite clusters and the known
bulk phases of water, non-cyclic clusters arises as a
sensible alternative.
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Other conclusions that can be drawn from the
results pertain to the curves of energy shown in Figs.
4 and 5. Once optimized, a family of structures may
span several curves, as many as values of the param-

Ž .eter k there are in the set of Eq. 1 . All thesei
Žcurves present the same asymptotic behavior see

.Fig. 4 . Therefore, just one of these curves does
suffice for relating the given family to a bulk phase.
This represents a simplification of the problem even
though the number of existing families still may be a
daunting point. In addition, the crossings in Fig. 5
are potential dependent and this fact is ultimately
related to how the potentials are fitted. The asymp-
totic behavior of these curves also depends on the
fitting of the potentials and apparently presents a
quick convergence.

All the above features are subjects for further
studies. The existence of the sequences in both po-
tentials suggests that this is not a behavior of a
particular function, but rather a general behavior of
the water clusters. Also, the apparent asymptotic
behavior suggests a clear relation with bulk phases.
Sequences formed from non-cyclic units, or a combi-
nation of cyclic and non-cyclic units, which present
asymptotic behavior, may be related to some of the
known bulk phases. At present, the authors of this
Letter focus part of their efforts in that direction.
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