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Abstract

We study the entanglement of formation and quantum phase transition in a one-dimensional

quantum dots system with disorder modeled by the Hubbard Hamiltonian. The entanglement for

three different cases has been studied: The pure case; the impurity case of a symmetric electron

hopping and an impurity case of an asymmetric electron hopping. We have found that the local

entanglement of the system can be tuned by introducing different impurities characterized by the

physical parameters of the system. In particular, for certain parameters, the entanglement is

negligible up to a critical point Uc, where a quantum phase transition occurs, and is different from

zero above Uc.
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I. INTRODUCTION

After the work of Benioff[1], Feynman[2] and Deutsch[3] in the field of quantum comput-

ing and quantum information, the development in this area has been explosive[4, 5]. The

intrinsic parallelism in quantum mechanics due to superposition has been shown to lead to

greater computational power for a quantum computer. When quantum error correction is

shown to be possible[8], people started looking for physical systems that are appropriate for

a qubit, thus to build a quantum computer. Among many suggestions, quantum computer

based on quantum dots is a prominent one[9, 10]. Quantum dots are clusters of atoms and

molecules that are small enough so that their electronic states are discrete. To describe the

quantum dots, a simple approximation is to regard each dot as having a valence orbital, the

electron occupation could be |0 >, | ↑>, | ↓> and | ↑↓>, with other electrons treated as core

electrons[11]. The valence electron can tunnel from a given dot to its nearest neighbor obey-

ing the Pauli principle and thereby two dots can be coupled. This is the electron hopping

effect, which can be characterized by the distance between two dots. Another effect that

needs to be considered is the electron repulsion on each dot, which can be characterized by

the size of the dots. These two effects can be described by the electron hopping parameter t

and the Coulomb repulsion parameter U , by adjusting these two parameters, one can tune

the entanglement of the system, which is very important in quantum information processing.

Quantum entanglement is one of the most important concepts in quantum information

theory and quantum computation[12–15]. The non-local correlations exhibited by the states

of quantum systems are key to the implementation of quantum information processing tech-

nologies [16–23]. It has been realized that quantum entanglement can be used as a con-

trollable physical resource[24]. Quantum entanglement is also relevant to quantum phase

transition. Osterloh et.al[25] among others[26–28] connected the theory of critical phenom-

ena with quantum information by exploring the entangling resources of a system close to

the quantum critical point in a class of one-dimensional magnetic systems. Recently[29],

we have demonstrated that for a class of one-dimensional magnetic systems entanglement

can be controlled and tuned by varying the anisotropic parameter in the XY-Hamiltonian

and by introducing impurities into the systems in the equilibrium state. Gu et al.[35] show

that for the one-dimensional extended Hubbard model, quantum phase transition can be

identified at places where local entanglement is maximum or its derivative is singular.
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Finding a measure of the quantum entanglement is an important issue in the field of

quantum information and computation. For a fermion system, there exist several mea-

sures of the quantum entanglement, the Wootters’ measure for the spin-only entanglement

of localized distinguishable particles[30], the Schliemann’s measure[31, 32] and Zanardi’s

measure[33]. In this paper, we will follow the work of Gittings and Fisher[34] by using the

von Neumann entropy as an entanglement measure, to study the entanglement of formation

in the one-dimensional Hubbard model when disorder of electron hopping is introduced.

II. ENTANGLEMENT IN THE ONE-DIMENSIONAL HUBBARD MODEL

We consider an array of quantum dots modeled by the one-dimensional Hubbard Hamil-

tonian of the form

H = −
∑

<ij>,σ

tij c+

iσ cjσ + U
∑

i

ni↑ ni↓ (1)

where tij stands for the hopping between the nearest neighbor sites for the electrons with

the same spin, i and j are the neighboring site numbers, σ is the electron spin, c+

iσ and cjσ

are the creation and annihilation operators, U is the Coulomb repulsion for the electrons on

the same site. The periodic boundary condition is applied.

The entanglement measure is given by von Neumann entropy[33]

Ej = −Tr(ρjlog2ρj), ρj = Trj(|Ψ >< Ψ|) (2)

where Trj denotes the trace over all but the jth site, |Ψ > is the antisymmetric wavefunction

of the fermions system and ρj is the reduced density matrix. Hence Ej actually describes

the entanglement of the jth site with the remaining sites.

In the Hubbard model, the electron occupation of each site has four possibilities, there

are four possible local states at each site, |ν >j = |0 >j, | ↑>j, | ↓>j, | ↑↓>j. The dimensions

of the Hilbert space of an L-site system is 4L and |ν1ν2...νL >=
∏L

j=1 |νj >j can be used as

basis vectors for the system. The entanglement of the jth site with the other sites is given

by[35]

Ej = −zLog2z − u+Log2u
+ − u−Log2u

− − wLog2w, (3)
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where the local density matrix is site independent since the Hamiltonian is invariant under

translation and is given by

ρj = z|0 >< 0| + u+| ↑><↑ | + u−| ↓><↓ | + w| ↑↓><↑↓ | (4)

with

w =< nj↑nj↓ >= Tr(nj↑nj↓ρj) (5)

u+ =< nj↑ > −w, u− =< nj↓ > −w (6)

z = 1 − u+ − u− − w = 1− < nj↑ > − < nj↓ > +w. (7)

The Hubbard Hamiltonian can be rescaled by dividing it with the electron hopping param-

eter t = tij. Thus, after rescaling the electron repulsion becomes U/t.

In the ideal case, we can expect an array of the quantum dots to have the same size and

distributed evenly, so that the parameters t and U are the same everywhere respectively.

We call this the pure case. In fact the size of the dots may not be the same and they may

not be evenly distributed, which we call the impurity case. In this paper, we consider two

types of impurities. The first one is to introduce a symmetric hopping impurity t′ between

two neighboring dots and the rest of the sites with hopping parameter t, the second one

is to introduce an asymmetric electron hopping t′ between two neighboring dots, the right

hopping is different from the left hopping, while the rest of the sites with hopping parameter

t.

A. Pure Case

In the pure case, for the one-dimensional Hubbard model with half-filling electrons, we

have < n↑ >=< n↓ >= 1

2
, u+ = u− = 1

2
− w, and the entanglement is given by

Ej = −2wlog2w − 2(
1

2
− w)log2(

1

2
− w) (8)

Consider the particle-hole symmetry of the one-dimensional Hubbard model, one can

obtain w(−U) = 1

2
−w(U), so the entanglement is an even function of U , Ej(−U) = Ej(U).

The minimum of the entanglement is 1 as U → ±∞. As U → +∞ all the sites are singly

occupied the only difference is the spin of the electrons on each site, which can be referred

as spin entanglement. As U → −∞, all the sites are either doubly occupied or empty, which
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is referred as space entanglement. The maximum of the entanglement is 2 at U=0, which

is the sum of the spin and space entanglement of the system. The ground state of the one-

dimensional Hubbard model at half filling is metallic for U < 0, and insulating for U > 0,

U = 0 is the critical point for the metal insulator transition, where the local entanglement

reaches its maximum. In figure (1) we show the entanglement as a function U/t for six sites

and six electrons. Our results are in complete agreement with exact one obtained by Bethe

ansatz[35].

The good agreement for the calculated entanglement obtained from the Bethe ansatz

(number of sites equals 70 and ∞) and exact diagonalization technique (number of sites

equals 10)[35] and our calculations (number of sites equals 6) justifies the validity of our

results using small clusters of sites to study other impurity cases.

B. Impurity Case A: Symmetric Electron Hopping

In this case we introduce an impurity of symmetric electron hopping in the first two sites,

t′ = t21 = t12 = t(1 + α), the electron hopping on the rest of the sites is still scaled as t.

Figure (2) shows the entanglement of sites 1 and 2, as a function of U/t, with α = 0, 1, 2, 3.

From figure (2), we can see that the minimum entanglement is 1 as U → ±∞ , and the

maximum entanglement is 2 at U = 0. The local entanglement on sites 1 and 2 as well as on

other sites are symmetric. The only difference from the pure case is that the curve becomes

broader, since as α increases the quantity |U/t′| decreases. Physically, this means that the

contribution from space entanglement (as U/t > 0) or spin entanglement (as U/t < 0)

increases as |U/t| close to 0. The features displayed by the entanglement indicates that for

the ground state of the one-dimensional Hubbard model at half filling when an impurity of

symmetric electron hopping is introduced, the critical point Uc = 0 separate the metal phase

from the insulator phase. Thus, at this critical point the system undergoes a quantum phase

transition.

C. Impurity Case B: Asymmetric Electron Hopping

An impurity of asymmetric electron hopping can also be introduced to the pure case,

which could happen when the dots are in different potentials. We set the electron hopping
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from site 1 to site 2 as t′ = t21 = t(1 + α). However, the hoping from site 2 to site 1 as

well as all other electron hopping are t. We can obtain the entanglement on sites 1 and 2

with α = 0, 1, 2, 3 as shown in figure(3). The entanglement is no longer symmetric when

the asymmetric impurity is introduced, the maximum of the entanglement shifts from

U = 0, and is less than 2. The minimum of the entanglement is less than 1 and decreases

as α increases when U → −∞. The entanglement goes to 1 as U → +∞. This can be

explained as in the half filling model, when U → +∞ all the sites are singly occupied and

the occupation number of spin-up electrons equals the occupation number of spin-down

electrons; when U → −∞, since the electron hopping from site 1 to site 2 is easier such

that the occupation number w =< n1↑n1↓ > on site 1 is smaller and on site 2 is bigger,

they compensate each other, the entanglement on these two sites are exactly the same.

When U/t < 0, where the space entanglement makes up the main contribution to total

entanglement of the system, the probability of site 1 and site 2 to be doubly occupied and

empty is not balanced, this causes the entanglement to be lower than 1. This feature is

more clear when α is increased, figure (4) shows how the entanglement when α is set to

1000. Here the interesting point is that the maximum entanglement can be reached at

U > 0, which means that the state corresponding to the maximum entanglement can be

obtained by adjusting the parameters t, t′ and U . The same feature can also be obtained

from the entanglement on the other sites. Figure (5) shows the local entanglement of sites 3

and 6 and the local entanglement of sites 4 and 5 when α = 1000. The local entanglement

for sites 3 and 6 are the same, also sites 4 and 5 are the same since each pair are in the same

environment. They are symmetric with respect to the impurity introduced between sites 1

and 2 in the system. The entanglement on these two pairs of sites have the same feature

as that of sites 1 and 2, this feature decreases as the sites are far away from the sites 1 and

2, where impurity is introduced. This feature of the local entanglement on each site of the

system indicates that for the ground state of the one-dimensional Hubbard model at half

filling when an asymmetric impurity of electron hopping is introduced, the critical point for

the quantum phase transition occurs at a point Uc > 0. When U ≤ Uc the system is metallic

and when U > Uc the system is insulating. For the one-dimensional Hubbard model system,

when an asymmetric electron hopping impurity is introduced, we can imagine that there is

another site above the one-dimensional chain between sites 1 and 2 the electron can also

hopping through this site, so an extra channel for electron hopping is introduced. In fact
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such a system can be viewed as a two-dimensional system. In our previous study[36], we

have shown the existence of the critical point at Uc > 0 for metal-insulator transition (MIT)

and the close relation with the entanglement for two-dimensional Hubbard model systems.

In summary, we have studied the entanglement of an array of quantum dots modeled

by the one-dimensional Hubbard Hamiltonian in three different cases. The entanglement in

the pure case and the impurity of symmetric electron hopping case A is maximum at the

critical point Uc = 0 for the metal insulator transition. In the asymmetric electron hopping

case B the maximum of the entanglement indicates a critical point at Uc > 0. Moreover, we

have found that the local entanglement of the system can be tuned by introducing different

impurities characterized by the system parameters U , t and t′. In particular, for certain

parameters, the entanglement is very small up to a critical point Uc, where a quantum

phase transition occurs, and is different from zero above Uc. This can be used in quantum

information processing where entanglement plays an important role. The system can be

prepared to the desired state contains a certain amount of entanglement, then some quantum

operation can be applied to the system for quantum control.

7



[1] P. Benioff, J. Stat. Phys. 563, 22 (1980); Phys. Rev. Lett. 48, 1581 (1982).

[2] R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).

[3] D. Deutsch, Proc. R. Soc. A400, 97 (1985); Proc. R. Soc. A425, 73 (1989).

[4] C. H. Bennett and D. P. DiVincenzo, Nature 404, 247 (2000).

[5] C. Monroe, Nature 416, 238 (2002).

[6] P. Shor, in Proceedings of the 35th Annual Symposium on the Foundations of Computer Sci-

ence, ed. By S. Goldwasser (IEEE Computer Society, Los Alamitos, 1994), p. 124.

[7] L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).

[8] P. Shor, Phys. Rev. A 52, R2493 (1995); A. Steane, Phys. Rev. Lett. 77, 793 (1996).

[9] D. Loss, D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998)

[10] M. Friesen, M. P. Rugheimer, D. Savage, M. Lagally, D. van der Weide, R. Joynt, Phys. Rev.

B 67, 121301 (2003).

[11] F. Remacle and R. D. Levine, PNAS, 97, 553 (2000)

[12] C.H. Bennett and D.P. DiVincenzo, Nature 404, 247 (2000).

[13] C. Macchiavello, G.M. Palma and A. Zeilinger, Quantum Computation and Quantum Infor-

mation Theory (World Scientific, 2000).

[14] M. Nielsen and I. Chuang Quantum Computation and Quantum Communication (Cambridge

Univ. Press, Cambridge, 2000)

[15] J. Gruska, Quantum Computing (McGraw-Hill, 1999)

[16] V. Vedral, M.B. Plenio, M.A. Rippin and P.L. Knight, Phys. Rev. Lett. 78, 2275 (1997).

[17] C.H. Bennett et. al. Phys. Rev. Lett. 70, 1895 (1993).

[18] D. Bouwmeester et. al. Nature, 390, 575 (1997).

[19] C.H. Bennett and S.J. Wiesener, Phys. Rev. Lett. 69, 2881 (1992).

[20] A.K. Ekert, Phys. Rev. Lett.67 , 661 (1991).

[21] M. Murao, D. Jonathan, M.B. Plenio and V. Vedral Phys. Rev. A 59, 156 (1999).

[22] D. Bacon, J. Kempe, D.A. Lidar and K.B. Whaley, Phys. Rev. Lett. 85, 1758 (2000).

[23] J. Vala, Z. Amitay, B. Zhang, S. R. Leone, and R. Kosloff, Phys. Rev. A 66, 062316 (2002).

[24] M. A. Nielsen, C. M. Dawson, J. L. Dodd, A. Gilchrist, D. Mortimer, T. J. Osborne, M. J.

Bremner, A. W. Harrow and A. Hines, Phys. Rev. A 67, 052301 (2003).

8



[25] A. Osterloh, L. Amico, G. Falci, and Rosario Fazio, Nature 416, 608 (2002).

[26] A. R, Its, B.Q. Jin and V.E. Korepin, J. Phys. A 38, 2975 (2005).

[27] V.E. Korepin, Phys. Rev. Lett. 92, 096402 (2004).

[28] F. Verstraete, M.A. Martin-Delgado, J.I. Cirac, Phys. Rev. Lett. 92, 087201 (2004).

[29] O. Osenda, Z. Huang and S. Kais, Phys. Rev. A 67, 062321 (2003).

[30] W. K. Wooters, Phys. Rev. Lett. 80, 2245 (1998).

[31] J. Schliemann, J. Ignacio Cirac, M. Kus, M. Lewenstein and D. Loss, Phys. Rev. A 64, 022303

(2001).

[32] J. Schliemann, D. Loss and A. H. MacDonald, e-print, cond-mat/0009083.

[33] P. Zanardi, Phys. Rev. A 65, 042101 (2002).

[34] J. R. Gittings and A. J. Fisher, Phys. Rev. A 66, 032305 (2002).

[35] S. Gu, S. Deng, Y. Li, and H. Lin, Phys. Rev. Lett. 93, 086402 (2004).

[36] J. Wang and S. Kais, Int. J. Quant. Chem. 93, 360 (2003).

9



-40 -20 0 20 40
1

1.2

1.4

1.6

1.8

2

U/t

E
v

FIG. 1: Local entanglement given by von Neumann entropy, Ev, versus U/t in the pure case.
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FIG. 2: Local entanglement Ev of sites 1 and 2 versus U/t in the symmetric electron hopping case.
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FIG. 3: Local entanglement Ev of sites 1 and 2 versus U/t in the asymmetric electron hopping

case.
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FIG. 4: Local entanglement Ev of sites 1 and 2 versus U/t in the asymmetric electron hopping

case with α = 1000
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FIG. 5: Local entanglement Ev of sites 3 and 6 and sites 4 and 5 versus U/t in the asymmetric

electron hopping case with α = 1000.
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