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We compare two implementations of a new algorithm called the pivot method for the location of the
global minimum of a multiple minima problem. The pivot method uses a series of randomly placed
probes in phase space, moving the worst probes to be near better probes iteratively until the system
converges. The original implementation, called the ‘‘lowest energy pivot method,’’ chooses the
pivot probes with a probability based on the energy of the probe. The second approach, called the
‘‘nearest neighbor pivot method,’’ chooses the pivot probes to be the nearest neighbor points in the
phase space. We examine the choice of distribution by comparing the efficiency of the methods for
Gaussian versus generalizedq-distribution, based on the Tsallis entropy in the relocation of the
probes. The two implementations of the method are tested with a series of test functions and with
several Lennard-Jones clusters of various sizes. It appears that the nearest neighbor pivot method
using the generalizedq-distribution is superior to previous methods. ©1997 American Institute of
Physics.@S0021-9606~97!01417-7#
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I. INTRODUCTION

Many different fields of science require finding the loc
tion of the global minimum in a multiple minima function. A
more efficient algorithm for global optimization would fin
applications in a wide range of fields, such as drug des
molecular modeling, mathematical biological calculatio
and quantum mechanical calculations. One of the more
ficult problems that frequently arises is that of molecu
structure. Aside from the obvious difficulty of creation of
potential that accurately models the system in question,
other serious problem lies in finding the minimas of th
potential. One is presented with the dilemma that if one
a potential that can portray a system in a useful fashion, t
that same potential is highly complex and difficult
minimize.1–9 It is therefore a productive endeavor to inve
tigate possible improvements to established methods of m
mization of functions.

Methods of minimization can be largely classified in
two groups, deterministic and stochastic. Determinis
methods have the strength of being extremely fast, but h
the weakness of being liable to be caught in a local minim
fairly easily. Conversely, a stochastic method is far le
likely to be trapped in a local minima, but it can be show
that no stochastic method has a probability of one to c
verge to the global minimum in a finite number of steps.

Among the deterministic methods known are variatio
on Newton’s method, such as discrete Newton, qu
Newton, and truncated Newton.10 Additionally, work has
been done to significantly improve these methods for v
large systems, specifically limited memory quasi-Newt
and truncated Newton approaches.11 More recent work has
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focused also on deterministic global optimization, such
the tunneling method12 and the renormalization grou
method.13 At the same time, one can include simulat
annealing,14 quantum annealing,15 J-walking,16 tabu
search,17 and genetic algorithms18 in the roster of stochastic
methods.

Recently, we have developed two optimization metho
both based on pivot moves through phase space. In the o
nal method,19 the pivots were chosen based on their energ
while in a more efficient version,20 the pivots were chosen a
the nearest neighbor point. The major difference between
methods is the way in which the pivot points are chosen
effect, phase space is visited in a very different way for
two methods.

To determine what circumstances favor one method o
the other, we have run a series of test functions, as wel
Lennard–Jones clusters, using both methods in order to
ter compare the relative strengths and weaknesses of the
approaches to the pivot method. In the next section we
cuss the pivot method in general, the generalized distribu
function, and its use in our methods. Section III goes in
detail on the comparison via test functions. In Sec. IV
discuss the use of the nearest neighbor pivot method
Lennard-Jones clusters of sizes ranging from 6 to 20. Fina
we review the results and project further research to impr
the method, as well as additional applications.

II. PIVOT METHODS

We begin by assuming a continuous phase spaceS.
Within phase space is defined a real function,f :S→R. Our
goal is to determine the global minimum value of this fun
tion within the defined phase space, minf(x):x P S.

The general pivot approach to this problem is presen
diagrammatically in the flowchart~Fig. 1!. Briefly, we begin
by locating a series of probes randomly distributed in
106(17)/7170/8/$10.00 © 1997 American Institute of Physics
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7171Serra et al.: Pivot methods for global optimization
phase spaceS, where each point inS is a series of values fo
all parameters of the problem. These points are called pro
because they are probing the value of the functionf (x) for
some set of parameters. The probes are chosen initially e
completely at random or based on some given informa
about the problem, or some mixture of the two, by choos
some probes at random and some as our best guesses
cause the probes are themselves a complete set of value
all parameters in the problem, each probe would have s
given value associated with it, that is, the value of the fu
tion at the point where the probe has been located. Accord
to the ranking of the probes, we developed two differe
approaches: The lowest energy pivot~LEP! method and the
nearest neighbor pivot~NNP! method. Both are based on th
general idea of pivots, but they explore phase space in a
different way.

A. Lowest energy pivot method

For the lowest energy approach, we begin by ranking
probes from best~lowest function value! to worst ~highest
function value!. If we have chosen enough probes, t
chances are good that one or more of them are near
global minimum, and have good values. Probes near lo
minimas can also have good values, so it is importan
avoid moving too many probes at once. Therefore,

FIG. 1. Flow chart for pivot methods for global optimization.N is the total
number of probes,M is the number of probes to be relocated, andQ is the
number of cycles between temperature scalings.
J. Chem. Phys., Vol. 106
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choose some number of probes with poor values to be
placed, which is some fraction of the total number of prob
with which we had started.

The number of probes we begin with and the numb
that we move at each iteration are arbitrarily adjustable
rameters. The probability of choosing a probe close to
global minimum and low enough in the function well,
based on the number of probes we initially choose and
width of the function well at the global minimum relative t
the size of phase space.

When we begin to move the probes with poor values,
want to place them near probes with better values in orde
better explore the phase space in the region of the pro
with good values. However, we don’t want to place them
near the very best probe, because it is possible that
single probe is in a local, rather than global, minimu
Therefore, each probe that is moved will be placed nea
probe chosen at random, but with a probability of being ch
sen as a pivot probe, based on its energy. The probe ch
as that probe which the relocated probe will be placed n
we call the ‘‘pivot probe,’’ and the probability for each prob
to be chosen as the pivot probe is given by

Pi5
exp@2 f ~xi !#

P
, P5 (

i51

n2m

exp@2 f ~xi !#. ~1!

We choose pivot probes at random because of the cha
that we may be too close to a local minimum in the fi
iteration. We therefore assign a probability of choosing
particular probe,i , as a pivot probe,f ( i ), wheren is the total
number of probes,m is the number of probes relocated
each iteration, andf (xi) is the function value of probei .

By choosing pivot probes according to this probabilit
we favor the probes with lower energy, but we also c
choose probes with higher energy, thereby avoiding accid
tally deleting the probe closest in phase space to the glo
minimum. In any given iteration, several pivot probes a
chosen. Therefore, we are continuously moving into regi
of phase space with lower function values.

Once a pivot probe is chosen, we reassign each par
eter of the probe being moved to a value close to, but
equal to, the pivot probe. The relocated probe parameters
placed in a Gaussian distribution centered on the parame
of the pivot probe, with a standard deviation input as
arbitrarily adjustable parameter,s. Initially, this size should
be chosen to be large so that a large portion of phase spa
covered by the pivot probes in the early iterations of t
algorithm.

Once each relocated probe has been placed near a
probe, the values for the new probes are calculated, and
process begins again with the ranking of the values of
probes. For the LEP method, whether or not the reloca
probe has a higher or lower energy than the pivot probe
not a consideration, because in the reranking any po
placed probe will most likely be moved again in the ne
iteration anyway. Therefore, all pivot moves are accept
regardless of the function value of the new probe relative
the pivot. The number of iterations for any given standa
, No. 17, 1 May 1997
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7172 Serra et al.: Pivot methods for global optimization
deviation value can be varied. The more steps taken,
better phase space is sampled, but the longer it will take
the algorithm to converge. Once a predetermined numbe
iterations have elapsed using this standard deviation,
value is then decreased at some given rate.

This rate,R, decreases the standard deviations to some
new value,s8, wheres8 5 Rs. At each new standard devia
tion, the algorithm repeats as many times as with the ini
standard deviation, at which times is decreased again. I
effect, this means that the probes will in time converge
some given small point, and, with a good sampling of ph
space, this point should be the global minimum. The ite
tions continue until the stopping criteria are met.

B. Nearest neighbor pivot method

The nearest neighbor pivot~NNP! method20 is another
variant of the pivot method. In NNP we begin with a seri
of probes within the phase space of the problem, defi
exactly as above. The method diverges from the lowest
ergy pivot method, however, in the way in which the piv
probes are chosen, and therefore, in the way in which ph
space is explored.

In the NNP method, we start withN 5 2m initial probes,
of which m probes will act as the pivot probes, and t
remainingm probes will be relocated. A local selection o
them pivot probes begins with a search at each probe fo
nearest neighbor, based on the distance of the probes. T
are different ways to do this selection, but it is not relevan
the method. We began with finding the nearest neighbor
probe 1 and removed those two probes from further con
eration. This was repeated until all points had been paire

Once we have paired the probes, the probe with
lower value for the functionf (x) is defined as the pivo
probe, the other probe being the probe that will be reloca

For each pivot probe with parameter valuesxB,i , we
explore phase space by placing the probe to be relocated
the pivot probe by changing its parametersxR,i as

xR,i5xB,i1Dxi , ~2!

whereDxi is a randomly generated vector according to
distributionge(Dx). As opposed to the LEP method, whic
uses a Gaussian distribution, the NNP method works b
with the generalizedq-distribution based on the Tsalli
entropy21 for the placement of the probes near the piv
probes. This distribution was recently used with good res
in generalized simulated annealing methods,22–27 and is
given by

gq~x!5Aq2 l

p

G@1/~q21!#

G@1/~q21!2 1
2#

3
@b~ t !#1/~32q!

@11~q21!~@b~ t !#1/~32q!x!2#1/~q21! , ~3!

whereb is defined to be 1/T andT is an artificial temperature
given by23
J. Chem. Phys., Vol. 106
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T~ t !5
2q2121

~11t !q2121
T~1!, t51,2,3,..., ~4!

whereT(1) is the initial temperature, andt is the discrete
time corresponding to the computer iterations.28

The Tsallisq-distribution23 defined above, Eq.~3!, has
been suggested as a generalization to the Gaussian dis
tion. This distribution function introduces a new parame
q as an arbitrarily adjustable parameter. This arbitrarily a
justable parameterq allows one to vary the length of the ta
of the distribution curve. Special cases that should be
noted are the limitq→1, where theq-distribution ap-
proaches the Gaussian distribution, and forq 5 2, where the
q-distribution is equal to the Cauchy–Lorentz distributio
used in fast simulated annealing.29 The second moment o
this distribution diverges forq > 5/3, and the distribution be
comes not normalizable forq > 3. As we show in several tes
functions, we have foundq 5 2.5 to be a good value for ou
global optimization method, as in generalized simula
annealing.23

Figure 2 illustrates visually the differences between
Gaussian (q 5 1), Cauchy (q 5 2), and generalizedq 5 2.5
distributions. From this, one can easily see the transit
from a localized distribution to a long tail one. Figures 3–
demonstrate a two-dimensional random walk taken by e
of these three distributions. Again, one can see that fo
Gaussian distribution the majority of the walk is confined
one region of phase space, the Cauchy distribution occas
ally has large ‘‘jumps’’ from one region to another, ye
spends a large amount of time focusing on specific areas,
theq 5 2.5 distribution has a high nonlocal character. Suc
high nonlocal character insures that all of phase spac
being adequately searched on a continuing basis, even
low temperature.

We tested two ‘‘pivot acceptance criteria.’’ The first
the Metropolis algorithm,30 where the acceptance probabili
PA(xt→xt11) is given by

FIG. 2. Generalizedq-distribution as a function ofx for q 5 1, q 5 2, and
q52.5.
, No. 17, 1 May 1997
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7173Serra et al.: Pivot methods for global optimization
PA~xt→xt11!5H 1 if f ~xt11!, f ~xt!

e2b~ t !@ f ~xt11!2 f ~xt!# if f ~xt11!> f ~xt!,
~5!

whereb is a fictitious inverse temperature.
The second criterion used is an absolute acceptance

terion, which is identical to the Metropolis algorithm Eq.~5!
in the limit T→0

PA~xt→xt11!5 H10 if f ~xt11!, f ~xt!,
if f ~xt11!> f ~xt!.

~6!

It has been determined that there is no significant diff
ence between these two move acceptance criteria, and w
the absolute criterion Eq.~6! in the present work.

FIG. 3. Two-dimensional random walk with a Gaussian distributionq
5 1) and a temperature of 0.01.

FIG. 4. Two-dimensional random walk with a Lorentz distribution (q 5 2)
and a temperature of 0.01.
J. Chem. Phys., Vol. 106
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To empirically determine which of the various possib
values ofq might work best for our optimization method, w
must explicitly test the various distributions against an est
lished set of test functions.

III. TEST FUNCTIONS

As a preliminary test for the use of the generaliz
q-distribution, we begin by trying to find the optimal valu
of q that minimized the number of function calls necessa
in the minimization procedure. We have used the Tsallis d
tribution for all test functions. We have compared the tw
approaches~LEP and NNP! with one another, both with the
Gaussian distribution function as well as NNP with the ge
eralizedq-distribution function. The goal is to determine th
optimal value ofq for each method and to demonstrate ho
the two approaches compare with one another. To do so
have run each approach on several well-established fu
tions. These functions included the Goldstein–Price~GP!
equation, the Branin~BR!, the Hartman three- and six
dimensional functions~H3 and H6!, and the Shubert function
~SH!.31 Each of these functions is explicitly stated in th
Appendix. All of these functions were tested using both t
LEP and NNP methods, and each method was tested u
the Gaussian distribution and the NNP with generaliz
q-distribution for the relocation of the probes that are mov
To compare these in a machine-independent fashion, we
port the number of function calls for both the Gaussian a
the q-distribution function of the NNP approach, and th
Gaussian distribution function of the LEP method in Table
For comparison, we included in Table I the results of pu
random search~PRS!, simulated annealing types 1 and
~SA1 and SA2, respectively! and tabu search~these results
are taken directly from Ref. 17!. Several comments shoul
be made about these results.

The number of function calls for the LEP approach a
different than reported in an earlier publication.19 In the pre-

FIG. 5. Two-dimensional random walk with aq-distribution (q 5 2.5) and a
temperature of 0.01.
, No. 17, 1 May 1997
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7174 Serra et al.: Pivot methods for global optimization
vious publication, we tried to keep all parameters of t
problem identical for all test functions. In the current pub
cation, we have used four of these parameters~number of
initial probes, number of probes moved, number of sea
iterations per standard deviation,s, and rate of contraction
R! as free parameters. These parameters were varied to m
mize the number of function calls for each of the test fun
tions. As a specific example, for the GP function, the b
values were found to be 15 initial probes, 5 probes move
each step, 4 steps were taken at any given value ofs, and a
rate of contraction of 0.385. It can be clearly seen from Ta
I that the LEP method, when used with our optimal para
eters, yields a general improvement of a factor of appro
mately 4 over previous methods. This represents the b
method. As we shall see, when modifications such as the
of nearest neighbor selection or a generalizedq-distribution
are added, additional improvements are gained.

Similarly, the parameters for the NNP approach ha
been optimized as well. We are therefore comparing the
results in Table I. Initially we used a Gaussian distributi
with the nearest neighbor pivot variation, and improvem
was only seen for the H3 and H6 methods, and this s
gested to us that perhaps varying the distribution may y
some more improvement. Tests were done to determine w
the best value ofq might be for various functions, and th
results of this can be seen in Figs. 6–8. One can readily
that a value of roughlyq 5 2.5 yields the lowest number o
function calls for nearly all of the test functions. This appe
to be the best ‘‘compromise’’ between searching locally a
nonlocally. The results of these test functions indicate t
the NNP method is superior over previous methods, wit
four- to 12-fold improvement over the tabu search metho17

for all functions tested.

IV. LENNARD-JONES CLUSTERS

Lennard-Jones clusters are excellent for testing the
ciency of global optimization algorithms. Homogeneo
Lennard-Jones clusters have well-established minimas
regular minimum-energy structures for very lar
clusters.32,33 However, the number of local minima appa

TABLE I. Average number of function evaluations in the global optimiz
tion of five test functions.

Methoda GP BR H3 H6 SH

PRS 5,125 4,850 5,280 18,090 6,700
SA1 5,439 2,700 3,416 3,975 241,215
SA2 563 505 1,459 4,648 780
TS 486 492 508 2,845 727
LEP
~Gaussian!

112 144 122 1536 281

NNP
~Gaussian!

575 358 60 411 360

NNP(q5 2.5) 153 68 52 237 114

aThe methods are the pure random search~PRS!, simulated annealing type
1 and 2~SA1 and SA2, respectively!, tabu search~TS!, lowest energy pivot
~LEP!, and nearest neighbor pivot~NNP!. The references for these method
and results can be found in Ref. 17.
J. Chem. Phys., Vol. 106
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ently grows as exp(N2) ~Ref. 34!. Wilke and Vennik have
shown that to find the global minimum in Lennard-Jon
clusters is a NP-hard problem.35 Several global optimization
methods have been applied to the energy function
Lennard-Jones clusters. These include simulated anneali36

genetic algorithm,37 diffusion equation methods,38 quantum
annealing,39 J-walking,40 and others.41 The total energy for a
Lennard-Jones cluster ofN particles is

EN5 (
i51

N21

(
j5 i11

N

VLJ~r i j !, ~7!

FIG. 6. Average number of function calls^# f c& vs q for the Goldstein–
Price ~GP! function. This represents the average over the successful
with a minimum convergence of 95%. One thousand runs were done
each value ofq plotted.

FIG. 7. Average number of function callŝ# f c& vs q for the three-
dimensional Hartman (H3) function. This represents the average over t
successful runs with a minimum convergence of 95%. One thousand
were done for each value ofq plotted.
, No. 17, 1 May 1997
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7175Serra et al.: Pivot methods for global optimization
wherer i j is the distance between thei th and thej th particles
andVLJ(r ) is the Lennard-Jones two-body potential

VLJ~r !5
1

r 12
2

2

r 6
. ~8!

For small Lennard-Jones clusters (N < 6), the global en-
ergy minimum was located very quickly~less than 1 CPU
second on an IBM RS/6000!. One of the powerful features o
this algorithm is that previous knowledge of the system c
be built into the initialization of the probes. For larger clu
ters, we incorporated the information already gained by st
ing with the structure of the smaller (N 2 k) clusters and
addingk additional particles at random. In any ‘‘growing
problem, such as minimum energy configuration of cluste
self-avoiding walks, protein folding, etc.,32 this systematic
approach to solving the structure of large clusters can
incorporated. For anN-cluster, we begin withm 3 k initial
pivot probes chosen as follows: There arem clusters of size
(N2 1)1 1 randomatom,mclustersof size (N2 2)1 2 ran-
dom atoms,...,m clusters of size (N 2 k 1 1) 1 (k 2 1) ran-
dom atoms, and finallym completely random pivot probe
~in our calculations we setk 5 N/2!. With this set of the
initial pivot probes, if theN-cluster has a similar structur
with a smaller cluster, the algorithm converges faster th
purely random initial points. If theN-cluster has a much
different structure than the (N 2 k) structure, or has one o
more local minima near the global minimum, as in theN
5 18 Lennard-Jones cluster, then the method works no
efficiently than it would with initial pivot probe location
chosen completely at random. In order to reach the ex
minimum for the Lennard-Jones clusters, a gradient des
minimization was used once our method met its converge
criteria.

As was mentioned, we tested varying values ofq to
make certain thatq 5 2.5 was still a good value for Lennard

FIG. 8. Average number of function callŝ# f c& vs q for the six-
dimensional Hartman (H6) function. This represents the average over t
successful runs with a minimum convergence of 95%. One thousand
were done for each value ofq plotted.
J. Chem. Phys., Vol. 106
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Jones clusters of varying sizes. Figure 9 represents the ra
convergence for different values ofq for a cluster of 13
particles, and it can be seen that this convergence reach
maximum at or very near toq 5 2.5. Each point plotted rep
resents an average over 100 runs. Figure 10 is a simila
lustration for 18 particles in a Lennard-Jones cluster, a
again it can be seen that there is a maximal value neaq
5 2.5. This indicates fairly strongly that a value ofq near 2.5
seems to be a somewhat universal property of the gene
ized distribution function for our method of optimization.

Figure 11 illustrates how our method scales with t
number of Lennard-Jones particles to be minimized. Usin
log–log scale we show that our method scales approxima
asN2.9, compared to the recently reported modified gene

ns
FIG. 9. Percentage of successful runs vsq for N 5 13 Lennard-Jones func-
tion. One hundred runs were done for each value ofq plotted.

FIG. 10. Percentage of successful runs vsq for N 5 18 Lennard-Jones func-
tion. One hundred runs were done for each value ofq plotted.
, No. 17, 1 May 1997
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7176 Serra et al.: Pivot methods for global optimization
algorithm, which scales asN4.7.37 One should note that th
probability of finding the global energy minimum wa
strongly correlated with the size of the cluster. It was re
tively difficult to obtain the global minimum for clustersN
5 6 andN 5 18. This implies that the difficulty~cpu time!
does not scale in a simple way withN, but depends on the
characteristics of the potential energy hypersurface.42 Our
cpu time given includes this gradient minimization. The c
time on this chart has been experimentally determined on
IBM RS/6000-580 for our method, and the gene
algorithm37 was included for comparison of scaling. The e
act cpu time was not determined. Clearly, from this exam
one can see that substantial savings in time should be
ized for using the NNP method over the genetic algorit
for very large clusters.

V. DISCUSSION

In this paper we have presented two different piv
methods and compared them, the lowest energy p
method~LEP! and the nearest neighbor method~NNP!. Us-
ing a Gaussian distribution it appears that the lowest ene
pivot is good for low dimensional functions, while for highe
order potentials the nearest neighbor method shows
strength. Once a generalizedq-distribution is used in place
of a Gaussian distribution, the nearest neighbor pivot met
shows even more substantial improvement, especially for

FIG. 11. Log–log graph of cpu time in seconds vs number of Lennard-Jo
particles. The dashed line represents the scaling of the genetic algorith
Ref. 37,N4.7. The points represent experimentally determined times for e
of the clusters, and the solid line represents the scaling of this met
N2.9.

TABLE II. Parameters for the Hartman function,Hn , for n 5 3.

i a i1 a i2 a i3 ci pi1 pi2 pi3

1 3 10 30 1 0.3689 0.1170 0.2673
2 0.1 10 35 1.2 0.4699 0.4387 0.747
3 3 10 30 3 0.1091 0.8732 0.5547
4 0.1 10 35 3.2 0.03815 0.5743 0.882
J. Chem. Phys., Vol. 106
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high-dimensional functions. Having tested this with a ran
of values forq indicates that the value ofq approximately
equal to 2.5 gives the best results for this method. We c
cluded that when using the generalizedq-distribution the
NNP method is superior to previous methods.

As an explicit demonstration of the improvements o
method can yield over previous methods, Table I shows
for the simple LEP method using a Gaussian distributi
one can obtain roughly a fourfold improvement for mo
potentials. More interesting than that, however, is t
roughly 12-fold improvement one sees by comparing
NNP method with aq-distribution usingq 5 2.5.

Continuing in our exploration of the pivot methods fo
optimizing functions, we have investigated the minimizati
of Lennard-Jones clusters of particles and found our met
to be highly satisfactory. Figure 11 illustrates this by co
paring our method to a modified genetic algorithm.37 In this
reference, a cpu-time scaling asN4.7 was reported for
Lennard-Jones clusters. We have shown that our met
scales asN2.9 for the same clusters using the same initializ
tion and convergence criteria. A difference such as this d
not make a large savings in time for small clusters, but wh
one wishes to optimize a very large system, this scal
makes a big difference in computer time.

In short, we have presented a new method of optimiz
functions that has proven itself to be quite efficient, ve
flexible, rarely gets trapped in local minima, does not requ
computationally expensive derivatives, and is quite easy
implement. Flexibility is further enhanced by the ability
incorporate any previous knowledge of the potential un
investigation into the optimization. As a specific examp
we used smaller Lennard-Jones clusters as the starting p
for the larger ones. For very large systems, one could u
crystalline structure as a starting point and optimize fro
there. Although there are established methods32 for large
Lennard-Jones clusters, they require a homogeneous re
structure as a basis, and our method has no such restric
We are currently investigating a mathematical basis for t
method, which should yield additional improvements to t
method. We are also using this method for noble gas c
ters, oxides and halides, polymer configurations, and sm
clusters of water molecules.

es
of
h
d,

TABLE III. Parameters for the Hartman function,Hn , for n 5 6.

i a i1 a i2 a i3 a i4 a i5 a i6 ci

1 10 3 17 3.5 1.7 8 1
2 0.05 10 17 0.1 8 14 1.2
3 3 3.5 1.7 10 17 8 3
4 17 8 0.05 10 0.1 14 3.2

i pi1 pi2 pi3 pi4 pi5 pi6

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381
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APPENDIX

The test functions used in the text included t
Goldstein–Price~GP! equation, given by31

f ~x1 ,x2!5@11~x11x211!2~19214x113x1
2214x2

16x1x213x2
2!#@301~2x123x2!

2~18232x1

112x1
2148x2236x1x2127x2

2!#, ~A1!

where2 2< xi < 2. The globalminimum is equal to 3 and th
minimum point is located at (0,21). There are four loca
minima in the minimization region.

The second test function is the Branin~BR! function,

f ~x1 ,x2!5S x22 5.1

4p2 x1
21

5

p
x126D 2110S 12

1

8p D
3cosx1110,25<x1<10, 0<x2<15. ~A2!

The global minimum is approximately 0.398 and it
reached at three points (23.142, 12.275),~3.142, 2.275!,
and ~9.425, 2.425!.

TheHn Hartman test function has dimensionalities of
and 6 (n 5 3,6) and is given as

f ~xi !52(
i51

4

ci expF2(
j51

n

a i j ~xj2pi j !
2G , 0<xi<1,

~A3!

where the parameters,a i j , pi j , andci are given in Tables II
and Tables III. Forn 5 3 the global minimum is equal to
2 3.86 and it is reached at the point~0.114, 0.556, 0.852!.
Forn 5 6, the minimum is2 3.32 at the point~0.201, 0.150,
0.477, 0.275, 0.311, 0.657!.

The last test function is the Shubert~SH! function,

f ~x1 ,x2!5F(
i51

i55

i cos@~ i11!x11 i #G
3F(

i51

i55

i cos@~ i11!x21 i #G ,210<xi<10,

~A4!

and has 760 local minima in this region, 18 of which a
global withf (x1 ,x2) 5 2186.7309.
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