Comparison study of pivot methods for global optimization

Pablo Serra,® Aaron F. Stanton, and Sabre Kais”
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907

Richard E. Bleil
Kettering College of Medical Arts, 3737 Southern Boulevard, Kettering, Ohio 45429

(Received 17 October 1996; accepted 23 January)1997

We compare two implementations of a new algorithm called the pivot method for the location of the
global minimum of a multiple minima problem. The pivot method uses a series of randomly placed
probes in phase space, moving the worst probes to be near better probes iteratively until the system
converges. The original implementation, called the “lowest energy pivot method,” chooses the
pivot probes with a probability based on the energy of the probe. The second approach, called the
“nearest neighbor pivot method,” chooses the pivot probes to be the nearest neighbor points in the
phase space. We examine the choice of distribution by comparing the efficiency of the methods for
Gaussian versus generalizgetlistribution, based on the Tsallis entropy in the relocation of the
probes. The two implementations of the method are tested with a series of test functions and with
several Lennard-Jones clusters of various sizes. It appears that the nearest neighbor pivot method
using the generalizeghdistribution is superior to previous methods. 197 American Institute of
Physics[S0021-960807)01417-1

I. INTRODUCTION focused also on deterministic global optimization, such as
the tunneling methdd and the renormalization group
Many different fields of science require finding the loca- method!® At the same time, one can include simulated
tion of the global minimum in a multiple minima function. A annealing® quantum annealinf, J-walking® tabu
more efficient algorithm for global optimization would find search” and genetic algorithmi&in the roster of stochastic
applications in a wide range of fields, such as drug designmethods.
molecular modeling, mathematical biological calculations,  Recently, we have developed two optimization methods,
and quantum mechanical calculations. One of the more difboth based on pivot moves through phase space. In the origi-
ficult problems that frequently arises is that of molecularnal method.® the pivots were chosen based on their energies,
structure. Aside from the obvious difficulty of creation of a while in a more efficient versioff, the pivots were chosen as
potential that accurately models the system in question, anthe nearest neighbor point. The major difference between the
other serious problem lies in finding the minimas of thismethods is the way in which the pivot points are chosen. In
potential. One is presented with the dilemma that if one hagffect, phase space is visited in a very different way for the
a potential that can portray a system in a useful fashion, thetwo methods.
that same potential is highly complex and difficult to To determine what circumstances favor one method over
minimize!~? It is therefore a productive endeavor to inves- the other, we have run a series of test functions, as well as
tigate possible improvements to established methods of mini-ennard—Jones clusters, using both methods in order to bet-
mization of functions. ter compare the relative strengths and weaknesses of the two
Methods of minimization can be largely classified into approaches to the pivot method. In the next section we dis-
two groups, deterministic and stochastic. Deterministiccuss the pivot method in general, the generalized distribution
methods have the strength of being extremely fast, but haviinction, and its use in our methods. Section Il goes into
the weakness of being liable to be caught in a local minimuntletail on the comparison via test functions. In Sec. IV we
fairly easily. Conversely, a stochastic method is far lessliscuss the use of the nearest neighbor pivot method on
likely to be trapped in a local minima, but it can be shownLennard-Jones clusters of sizes ranging from 6 to 20. Finally,
that no stochastic method has a probability of one to conwe review the results and project further research to improve
verge to the global minimum in a finite number of steps.  the method, as well as additional applications.
Among the deterministic methods known are variations
on Newton’s method, such as discrete Newton, quasin PIVOT METHODS
Newton, and truncated Newtdf.Additionally, work has
been done to significantly improve these methods for very We begin by assuming a continuous phase space
large systems, specifically limited memory quasi-NewtonWithin phase space is defined a real functibrt— . Our
and truncated Newton approactHésviore recent work has goal is to determine the global minimum value of this func-
tion within the defined phase space, MfRr):x € S.
The general pivot approach to this problem is presented

30n leave from: Facultad de Matétiwa, Astronoma y Fsica, Universidad

Nacional de Cmloba, Ciudad Universitaria, 5000 @ioba, Argentina. diagrammatically in the flowchatFig. 1). Briefly, we begin
Author to whom correspondence should be addressed. by locating a series of probes randomly distributed in the
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choose some number of probes with poor values to be re-

| Ge“e‘at"'NPmbﬂ placed, which is some fraction of the total number of probes
* with which we had started.
The number of probes we begin with and the number
4% Belvate all new probes that we move at each iteration are arbitrarily adjustable pa-

rameters. The probability of choosing a probe close to the
global minimum and low enough in the function well, is
based on the number of probes we initially choose and the
width of the function well at the global minimum relative to
the size of phase space.
When we begin to move the probes with poor values, we
want to place them near probes with better values in order to
better explore the phase space in the region of the probes
with good values. However, we don’t want to place them all
- near the very best probe, because it is possible that any
%;rge?agfesad’wme single probe is in a local, rather than global, minimum.
l Therefore, each probe that is moved will be placed near a

Check for convergence

| Relocate worst M probeﬂ

probe chosen at random, but with a probability of being cho-
sen as a pivot probe, based on its energy. The probe chosen

For each of th%e M Prgbes, Sg—lect one C;ii,thed as that probe which the relocated probe will be placed near
: a?gf&ﬂ%ﬁf sandvaly by a genersiize we call the “pivot probe,” and the probability for each probe
to be chosen as the pivot probe is given by
exd — f(x)] R
P=——p—— P=2 exd-f(x)] )

Output optimal configuration and energy QJ

We choose pivot probes at random because of the chance
. A that we may be too close to a local minimum in the first
FIG. 1. Flow chart for pivot methods for global optimizatid¥.is the total . . . o .
number of probes\ is the number of probes to be relocated, &k the Itera!tlon' We therefore .aSS|gn a p_rObab'“ty Qf choosing a
number of cycles between temperature scalings. particular probei, as a pivot probef(i), wheren is the total
number of probesm is the number of probes relocated at
each iteration, andi(x;) is the function value of probe
By choosing pivot probes according to this probability,
phase spac8, where each point i§ is a series of values for we favor the probes with lower energy, but we also can
all parameters of the problem. These points are called probeghoose probes with higher energy, thereby avoiding acciden-
because they are probing the value of the funcfitx) for  tally deleting the probe closest in phase space to the global
some set of parameters. The probes are chosen initially eithgtinimum. In any given iteration, several pivot probes are
completely at random or based on some given informatiorghosen. Therefore, we are continuously moving into regions
about the problem, or some mixture of the two, by choosingdf phase space with lower function values.
some probes at random and some as our best guesses. Be- Once a pivot probe is chosen, we reassign each param-
cause the probes are themselves a complete set of values fer of the probe being moved to a value close to, but not
all parameters in the problem, each probe would have somequal to, the pivot probe. The relocated probe parameters are
given value associated with it, that is, the value of the funcplaced in a Gaussian distribution centered on the parameters
tion at the point where the probe has been located. Accordingf the pivot probe, with a standard deviation input as an
to the ranking of the probes, we developed two differentarbitrarily adjustable parametar, Initially, this size should
approaches: The lowest energy pivbEP) method and the be chosen to be large so that a large portion of phase space is
nearest neighbor pivgNNP) method. Both are based on the covered by the pivot probes in the early iterations of the
general idea of pivots, but they explore phase space in a veglgorithm.
different way. Once each relocated probe has been placed near a pivot
probe, the values for the new probes are calculated, and the
process begins again with the ranking of the values of the
For the lowest energy approach, we begin by ranking the@robes. For the LEP method, whether or not the relocated
probes from bestlowest function valugto worst (highest probe has a higher or lower energy than the pivot probe is
function value. If we have chosen enough probes, thenot a consideration, because in the reranking any poorly
chances are good that one or more of them are near th@aced probe will most likely be moved again in the next
global minimum, and have good values. Probes near locateration anyway. Therefore, all pivot moves are accepted,
minimas can also have good values, so it is important toegardless of the function value of the new probe relative to
avoid moving too many probes at once. Therefore, wehe pivot. The number of iterations for any given standard

A. Lowest energy pivot method
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deviation value can be varied. The more steps taken, the
better phase space is sampled, but the longer it will take for
the algorithm to converge. Once a predetermined number of [ —q=25 |
iterations have elapsed using this standard deviation, this
value is then decreased at some given rate.

This rate,R, decreases the standard deviatioto some
new valueg’, wheres’ = Ro. At each new standard devia-
tion, the algorithm repeats as many times as with the initial ~ 94(X)
standard deviation, at which time is decreased again. In
effect, this means that the probes will in time converge on
some given small point, and, with a good sampling of phase
space, this point should be the global minimum. The itera-
tions continue until the stopping criteria are met.

1.0 — T T

B. Nearest neighbor pivot method

The nearest neighbor pivéNNP) method® is another
variant of the pivot method. In NNP we begin with a seriesFIG. 2. Generalized-distribution as a function of forq = 1,q = 2, and
of probes within the phase space of the problem, definefi=2->
exactly as above. The method diverges from the lowest en-
ergy pivot method, however, in the way in which the pivot
probes are chosen, and therefore, in the way in which phase T(t)= 711 T(1), t=123..., (4)
space is explored. (1+1)9 -1

In the NNP method, we start witd = 2m initial probes,  \here T(1) is the initial temperature, andis the discrete
of which m probes will act as the pivot probes, and thetime corresponding to the computer iteratihs.
remainingm probes will be relocated. A local selection of The Tsallisg-distributior?® defined above, Eq(3), has
them pivot probes begins with a search at each probe for it$een suggested as a generalization to the Gaussian distribu-
nearest neighbor, based on the distance of the probes. Thefgn. This distribution function introduces a new parameter
are different ways to do this selection, but it is not relevant 10y as an arbitrarily adjustable parameter. This arbitrarily ad-
the method. We began with finding the nearest neighbor fof,staple parametey allows one to vary the length of the tail
probe 1 and removed those two probes from further considpf the distribution curve. Special cases that should be de-
eration. This was repeated until all points had been paired.ngted are the limitg— 1, where thegq-distribution ap-

Once we have paired the probes, the probe with thgyroaches the Gaussian distribution, anddor 2, where the
lower value for the functiorf(x) is defined as the pivot g gistribution is equal to the Cauchy—Lorentz distribution
probe, the other probe being the probe that will be relocated;seq in fast simulated annealifyThe second moment of

For each pivot probe with parameter valueg;, we  ths distribution diverges foq = 5/3, and the distribution be-
explore phase space by placing the probe to be relocated neggmes not normalizable fof = 3. As we show in several test
the pivot probe by changing its parametggs as functions, we have found = 2.5 to be a good value for our
global optimization method, as in generalized simulated
annealing®®
where Ax; is a randomly generated vector according to a Figure 2 illustrates visually the differences between the
distributionge(Ax). As opposed to the LEP method, which Gaussiang = 1), Cauchy ¢ = 2), and generalizeg = 2.5
uses a Gaussian distribution, the NNP method works bedlistributions. From this, one can easily see the transition
with the generalizedqg-distribution based on the Tsallis from a localized distribution to a long tail one. Figures 3-5
entropy* for the placement of the probes near the pivotdemonstrate a two-dimensional random walk taken by each
probes. This distribution was recently used with good result®f these three distributions. Again, one can see that for a
in generalized simulated annealing methédg/ and is Gaussian distribution the majority of the walk is confined to

q-1

XR,i:XB,i+AXi y (2)

given by one region of phase space, the Cauchy distribution occasion-
ally has large “jumps” from one region to another, yet
g-! TI'[1/(q—1)] spends a large amount of time focusing on specific areas, and
9q(x)= V T T[1/(q—1)— }] theq = 2.5 distribution has a high nonlocal character. Such a
z high nonlocal character insures that all of phase space is
[B(t)]VE-@ being adequately searched on a continuing basis, even at a
[1+(q—1)([B(1)]TCIx)2| a1 (3 low temperature.

We tested two “pivot acceptance criteria.” The first is
wheregis defined to be 7 andT is an artificial temperature the Metropolis algorithni® where the acceptance probability
given by Pa(X(—X¢+1) is given by
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FIG. 3. Two-dimensional random walk with a Gaussian distributign ( FIG. 5. Two-dimensional random walk withgadistribution (@ = 2.5) and a
= 1) and a temperature of 0.01. temperature of 0.01.

To empirically determine which of the various possible
1 F(Xe 1) <f(%) values ofg might work best for our optimization method, we
PAX—Xe1) = { e AU D= T00] i f(x,,,)=F(x,) must explicitly test the various distributions against an estab-
' lished set of test functions.

where g is a fictitious inverse temperature.
The second criterion used is an absolute acceptance ciil: TEST FUNCTIONS
terion, which is identical to the Metropolis algorithm E&)

) o As a preliminary test for the use of the generalized
in the limit T—0

g-distribution, we begin by trying to find the optimal value
1 f(Xer 1) <F(X), of q that minimized the number of function calls necessary
PA(Xt*)Xt+1):[O it f(x01)=F(x) (6)  in the minimization procedure. We have used the Tsallis dis-
e v tribution for all test functions. We have compared the two
It has been determined that there is no Signiﬁcant differ'approache$LEP and NN'? with one another’ both with the
ence between these two move acceptance criteria, and we Us@ussian distribution function as well as NNP with the gen-
the absolute criterion Ed6) in the present work. eralizedg-distribution function. The goal is to determine the
optimal value ofq for each method and to demonstrate how
the two approaches compare with one another. To do so, we
have run each approach on several well-established func-
TS T T tions. These functions included the Goldstein—PriGP)
equation, the Branin(BR), the Hartman three- and six-
dimensional function§H3 and H6, and the Shubert function
(SH).3! Each of these functions is explicitly stated in the
Appendix. All of these functions were tested using both the
LEP and NNP methods, and each method was tested using
the Gaussian distribution and the NNP with generalized
g-distribution for the relocation of the probes that are moved.
To compare these in a machine-independent fashion, we re-
port the number of function calls for both the Gaussian and
the g-distribution function of the NNP approach, and the
Gaussian distribution function of the LEP method in Table I.
For comparison, we included in Table | the results of pure

ﬁ*;_
NE=E
N
%
T4

Sl

{

5%
It I

qo b b ) I random searchHPRS, simulated annealing types 1 and 2
-10 -5 0 5 10 (SA1 and SA2, respectivelyand tabu searckthese results
X are taken directly from Ref. 37 Several comments should
be made about these results.
FIG. 4. Two-dimensional random walk with a Lorentz distribution= 2) The number of function calls for the LEP approach are
and a temperature of 0.01. different than reported in an earlier publicatithin the pre-
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TABLE |. Average number of function evaluations in the global optimiza- 1000 . . i
tion of five test functions. ) ' ! '
Method: GP BR H3 H6 SH 500 GP function

PRS 5,125 4,850 5,280 18,090 6,700

SAl 5,439 2,700 3,416 3,975 241,215 i " ’
SA2 563 505 1,459 4,648 780 600 |- - -
TS 486 492 508 2,845 727 4 R

LEP 112 144 122 1536 281 :: 8 N T

. -»

(Gaussian Vv 400 | ..'*. i
NNP 575 358 60 411 360 .

(Gaussian - \. E
NNP(q = 2.5) 153 68 52 237 114 "'-\

200 - \.}“ "

&The methods are the pure random sedRRS, simulated annealing types i
1 and 2(SA1 and SA2, respectivelytabu searcliTS), lowest energy pivot i

(LEP), and nearest neighbor pive@tiNP). The references for these methods 0 L 1 L 1 2 ] .

and results can be found in Ref. 17. 1.0 1.5 2.0 2.5 3.0

vious pu.bllcat'lon, we tried to kgep all parameters of theme, 6. Average number of function caligfc) vs g for the Goldstein—
problem identical for all test functions. In the current publi- price (GP function. This represents the average over the successful runs
cation, we have used four of these paramefatsnber of  with a minimum convergence of 95%. One thousand runs were done for
initial probes, number of probes moved, number of searcl§ach value of plotted.
iterations per standard deviatiom, and rate of contraction,
R) as free parameters. These parameters were varied to mini-
mize the number of function calls for each of the test func-ently grows as expf) (Ref. 34. Wilke and Vennik have
tions. As a specific example, for the GP function, the besthown that to find the global minimum in Lennard-Jones
values were found to be 15 initial probes, 5 probes move atlusters is a NP-hard problet Several global optimization
each step, 4 steps were taken at any given valug ahd a methods have been applied to the energy function of
rate of contraction of 0.385. It can be clearly seen from Tablé_ennard-Jones clusters. These include simulated annéling,
| that the LEP method, when used with our optimal param-genetic algorithn?, diffusion equation method®, quantum
eters, yields a general improvement of a factor of approxiannealing®® J-walking*® and other$! The total energy for a
mately 4 over previous methods. This represents the bareennard-Jones cluster of particles is
method. As we shall see, when modifications such as the use N-1 N
of nearest nelghpor S(_alecuon ora generaluz_;etdistrlbuuon Ey= E _ 2 Vis(rip), @
are added, additional improvements are gained. i=1 j5i+1

Similarly, the parameters for the NNP approach have
been optimized as well. We are therefore comparing the best
results in Table I. Initially we used a Gaussian distribution
with the nearest neighbor pivot variation, and improvement
was only seen for the H3 and H6 methods, and this sug-
gested to us that perhaps varying the distribution may yield
some more improvement. Tests were done to determine what
the best value off might be for various functions, and the -
results of this can be seen in Figs. 6—8. One can readily see
that a value of roughly = 2.5 yields the lowest number of
function calls for nearly all of the test functions. This appears
to be the best “compromise” between searching locally and
nonlocally. The results of these test functions indicate that .
the NNP method is superior over previous methods, with a o
four- to 12-fold improvement over the tabu search metHod, "
for all functions tested.

H3 function

<#fc>
=3
o
)
1

IV. LENNARD-JONES CLUSTERS 1.0 1.5 2.0 2.5 3.0

Lennard-Jones clusters are excellent for testing the effi-

ciency of global optimization algorithms. Homogeneous G 7 A ber of funcii it or the th
Lennard-Jones clusters have well-established minimas afdC: 7. Average number of function callg#fc) vs q for the three-

L imensional Hartman (§ function. This represents the average over the
regular ) grsnnlmum-energy structures  for very large syccessful runs with a minimum convergence of 95%. One thousand runs
clusters®?33 However, the number of local minima appar- were done for each value of plotted.
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FIG. 8. Average number of function callé#fc) vs q for the six-

dimensional Hartman (§ function. This represents the average over the FIG. 9. Percentage of successful runsgver N = 13 Lennard-Jones func-
successful runs with a minimum convergence of 95%. One thousand ruréon. One hundred runs were done for each valug pfotted.

were done for each value of plotted.

Jones clusters of varying sizes. Figure 9 represents the rate of
wherer ; is the distance between thih and thejth particles convergence for different values of for a cluster of 13

andV_(r) is the Lennard-Jones two-body potential parti_cles, and it can be seen that this convergence reaches a
maximum at or very near tg = 2.5. Each point plotted rep-
1 2 resents an average over 100 runs. Figure 10 is a similar il-
V(== - (8

r r

lustration for 18 particles in a Lennard-Jones cluster, and
again it can be seen that there is a maximal value near
= 2.5. This indicates fairly strongly that a valuegphear 2.5

ergy minimum was located very quickijess than 1 CPU X
second on an IBM RS/60000ne of the powerful features of seems to be a somewhat universal property of the general-
ized distribution function for our method of optimization.

this algorithm is that previous knowl f th tem can ; . )
go S previou owledge of the system c Figure 11 illustrates how our method scales with the

be built into the initialization of the probes. For larger clus-n mber of Lennard-Jon icles to be minimized. Usin
ters, we incorporated the information already gained bystar—'”I er ot Lenhard-Jones particies 10 be ed. L’sing a

ing with the structure of the smalleN(— k) clusters and ;SN_Q%Q (S;gil,e;:s ds?sm;h?;:;:t?qi:‘ogrtzzaﬁzgzggox';f&y
addingk additional particles at random. In any “growing” ' P y rep 9

problem, such as minimum energy configuration of clusters,
self-avoiding walks, protein folding, ett this systematic
approach to solving the structure of large clusters can be 100
incorporated. For ail-cluster, we begin witim X k initial
pivot probes chosen as follows: There aneclusters of size
(N — 1) + 1 random atomm clusters of sizell — 2) + 2 ran- 80 - -
dom atoms,..m clusters of sizell — k + 1) + (k — 1) ran-
dom atoms, and finallyn completely random pivot probes 60
R _
/
40 | -

For small Lennard-Jones clustef$ &€ 6), the global en-

(in our calculations we sdt = N/2). With this set of the
initial pivot probes, if theN-cluster has a similar structure
with a smaller cluster, the algorithm converges faster than
purely random initial points. If theN-cluster has a much )
different structure than the\( — k) structure, or has one or Ve

more local minima near the global minimum, as in tRe 20F .
= 18 Lennard-Jones cluster, then the method works no less /
efficiently than it would with initial pivot probe locations \ l |
chosen completely at random. In order to reach the exact 010 s ' 20 ' >3 ' 3.0
minimum for the Lennard-Jones clusters, a gradient descent ' ' q ) '
minimization was used once our method met its convergence

criteria.

As was mentioned, we te_Sted varying valuesqoto g 10. Percentage of successful rungpder N = 18 Lennard-Jones func-
make certain tha = 2.5 was still a good value for Lennard- tion. One hundred runs were done for each valug plotted.

% SUCC. runs

r L-J cluster ; N=18 .
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TABLE Il. Parameters for the Hartman functidd,,, forn = 3. TABLE lIl. Parameters for the Hartman functioH,,, forn = 6.
i Qi1 Qi2 Qi3 G Pi1 Pi2 Pis i Qiy Qi i3 Qig Qis Qig G
1 3 10 30 1 0.3689 0.1170 0.2673 1 10 3 17 35 1.7 8 1
2 0.1 10 35 1.2 0.4699 0.4387 0.7470 2 0.05 10 17 0.1 8 14 1.2
3 3 10 30 3 0.1091 0.8732 0.5547 3 3 35 1.7 10 17 8 3
4 0.1 10 35 3.2 0.03815 0.5743 0.8828 4 17 8 0.05 10 0.1 14 3.2
i Pi1 Pi2 Pis Pia Pis Pis

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 04135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

algorithm, which scales a¥*”.%” One should note that the
probability of finding the global energy minimum was
strongly correlated with the size of the cluster. It was rela
tively difficult to obtain the global minimum for clustels$

= 6 andN = 18. This implies that the difficultycpu time
does not scale in a simple way with, but depends on the
characteristics of the potential energy hypersurf&c@ur

cpu time given includes this gradient minimization. The cpunigh-dimensional functions. Having tested this with a range
time on this chart has been experimentally determined ON gt values forq indicates that the value af approximately
IBM RS/6000-580 for our method, and the geneticeqyql to 2.5 gives the best results for this method. We con-
algorithn?” was included for comparison of scaling. The ex- cluded that when using the generalizgetistribution the

act cpu time was not determined. Clearly, from this exampleynp method is superior to previous methods.

one can see that substantial savings in time should be real- 5g gn explicit demonstration of the improvements our

ized for using the NNP method over the genetic algorithMy,aih0q can yield over previous methods, Table | shows that

for very large clusters. for the simple LEP method using a Gaussian distribution,
one can obtain roughly a fourfold improvement for most

V. DISCUSSION potentials. More interesting than that, however, is the

In this paper we have presented two different pivotroughly 12-fold improvement one sees by comparing the
methods and compared them, the lowest energy pivoNNP method with aj-distribution usingy = 2.5.
method(LEP) and the nearest neighbor meth@dNP). Us- Continuing in our exploration of the pivot methods for
ing a Gaussian distribution it appears that the lowest energgptimizing functions, we have investigated the minimization
pivot is good for low dimensional functions, while for higher of Lennard-Jones clusters of particles and found our method
order potentials the nearest neighbor method shows itto be highly satisfactory. Figure 11 illustrates this by com-
strength. Once a generalizegdistribution is used in place paring our method to a modified genetic algorithfin this
of a Gaussian distribution, the nearest neighbor pivot methoteference, a cpu-time scaling ds*’ was reported for
shows even more substantial improvement, especially for theennard-Jones clusters. We have shown that our method
scales af\?? for the same clusters using the same initializa-
tion and convergence criteria. A difference such as this does
not make a large savings in time for small clusters, but when
one wishes to optimize a very large system, this scaling
makes a big difference in computer time.

In short, we have presented a new method of optimizing
functions that has proven itself to be quite efficient, very
flexible, rarely gets trapped in local minima, does not require
computationally expensive derivatives, and is quite easy to
implement. Flexibility is further enhanced by the ability to
incorporate any previous knowledge of the potential under
investigation into the optimization. As a specific example,
we used smaller Lennard-Jones clusters as the starting point
for the larger ones. For very large systems, one could use a
crystalline structure as a starting point and optimize from
3 there. Although there are established metfdder large

Lennard-Jones clusters, they require a homogeneous regular
structure as a basis, and our method has no such restriction.
We are currently investigating a mathematical basis for this
FIG: 11. Log—log graph of cpu time in second§ vs number of Lf-:‘nnard-.\]onepnethod’ which should yield additional improvements to the
Eartlcles.;r?he dashgd line represents the scaling of the 'genet.lc algorithm ?‘Eethod. We are also using this method for noble gas clus-
ef. 37,N*'. The points represent experimentally determined times for each ) . . .
of the clusters, and the solid line represents the scaling of this method€r'S, OXides and halides, polymer configurations, and small
N2<, clusters of water molecules.
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