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Analytical and numerical results are presented for the intersection of electronic energies of the same
space symmetry for electrons in the field of two Coulomb centeBsdimensions. We discuss why

such crossings are allowed and may be less “exceptional” than one could think because even for
a diatomic molecule there is more than one parameter in the electronic Hamiltonian. For a one
electron diatomic molecule at the lar§elimit, the electronic energies are shown analytically to
diverge quadratically from the point of their intersection. The one electron two Coulomb centers
problem allows a separation of variables even when the charges on the two centers are not equal.
The case of two electrons, where their Coulombic repulsion precludes an exact symmetry, is
therefore treated in the lard@dimit. It is then found that, in addition to the quadratic intersection,
there is also a curve crossing where the energies diverge linearl206@ American Institute of
Physics. [DOI: 10.1063/1.1372181

I. INTRODUCTION of the one electron diatomics are Pow&and Hatton'!
Beyond the one electron case, a proof that the crossing

molecules are receiving much current atterkdhecause of %f electronic potential energy curves, of the same symmetry,
u ving mu u " is possible requires changing one of the assumptions made

the increasing evidence for thglr role in the dynamlcs of uI-by von Neumann and WignérSpecifically, we allow more
trafast intramolecular electronic state changing processes,

. ) - than one parameter in the Hamiltonian. This, unlike von
For diatomic moleculegor for atom—atom collisions, see, iond . L .
e.g., Ref. 4 one often appeals to the “noncrossing” rule of _I\Ieumanq anq Wignémho only d!scussed variations in the
von Neumann and WignérThis rule is taken to imply that mtera;tomlc d|st§nc§€. AS qt;‘lun(it|ontof two(or mtore lpa- th
an intersection of electronic potential energy curves, of thd@ME!Ers, Crossing IS possivie. In a two parameter plane, the
same symmetry is not to be expected. The rigor of the rule i§rossing 1 generally allowed e_llong a Ccurve. _If these param-
stated differently by different authors, varying from “cannot S€rS arékand, sayZ, the crossing occurs at different values
cross” (Ref. 6, p. 295 to the usually quoted “highly im- of R for different values of. It is then a matter of semantics

probable circumstances” down to “exceptiondl¥ A care- if one wants to call such crossings “exceptional.” For us,
ful summary of the situation is provided in Sec. IIB of they are not exceptional because our interest in the problem
Ref. 1. of electronic isomerisif arose in response to the experimen-

In this paper we discuss the crossing of electronic potental ability to continuously tune parameters in the
tial energy curves of the same symmetry. We do not claintamiltonian:*
that the mathematical discussion of von Neumann and OVer the years there have been a number of papers ques-
Wigner is at fault. We do claim that the application of a tioning the noncrossing rule. Mathematically, the present re-
mathematical result to a physical situation must take intcsults are in the spirit of the point made by Telér> He
consideration the assumptions made in the background to tHted that in a polyatomic molecule there are twomore
mathematical discussion. We will provide both a general arinteratomic distances than can be independently varied and
gument and detailed proofs specific to the cases of one argb potential energy surfaces can cross. We could easily adept
two electrons that crossing is possible. Our discussion for thé&eller's (quite simple, see Ref. 14nathematics to our case
case of one electron is a generalization of the results of Gelbut we would then be subjected to a criticism by Hatton
shtein and KrivchenkovV.Other key references for the case et al!! that we are working in a finite dimensional Hilbert

Intersections of potential energy surfaces of polyatomi
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space. Other questions have been well dealt with byection, where the energies linearly diverge from the cross-
Longuet-Higginé and by Mead. The one reference to the ing point.
earlier literature that should perhaps be made is that our con-

clusions seem to go in the opposite direction to that of Naqvh ON THE INTERSECTION OF ELECTRONIC TERMS
and Byers Browrt® who sought to extend the non crossing OF THE SAME SYMMETRY FOR DIATOMIC
rule from diatomic molecules to polyatomics. MOLECULES

Our motivation for examining this problem is the search

for quantum phase transitiolfsdue to electronic state : : ;
changed? The language of phase transitions will thereforeShown that electron terms of different symmetries can inter-

be also employed. Specifically, a first-order transition is oneect as a function of the internuclear distaiteHowever,

where the energies diverge linearly from the crossing poin Fhe intersection of terms of the same symmetry is excep-

In a second order, also called “continuous,” transition the_t|onaI. The der|vat_|on.of8th|s theorem presented, for example
. . __in Landau and Lifshit28 is as follows. Assume that at a
two energies merge smoothly and so diverge quadraticall L ) S
) L ertain distanc&, between the two nuclei, the Hamiltonian
from the crossing. The plot of the energies in a two param-AH R h | | ei | EQ JEO d
eter plane will then be referred to as a phase diagram. Thi (Ro) as near y_equa0e|genva(1)u andt, correspon
g to eigenfunctions¥; and ¥,. At R close toR,, the

stable phase is the one of lowest energy. An intersection (%'ﬂ iitoni b it

two electronic states which is second order, a continuous amiptonian can be wrntten as

phase transition, is actually not so unexpected. For such an . -

intersection what was the lower energy state changes H(Ro+dR)=H(Ro)+ -2 5R. )

smoothly into a higher energy state and vice versa. In other R=Ro

words, the character of the lower energy state switches as The difference between the eigenvalues of the energy at

one goes through the intersection. the point R can be obtained by first order perturbation
In our earlier work!? we investigated the symmetry approximatior®

breaking and electronic structure phase diagrams for two- 0 0 2 2112

center molecules with one and two electrons at the large- (1 E2 Vi V22 T4V (ZA)

limit. For one electron the phase diagram, in the internucleawhere the matrix elementsV;; of the operator V

distanceR-nuclear charg& plane, has two different stable =(¢9H/¢9R)|R:RO5R are taken over the wave functions®

phases. One corresponding to the electron at equidistan(é@,dqrg_

from the two nuclei and the other has the electron localized  For the energy intersections to take place, the expression

on one nucleus. The transition from one phase to the other ig Eq. (2) must vanish. Since it is the sum of two squares,
a continuous phase transition, the energies of the two phasesgth positive numbers must vanish simultaneously,

merge continuously as we cross the boundary. For two elec- 0 w0

trons with two equal charge centers, the phase diagram Ei—Ex+ V= V=0, ©)
shows three different stable phases corresponding to differ- V4,=0. (4)

ent electronic structure configurations. In addition to con- h el ish identically when th
tinuous phase transitions, there is also a line of a first-order The matrix elemenV;, can vanish identically when the

phase transition. This line is the line where the global minj-IWo terms are of different symmetry. Otherwise, the two Egs.

mum is degenerate with two different phases having the(3) and(_4) must be S|multaneously.sat|sf|ed and there is only
same energy. one arbitrary parameter, the magnitugie. There are at least
three questions about this pro@f. Are Egs.(3) and(4) two

In this paper, we examine the familiar noncrossing rule, o ) .
Paper, S o 9 independent conditions? Gershtein and Krivchefkaere
for electrons of diatomics in the larde-limit. Background

technical comments are made in Sec. Il. Section | demonthe first (that we knowy to demonstrate that the consider-

o L - ations above do not exclude crossing for the case of one
strate; the separability O.f th(elo_nrelatlwstm) Schradinger electron in the field of two Coulomb centersi= 3. Below
equation for one electron in the field of two Coulomb centers generalize this result to an arbitrary number of dimen-
of different charges in the familiaD =3 case. Numerical

) 4 o2 sions. (ii) Is the proof equally valid for more than one pa-
results for energy crossings foHand for HHE'™ systems 5 jotar that can be varied? We will provide both analytical

are provided. In Sec. IV, we generalize the proof of the pos4 4 numerical results showing that crossing is possibie.

sibility of intersection of terms of the same symmetry for to gerivation of the condition€3) and (4) is only to first

electrons in the field of two Coulomb centers 10 orger. What is the result for higher orders? It is here that the
D-dimensions. Section V, shows that for a one electron digtion of first and second order transitions is introduced.

atomic molecule at the large-limit the intersection between

the two stable phases is of a Renner-Teller-type; the energies
diverge quadratically from their intersection. In the presencé”' THE SEPARATION OF VARIABLES FOR THE ONE

of interelectronic repulsion there is no known exact :~3ymme-ELECTROI\I PROBLEM

try. Section VI presents a perturbation expansions in orderto  To set the stage for the discussion of arbitrary
classify the different types of intersections for two electronD-dimensions, we first re-examine the one electron in the
diatomics. We show that in addition to Renner-Teller inter-field of two Coulomb centers problem Bt=3. Eventually
sections, there is also a curve crossing, a Jahn-Teller intewe will regard the charges on the two centers as parameters

For diatomic molecules, Wigner and Neumartmave
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of the Hamiltonian and so we demonstrate the separation o~
variables for the general case when the charges on the twi
centers need not be equal.

Following the work of Hunter and Pritchaftthe wave
function W (&,7,¢) can be written as a product of three sepa-

rate independent wave functions in prolate spheroidal3

coordinate<?
\P(gr 7, QS,R,Z]_ sz)
=X(&,R,Z1,Z5)Y(1,R,Z1,Z5)Kin( ), (5)

whereK(¢) is the eigenfunction of the total angular mo-
mentum operatok.? with eigenvaluesn(m+1). Thus, from
the Schrdinger equation we get two independent one-
dimensional equations as a function of elliptic coordingtes
and . The functionsX andY can be expanded in the asso-
ciated Legendre polynomiatg,

X(£RZ1,Zp)=(E2= )™ £+ 1)'e P

x 3, 0(R 2129\ 7 ®)
Y(n,R,zl,zz>=§0 fi(R,Z1,Z2) PP, (), 7

wheret=[R(1+q)/2p]—m—1, mis the magnetic quantum
number,q=2,/Z, and p?>=—(R?4)(E—(q/R)). Putting

Crossing of electronic energy levels
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FIG. 1. Total energy curves for H, E;(R), atD=3 as a function of the
internuclear separatioR. Note for example the intersection betweeto3d
and Xay (left) and 4f o, and 4oy (right).

Wigner conclusion on the rarity of crossing of terms of the
same symmetry is not valid for one electron in the field of
two stationary Coulomb centers of charggsandZ,. One

can argue that the sheer fact that there is a separation of
variables implies that there are additional symmetieEhis

is the point made by Hattdhand Power® The present re-
sults are consistent with their conclusions and, as will be

the expansions into the two elliptic equations, we obtain a S&hown analytically in Sec. V, this means that the crossing is

of difference equations which are represented in the follow
ing matrix forms:

8
9

where g and f are the column vectors;(R,Z,,Z,) and
fi(R,Z1,Z,), respectively, the matrix elements Gf and F
are given in Ref. 19 anfy, A; are the separation constants.
GivenR, Z;, andZ, the problem is to find a value & such
that eigenvalud\ of —G is the same as an eigenvaldef F.

G-g=—-Ay0
F'f: +Aff,

The solution was found numerically by iteration using the

knownR, E, Z;, Z, as input. The iteration process was then

repeated until the difference of energy between two continual

loops was smaller 1010 ° and that for the separation con-
stant 1.0¢ 10" 8.

In Fig. 1 we show the lowest potential energy curves,
E3(R), for the Hy system. Note the crossings of terms of the
same symmetry such asld, and X0 (left) and 4fo and
4do (right). These numerical results are in complete agree-
ment with previous calculatiorfs.

For the case of unequal chargeg;=1 and Z,
=2 (HHe" 2 system, Figs. 2 and 3 give energy curves(R)
as a function of the internuclear distanRe Note that the
ground state energy is unstable, the curve is completely re
pulsive as shown in the small window in Fig. 2. Curves of
the same symmetry can cross as shown in this figure, foi
example, the crossing betwees®2and Ao (left) and 4 o
and 4o (right). Figure 3 shows similar crossings of terms
with the same spatial symmetry such ag5Swith 5f o (left)

of the second order.

IV. INTERSECTION OF ELECTRONIC TERMS OF THE
SAME SYMMETRY FOR ONE ELECTRON IN THE
FIELD OF TWO COULOMB CENTERS IN D-
DIMENSIONS

We begin with the Schidinger equation for an one-
electron molecule with the two Coulomb centérsandZ,
located on the& axis of aD-dimensional space at R/2 and
+R/2, respectively* The Hamiltonian can be separated in

0.0

B
&}
=03
&
%

-0.6

R (a.u)

R (a.u)

FIG. 2. Total energy curves for HH&, E5(R), atD=3 as a function of the

and 610'_ and 6o (right). These numerical results confirm jnernuclear separatioR. Note for example the intersection betweetio3
the previous calculations and show that the von Neumannand 2o (left) and between #o and 4o (right).

Downloaded 30 Aug 2002 to 128.210.142.96. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpoljcpcr.jsp



9700 J. Chem. Phys., Vol. 114, No. 22, 8 June 2001 Shi et al.

D-dimensional prolate spheroidal coordinates. In this coordi- 1 I, bo1p0Y
nate system, the distance between the electron and eitherH_nng)/z %(7] -1®-b %
the charges; (i=1,2) and the hyper-radiys are given by
ry+r, ry—r, R2 +{R(Z,—Z )77_|m|(|m|—+D_3)+p2772_A]Y:0
== =g P (E-DA-), © 1= ’

(13

_ _ _ where p?=—(R?/2)(E—(Z,Z,/R)) and A is a separation
whereR is the distance between the two charges. With thgonstant. The equations can be solved numerically for a
coordinate system defined above thalimensional Hamil- givenR, Z;, Z,, andD as described in the previous section

(10

tonian in atomic units takes the forfn, and given in Ref. 25.
p P Gershtein and Krivchenkdwdemonstrated that the pos-
H=— _(T (£2-1) _(le_> sibility of crossing of terms of the same symmetry for one
2 ap 23 23 electron in the field of two Coulomb centers@t=3. Now
P P L2 we are in a position to generalize their proof to
+(1—7?) — ( pP1—| |- #] D-dimensions.
or the Hamiltonian in Eq(11), the perturbed operator
I nll e _ For the Hamiltonian in Eq(11), th bed
R(Zy+2Z5)E+ (= 21+ 2Z5) ) N z.7Z, D V can be written as
N " V= oH 5R—{ 20, Ll 1(21+Zz)]5R (14)
wherea = (R?/4)(£2— 5?) andL3_, is the projection of the IR R R® Rliry 1,

generalized orbital angular momentum opereuér_l onto
the internuclear axis with an eigenvalus|(|m|+ D —3).
Here the quantum numbén|=0,1,2,..), for o, m, §,... elec-
tronic terms.

and the nondiagonal matrix elemévii, has the same form
as the one aD =3 except that the integral is taken over a
D-dimensional volume elemeutr,

Now, the the solutionV' (¢, 7%,Q_,) of the Schrdinger SR (21 Zo)
equation can be written as a product of three independent Vip=— ﬁf w3 (r_+ r-)‘l'sz
solutions W (&, 7,Qp_2)=X(&)Y(7)K(Qp_,). The func- vz
tion K(Qp_,) is the eigenfunction of the generalized orbital R /[Z, Z,
angular momentum operattri_, and the other two func- =- ﬁ<a+ 3> " (15

tions, in elliptic coordinates, satisfy
wheredr=Jdédnd,d 6, --dbp_,, andJ is the Jacobian

1 1(52_1)@*1)/2% factor?® By integrating overQp_, we remove theD —2
(£2—1)P~372 5¢ d€ dimensional angular parts and obtain for the matrix element
of

Im[(jm[+D-3)
+{R(Z1+2Z,5) & —621——p &+ A X=0, <1> fec +1
- —) =N X1 EXod f Y,Y,d
(12) r/ 11525711277
o +1
- fl X1X2d§f 1 Y17]Y2d7] y (16)
02 -
0.06 - where the integral of the angular parts and the constants are
factored intoN.
01+ On the other hand, it follows from Eq&l2)—(13),
E 0.00 1 (A1—Ay) f X1Xdé=(pi=p3) f X, 8X,dé,  (17)
= 00 - ! !
eﬁ/ .
LTJM ] +1 2 2 +1 9
" 006 - (Al_AZ)f Y1Y2d77:(p1_p2)f Y17°Yod 7.
—U. -1 -1
3801515 | The separation constaAtis the eigenvalue of Eq$12) and
~02 ‘ ‘ , 0.2 (13) for a givenp, R, Z;, andZ,. For the nondegenerate
0 10 20 30 40 0 eigenvalue spectrum, from the one-dimensional equation

Ru) R (au.) (12) or (13), we haveA;#A,, A;, andA, are the values of
FIG. 3. Total energy curves for HHé, E5(R), atD=3 as a function of the the separation constant for the states 1 and 2. Blﬂllf

internuclear separatioR. Note for example the intersection betweegos 7 A2, the two states h_ave differefgeneralized symmetry
and 5o (left) and between Bo and 6o (right). and therefore we obtain
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ER=
rif, VA=A 4=Z,/Z,=1.0
and 3.0

<i> =N (Eg_Eg) (20 02—0

o), \A—Ay)’ 7 Z, Z,

with N;=N4(R,Z;,Z5) andN,=N,(R,Z;,Z,). Putting Egs. 15 : ‘(Mz0)
(19—(20) into Eq. (15) the matrix elemenY;, becomes - +

Vip=— % -(E]—E)- R, (21 z.—;
GenerallyZ;N;+Z,N,#0. No matter what the values of 0'00,0 1.0 2.0 3.0 4.0
m,, m,, Z;, Z, are, as long aR—R, and ES—E), Vi, R (a..)

—0 and consequently terms of the same space symmetry but _ ' ' '

different generalized symmetry can intersect at any giverl]:IG. 4. Phase diagram in th&{Z,) plane for one gleptron in the fleld of

di ionD. Thi f l h . by G two equal charge centegg=2,/Z,=1 at the larged limit. The two differ-
|me_nS|on - IS Proo generaézes the one given by Ger- ent phases withy=0 and with 70 are shown.

shtein and Krivchenkov fob = 3.

As an extension of the treatment using only one variable

R for fixed Z, and Z,, we can consider the case of two diatomics, which shows the possible stable structures of elec-

variables, taklng?'andzlfz for fixed q=2,/Z,. For two tronic isomers. This means that there are intersections at fi-
parameters, the intersection occurs along curves when ”}ﬁte RandZ

symmetries of the terms are different and at points when they With the transformation¥ — pl®~D2b the Hamil-

are the same. For the two neighboring poin® (Z,) and tonian in Eq.(5) becomes
(Ro+ 6R,Zy+ 6Z), the perturbation operatdf is '

0o H (@1 (1) |+ 2
~ [oH oH D=5 -z )|t o5
vz(ﬁﬁm —5 02 (22) 2a g dn°)  2p
R=Fo272%0 ~R(Z1+Z5)é+ (=2, +Z5) ) N 2,7, (24
and the nondiagonal matrix element becomes 2 R’
1 1 Z, Z, whereA = (|m|+[(D—3)/2]). The largeb effective Hamil-
Vip=—| go0R+ 702 HJFE : (23 tonian H.. is readily obtained aD— after the scaling

transformationr —fr and fHp(R)—Hp(R) with f=(A?
where Z,=7 and Z,=Z/q. Thus, V;, vanishes simulta- —1),
neously withE{—EJ as we have shown before and in addi-

tion wheneverSR/R=—(62/2). S — 2 — 24, 2%

The analytic considerations are sufficient to show that RY(&°—1(1—7°) R(E+n) R(E—n)
crossing is possible but they do not show how the terms 2,7,
diverge from the crossing point. Going to a higher order in + R (25

perturbation theory will require a numerical approach.

Therefore, in the next section we go to the laf@ydimit in in which the energy is given in units of A9(x=(D

order to obtain explicit analytic results. It then turns out that—2)/2) hartree and distance? in bohr radii. Therefore,

the conditiondR/R= —(6Z/Z) gives an equation for the line evaluating the ground state electronic energy reduces to de-

along which a continuous phase transition ocdsee Fig. 4 termining the minimum of the effective Hamiltonian func-

and also Ref. 1R Specifically, the symmetry breaking which tion with respect top and ¢ in Eq. (25) for fixed parameters

splits the single minimum in the united atom limit into a R, Z;, andZ,.

double minimum in the separated atoms limit occurs alonga We have numerically shoWfthat there are two elec-

critical line Z.=(3 \/§/4)(1,R).12 tronic geometrical configurations for one electron in the field
of two equal Coulomb charge centerZ,EZ,), one is
n-symmetrical(=0), and another;-nonsymmetrical 7+0)

V. CROSSINGS OF ENERGY LEVELS FOR ONE as sh_own in l_:ig. 4. The transitic_n_’] from_one phase to the

ELECTRON IN THE FIELD OF TWO COULOMB other is a continuous phase transition. T_h|s means tha_t as we

CENTERS AT THE LARGE- D LIMIT move across the phase plane, the energies of the two isomers
merge continuously as we cross the boundary.

In the largeb limit the energy and geometry are found To better understand the transitions and to be able to
simply by minimization of an effective potenti&l.In our  generalize it to the case of two electron molecules, we apply
previous numerical calculatiod$we have found that there perturbation theory near the phase boundary. With the scaled
are different electronic configurations at the la@dimit for elliptic coordinates for one-electron molecules with two cen-
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-1.0 1.20 ‘ : ‘ —
Z:=1 // q=2,/Z,=1.0
q=7,/7.=1/ (£.0:£,0)
11k / 1.00 e
) / e €
/ ¢
7
E. S . Em: &-n)
- Z, 080 m— -~
12 ] B e
— E_,n=0 |
*——0
—ENn#0 — Z, 7
0.60 €e !
_'310 20 30 40 50_1'300 0.2 0.5 .
R Q=n, e 2020 |
0.40
FIG. 5. The degenerate energy crossing of one-electron in the field of two 0.0 1.0 20 3.0
equal charge centerg; =Z,=Z=1, as a function of internuclear distariRe R (a.u.)
(left) and the degenerate quadratic crossing as a function of generalized
coordinateQ = 7, (right). FIG. 6. Phase diagram in th&®{£Z,) plane for two electrons in the field of

two equal charge centerg=2,/Z,=1 at the larged limit. There are con-
tinuous phase transitions between the phaggsé0) and (¢,7:¢€,7) and

7 _ i i between (£,0;£,0) and (£0;¢',0). But the transition between the phase
tersZ,=Z7,=27, the optimized energy at the lar@elimit for (£.0:£.0) and (.71, is A first.order phase transition. He@&' ') is a

the symmetrical configuratiofy=0) is given by double elliptic coordinate representation.
2 47 7?2

—_— + —_,

R?(&-1) R& R

and the nonsymmetrical configurati¢n+0) has the form,

ES(é1,m=0)= (26)

the field of two Coulomb centers at the larBelimit. This
phase corresponds to the electron localized on the higher
2 47&, . z2 charge center.
(&-D(1-7) R&G—n) R
(27)
In Egs.(26) and (27) we add to the elliptical coordinates ~ VI. CROSSING OF ENERGY LEVELS FOR TWO
and » the indexes 1 and 2 in order to distinguish between th&LECTRONS IN THE FIELD OF TWO COULOMB
two phases, CENTERS AT THE LARGE- D LIMIT

First of all one can see clearly that there is an intersec-
tion of the energy between the phase with0 and the phase does not know of a method for the separation of variables.

: Sl n - X
with ##0, which is given .b.yEofl n,=0= B ) B_Ut n orde.r to Algebraic methods do show that there is a useful and nearly
introduce the generalized coordina®$=|(7,~ 71)/2 for  nown. This case provides therefore a critical test case for
7 which is defnlggd in the intervgl0,1]. With perturbation  the no crossing rule. We will indeed analytically demonstrate
expansion ofe.” in the vicinity of (7, 7,~0,7,=0) We  that in the larged limit, there is a first order phase transition
obtain in addition to the second order transitions.
E'S(&,,70) —ES(&) For the two-electron mo_lecules with _two equal charge
centers,Z,=Z,=Z, our previous calculations have shown

EN&2,m0) = R2

For diatomic molecules with two or more electrons one

s s 2 4z ) that there are three stable phase€the symmetric phase)
—E&) B8t p gy R (e ™ with (£,0:£,0), the antisymmetric phas@s with (&,7;£— ),
and the nonsymmetric phages) with (£,0;£',0) andé#¢' as
+0((72— 71)%), (28)  shown in Fig. 6.
where the symbaD(x",y™) expresses theth andmth order The optimized energy for the three stable phases in the

of variablesx andy respectively. We note that the remaining R—Z plane €=2,,q=2,/Z,=1) are given by
terms are of order#,— 7,)2. It shows that as the parameter
n varies from nonzero to zero the energy changes in a g V2 4 8z

second-order phase transition. We designate this kind of en- = g./zZZ— " RA(&-1) Ré’ 29

ergy crossing, or more accurately energy merging, as a

Renner-Teller-type crossing. As an example, Fig. 5 gives the 4 /2

energy curveE,, atZ,=Z,=1 as a function of the internu- E¥=—— -+

clear distanceR (left) and the generalized coordina@ RY(&E—1)(1-7) Rypa—1+&(na+1)

=, (right) with ;=0 for the symmetrical configuration

and »n,# 0 for the nonsymmetrical configuration.Zf, is not — i (30)
2 2 ’

equal toZ,, we have only one phase for the one electron in (§5—72)R
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2 2 2 [ ‘
ENs— s+ s+ — _l.64 Z=1,q=Z/Z =1
(—1+&)R (—1+&)R \/—2+§3+§4R B ES'QOROSOS_ -2.036
-1.84
A(&3+84)Z
 &E&R 3D -2.04 -
354 ~0.00 0.20 0.40 0.60
In order to analyze what type of transitions we have Q=n,
between pairs of the three different phases, we carry out the ‘ \

following perturbation expansion:
(EZ(&2,m2) —EL(€1)] n,—0.E,— &)

(2£3+1) 8z
21/2R( ‘fi_ 1)5/2 Rfi

- ( 4(3¢1+1)

RZ(&%_1)3+ )(52_61)2

4 1+¢2 8z
@R V2(8-1)%R &R

+O((&- €)% (&— 1) 7)),

2

(32

where the generalized coordinates ar®,=|[7,

—(=72)1/2|=[n,| and Q= (&~ &1)/max&,,&)l,

(E?cs(§41§3) - Ei(é:l))|§4—>§3r§3_*§1

(2&+1) 8z
21’2R(§ )5/2 R§
2+ ¢ 47
42(&-1R &R

3¢

2\/—(§ 1)5,2R(§3—§1)(§4—§1)
+O((£4— £1)°(E3— €)% (&4— €)% (&5 &),

4(3&+1)
B ( RAE-1)°
2+6&2
((f “1%RE

)(53 &)?

(é4=&1)?

(4= &) (E3— €1)7), (33

where the generalized coordinates ar®.=|(¢,
— &3)/max(s,&3)| and Qg =|(&3— &;)/max(&,&)|- To con-

sider transitions betwed®> and E2*we reconstruct a super-

surface function,

Eas+ns 2 = 2 >
(—1+&)(1- 772)R2 (—1+&)(1—n5)R?
2

+ 2, 22 2 2

V=2+ 8+ G+ 205+ 266, m5R
4&.7 4¢,7

S &3 . b 542 (34)

(&3—m)R  (€5— 72)R
with Eff*”ﬂ,}zﬂozE?f and Ei‘f*”ﬂgﬁgzéﬁgzins. Q¢

=|(&,— &;)/max(;,&)| is the generalized coordinate fBE°
and Q,=|[ 72— (— 72)1/2|=|7,| for EZ’. Referring to the
supersurface, we try to expand E&O) in terms of (i,)"

and Eq.(31) in terms of ¢,—&;3)",

[ 2=0.58,q=Z,/Z,=1  \_

-0.45 N " -
- E, AN
-0.55 M - N
---E \\\
-0.65 : S .
0.00 0.10 0.20 0.30 0.40

Q:(§4_E_>3)/(f§>)=n 2

FIG. 7. Degenerate energy crossings for two electrons in the field of two
equal charge centerg=2,/Z,=1 at the larged limit. (Uppen The energy
guadratic crossing as a function of the generalized coordiates, from

the antisymmetrical configuratiaig, ;& — 7) in a double elliptic coordinate
representation to the symmetrical configuratigj®;£,0). (Lower) The inter-
section of energ§2*for antisymmetrical configuration aril® for nonsym-
metrical configuration aZ,=0.58=Z, as a function of the generalized co-
ordinatesQ=(&,— &3)/ £~ which is equal tor,, Q= 7,, if we introduce a
factor f such thatQ=(¢&,— &3)/[ f max,,&)]. This factor was found to be
f=2 for EYR)=EX(R).

(EZ(€4,€2) —EX &2, m2))] 5, 04,6,

= Efc(§3) - Ei(fz)

. — 22 )
RAE-1)? \ar(g—1)%2 REJ\* %
+0(75,(£4— £3)7). (35

Generally,&3# ¢,. Equationg32) and(33) show continuous
transitions, energy merging between symmetrical and anti-
symmetrical configurations, and symmetrical and nonsym-
metrical configurations. But Eq35) indicates that there is a
first-order transition between the antisymmetrical and non-
symmetrical configurations and it is of the Jahn-
Teller-type?® As an example we show in Fig. E..(R) for
Z=1 andq=2,/Z,=1 for the energy merginguppe) and

for the energy intersectingower).

For the case of unequal charges 1, we have shown in
our previous study that the electronic phase diagram has only
two different phase& The covalent phasg, 7;¢',7'), where
&+ ¢, n# 7' and the ionic phaséf, 7;& 7). The phase dia-
gram is characterized by a tricritical point where the first-
order transition line meets with the second-order transition
line. Thus in this case, we have continuous phase transition
in one region and a first-order phase transition in another.

The energy of ionic phase can be expressed in the form,

gion_ 2 2 N R
*ORIE-DA-7) 2@
B 2R( 11 (Zy—Z1) +E1(Z,+ 2Zy))
&-

and the energy of the covalent phase takes the form,

(36)
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2 2 2
+ +
(&E-D(A-7)R*  (&5-1D(1-m)R® =2+ &+ &+ 73— 2&263m0m3+ 72R

B 2(n(Zy—=21) +6(Zo+2Zy))  2(m3(Zy—Zy)+ E3(Z5+ 2Z4))

(& 1R (&5- 73R '

There is definitely energy crossing between the two phases be&fiseE" along the boundary line wheti;— &,
é,— &1, m3— M2, mp— my. Introducing the generalized coordina@g=|(£;3— &;)/max(,&)| andQ,=[(73— 7,)/2|, we

can perform perturbation expansion of E§7) in term of (£3— &,)" and (53— 7,)". The energy difference between the two
phases is

cov_
E'=

(37

4m, . (&—1)n,
(-1 n)’R? " \2((£3-1)(1- 73))¥R

2(85(21—Zy) + n5(Z1—Zy) — 2&,ym5(Zo+ Z1))
+ PRV
(&—75)°R
—4&, . &(n5—1)
(- DX 1-m)R®  2((&-1)(1- 79)*R

| 22622y + E(Zo+Z0) + 15(Z2+ Z4))
(&—75)°R

X(€3—E)+O((E3— €)%, (&3—E) (13— 12) (13— 12)?). (39

ES &, m0;E3,13) —E2(€1,m1) =E2"(&y, 12) —E2(&1,m1) +

73— 12)

Usually &, # ¢, and 5, # 5, . If both coefficients of the linear program will only succeed in exceptional cases. So it is of
terms, €;—&,) and (3— 7,) in Eq. (38) are zero the re- interest to know how rare is this exceptional behavior. In this
maining terms are of orde@é, Qf, or yQQ,. Thus, the paper we discussed what could be shown by analytical con-
energy transition will be of second-order. Otherwise we ob-iderations for one and two electron systems. The results are
tain a first-order transition as a function @, Q, or both.  summarized in Table I. There is still an important gap in the
This finding is consistent with our previous numerical resultstable but the bottommost entry gives us scope for hope: In
for the energy as a function & andZ.*? the largeb limit, two electron systems, for which there is no
known symmetry, exhibit a first-order phase transition.
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