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Study of phase changes of the water octamer using parallel tempering
and multihistogram methods
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Parallel tempering Monte Carlo and multihistogram methods are combined to study the phase
changes of the water octamer. The heat capacity is calculated continuously from very low
temperatures up t@=230 K. We find the melting temperature to be 178.5 K. In addition, a
solid—solid phase change is found at 12 K. We introduce an order parameter to monitor this low
temperature phase change. Z001 American Institute of Physic§DOI: 10.1063/1.1385795

I. INTRODUCTION ample, jump—walking Monte Carfd. This method has been
used to study the canonical heat capacity of the water oc-

The study of molecular clusters has attracted con5|der,[-amer in the melting regiofr-*

able attention in the recent years. These systems exhibit In the present work, we revisit the water octamer to in-

phase change properties; some of which are very unique {9, qtigate the behavior of the canonical properties from very
finite systems, and others that correlate in bulk matter. Th?ow temperatures up to the melting region. To that end, we

size of the system is small enoug_h to allow_a detalle_d stud)épply an alternative technique named parallel tempering
of its structural and thermodynamic propertte&In particu- Monte Carlo which is similar in spirit to the jump—walking

lar, water cluster properties and their dependence on th&lgorithm?“’% The parallel tempering method has been re-

nﬁmberborf] mplecm:les can give us new insights into the rich,q sed to characterize the phase changes in the systems
phase behavior of water. LJsg and AR —HF.2~2°Here, we combine parallel tempering

The water octamer IS a Smfi” molecular cluster that Pr'®Monte Carlo with the multihistogram algorithm to cover
sents a well-established melting phase change when d%bntinuously the whole range of temperatures.
scribed by several known potential mod&fs? The melting

distribution functionw(e) is neatly bimodaf. Below the ering algorithm. In Sec. IV we report properties related to

melting feg“?”' the §olid|ike phases consist of seyeral cubi he Monte Carlo dynamics such as the autocorrelation func-
forms of which the |_somer.§)2d and'S4 are the main com- _tion y(t) and the integrated correlation timeln Sec. V we
ponents. In the melting region, cubic and open forms Coexisth o the canonical heat capacity(T). In Sec. VI we

alrt]ogether. Finally, abfove t.he me!tmg rfeglon, the “quﬂ'g“ke present results of an order parameter for the water octamer.
phase is composed of a wide variety of opened struc reS'FinaIIy, in Sec. VIl we give the conclusions.

The isomerd,4 andS, belong to the two lowest lying
energy minima. Bottab initio and density functional calcu-
lations signal theD,q structure to correspond to the global Il. CLUSTER MODEL
minimum =18 Nevertheless, some recent density functional . .

: . S . We model the cluster by adopting a rigid molecule
calculations point out that the stabilization order is reversed
: . . scheme for the water molecules. Then, the general form for

when zero point energy corrections are includetf. From

: : . . . the total potential energy is given b
the experimental side, there is conclusive evidence for the P ayis g y

existence of the structurd3,y andS,, as well as another N ey N .
low lying cubic structure whose point group symmetry is U:;j U (rij)+i21 US(ry), 1)
C, .1921.22 <

Associated with the melting process, there is a high enwherer; represent the distance between molecilasd],
ergy barrier separating the solidlike and liquidlike phasesandr; is the position of the center of mass of moleculg/e
Energy barriers cause ergodicity breaking during simulahave adopted the well-known MCY potenifaifor the
tions. In particular, standard Metropolis Monte Carlo sufferswater—water interactions. The external poteritlalhas been
the ergodicity breaking in a way that makes it very difficult introduced to prevent evaporation in the simulations at the
to estimate simple averages with any accuracy in a reasoftigher temperatures. We have adopted a reflecting constraint
able computational tim&:* Suitable techniques have been potential with a radius of ;=7 A:

developed in the last few years to fix this problem; for ex- 0 |r—reml<r
c c.m. c»
U(r)= (2
% |r_rc.m.|>rc-
dAuthor to whom correspondence should be addressed. Electronic mail: )
kais@power1.chem.purdue.edu Here,r. ,, is the center of mass of the cluster.
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Ill. THE PARALLEL TEMPERING METHOD all cases, the initial configurations are that of the global mini-

) L . mum. Next, we sample the system running the simulations
The parallel tempering method was originally used in¢,. 107 Monte Carlo steps.

simulations of glassy systems like spin glasses and random 11,4 global minimum for the MCY—water octamer cor-

: 24,25 ;
fields: It has been devised to solve the problems of €yesponds to the th®,4 isomer shown in Fig. 1. In this

godicity breaking that these systems exhibit at the low temfigure, we also show all the cubic low lying energy isomers.

perature regime. _ _ On completion of the simulations, we apply the multi-
The basic idea of the parallel tempering method is to 'uryigiagram algorithm to estimate the heat capacity in the

simultaneously several simulations at different temperatureg e range of temperaturdThis algorithm combines the
using Markovian dynamics and, in addition, let the simula-egjts of all the simulations to obtain the best estimates at
tions swap states according to the following probability:  omheratures other than the temperatures of the simulations.
p=min{1,exf (8- B (Ui—Up1}, 3 A requirgd conditiqn in common w?th the parallel tempering
method is that adjacent energy histograms must overlap to

whereU; is the energy of the state and 3; is the inverse some degree with each other.

temperature kgT; with kg being the Boltzmann constant. At

least one of thél; must be high enough to keep the systemlv_ ENERGY HISTOGRAMS, AUTOCORRELATION

above all the energy barriers that might cause ergOdiCit¥UNCTION AND INTEGRATED CORRELATION TIME
breaking. It has been proven that this combination satisfies ’

both ergodicity and detailed balante. Figure 2 shows the normalized energy histogravis),

In the present work, we let the system move using thevheree=U/N. The numbers indicate the simulation tem-
Metropolis algorithn®* Also, a swap between systems with peratures. Overlap is observed between all neighboring his-
adjacent temperatures was attempted with a frequency tograms, as required by the parallel tempering method. Some
=0.1; i.e., one swap attempt every 10 Monte Carlo steps. of the histograms are bimodal. This is a characteristic of

A Monte Carlo step is defined by? attempts to displace solid—liquid phase chang@s._ _ _ _
and rotate every water molecule in turn. Therefore, we define  The energy autocorrelation functiop(t) is defined as

the unit time byst=N2. The system is sampled at every (8(0)s(1))— (s)?
Monte Carlo step. y(t)= IR (4)
We fix the respective acceptance ratios for displacements (9= (e)

and rotations at 0.5 each so that half of the attempts aresheret is the Monte Carlo time measured &t units. The
accepted for both kind of movemeritsAlso, we choose the effect of parallel tempering or(t) as compared with stan-
temperatures of the simulations in order to guarantee the adard Metropolis simulations is shown in Fig. 3 for a few
ceptance of at least 10% of the attempted swaps. This can lbemperatures in the melting region. In that region, the system
achieved by letting the energy histograms of adjacent simuis known to fluctuate between the closed cubic forms shown
lations overlap substantially with each other, as inferred fromin Fig. 1 and a wide variety of open forms'*It is evident
Eq. (3). from Fig. 3 that parallel tempering alleviates sensibly the
To equilibrate the system at each temperature, we inieffects of correlations. However, we observed that correla-
tially run the simulations for 1.8 10° Monte Carlo steps. In tions continue having the same qualitative behavior as in the
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cases of simulations without parallel tempering. That is, corber fluctuating around zero, the larger the correlation block

relations still become larger in the phase change region. Thisf consecutively sampled energies’s.

qualitative agreement is expected since our parallel temper- In Fig. 4 we compare the behavior ¢{t) for different

ing implementation uses the Metropolis algorithm; the onetemperatures. The uppéower) panel corresponds to tem-

responsible for the large correlatiofs. peratures inlbelow) the melting region. It is observed that
We remark on the shape of(t) in the melting region. y(t) reaches a value which is 10 times larger in the melting

First, it decreases very fast; then, it suddenly levels off taregion than at lower temperatures. We also note that all the

continue decreasing steadily in most cases at a very low raturves sharply level off at approximately the same time.

for a long period. This sort of shape presages large correla- A way to quantify the correlations in the simulations is

tions because the mongt) delays becoming a random num- by estiglating thentegratedcorrelation timer which is de-

fined a

L - = ) t)dt. 5
10 I o—o Metropolis =230 | 7 J'O o ©

05 2— Parallel tempering

The estimates of enter as input in the multihistogram algo-
rithm, which we use in Sec. V to estimate the heat capacity.
Also, the values of- can provide us with some indication of
possible phase changes.

The direct calculation of by integratingy(t) in Eq. (5)
is not practical because it involves evaluating a truncated
summation which in turn introduces uncertainties that are

Y( t ) RN difficult to assess. The conventional way then to estimase
1oF T=170 ] by first calculating the standard deviation or variancef

B aa e NN the mean energy of a simulation.
0’5_' b ) ) 1 In this work, we use two methods to estimate the

blocking method and the moving block bootstrap
0oF . . . . 7 alqorithm?35:36 . ) ]
M M ) L L gorithm: Both algorithms consider the sampled ener
101 _ - gies as a large block and estimate an inithal Next, the
T=150 _ o .

- : ] algorithms transform the original block into a new block and
0.5 7 estimates once more. Then, the last step is repeated until the
00 [ M estimatedo reaches a steady value. Exactly how the trans-

B I T T TPI SR formations are done and how is estimated at every stage
0 200 400 600 800 1000 gdepend on each particular method.
t It is worthwhile to mention here that the moving block
FIG. 3. Comparison of the energy autocorrelation functig) for Me- bootstrap algorithm usually gives better estimates ghan

tropolis and parallel tempering simulations at different temperatures in thd€ blocking method at the phas_e transition r_egion in Ising
melting region. All the temperatures are in Kelvin. systems, even though the blocking method is much more
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both the blocking methodupper pangl and the bootstrap methagbwer
pane). The units ofo are(Kcal mol™%). Note how, in this case, the bootstrap
implementation as in Ref. 36 tends to form a steady plafieaver panel, in
contrast to the blocking implementation of Ref. 35 which fluctuates around
some unclear valuéupper pangl

FIG. 4. Parallel tempering energy autocorrelation functt) for tempera-
tures in the melting regiolupper paneland for temperatures out of the
melting region(lower panel. All the temperatures are in Kelvin.

efficient. Away from the phase transition region the blocking

method is usually the better option because of itSyyis js 5 consequence of the ergodicity breaking caused by
efficiency™® We find, however, that at a temperature as [0Whig energy barriers. Our results in Fig. 3 and Table I reflect
as 3 K where the magnitude of correlations is small in comyp4t situation.

parison with the same magnitude in the melting region, the
moving block bootstrap algorithm still may yield better re-
sults than the blocking method. This is shown in Fig. 5.

To estimater at each temperature, we use the following

Outside the melting regions appears to have another
maximum around =60, but it is much less noticeable. That
region, shown in Sec. VI, corresponds to a system fluctuating
between the two solidlike phasBsy and ands,, see Fig. 1.

formula* As the temperature continues decreasindgyecomes even
) ,9(7) smaller until it finally st_abilizes in a region belo1_7v= 20, see
o :Uotmax (6) Table I. That last region corresponds to a single solidlike
phase in the global minimum basin.
with
ao=(e%)—(e)?, () _ _ o _
TABLE |. Estimates of the integrated correlation time The values in
wheret,,,, is the simulation length, ang(r) is given by parentheses correspond to simulations using only the Metropolis algorithm.
g(7)=1+27. (8 T/K T TIK T T/K 7
Table | showsr for the different temperatures. As ex- 230 (173 53 90 112 20 3
pected from Figs. 3 and 4; increases within the melting 210 (1137 168 70 116 15 2
region, and the increase is much more pronounced for simu- 190 (2881 652 60 153 10 2
lations using only Metropolis algorithm. In general, Me- g‘?‘;g ;ggz i’g ?3 ; g
tropolis simulations in the melting region require a very long {5, 66 30 2 3 3

computational time to produce results with some accuracy
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—r1 r r 1 117 It is desirable to know which cubic isomers take part in
- the solid—solid phase change. To that end, we introduce an
order parameter able to characterize this phase change.

30.0

25.0 - VI. THE ORDER PARAMETER

- To define an order parameter, we look for a quantity that
is well defined in every state in the phase space of the water
octamer. An order parameter should be able to distinguish
. among the different phases that the system®HEs.recog-
nize a phaselike form, the order parameter must also be a
rotational invariant, i.e., independent of the configurational
- orientation. For instance, the polarization veckis well
defined for every state in the phase space, but it is not invari-
ant under rotation. Moreover, its expectation vali® is
identically zero in the whole range of temperatures. Instead,
the polarization normiP| is an invariant under rotation, and
its expectation(|P|) seems likely to distinguish between
solidlike and liquidlike phases. Unfortunately?| vanishes

by symmetry for the isomerB,q and S, shown in Fig. 1.
Therefore,|P| is not appropriate for distinguishing between
those isomers.

In this section, we study the properties of an order pa-
rameter originally introduced by Steinhardst al. for
Lennard-Jones bulk phas&sThey have developed two sets
of rotational invariants based on spherical harmonics labeled
Q, and W,. Subsequent works on Lennard-Jones clusters
have also made use @, and W, .2%27339Sjnce Q, has
- given good results for Lennard-Jones clusters, we will focus

0 50 100 150 200 250 300 our attention on this particular order parameter.
Q. is defined by associating a set of spherical harmonics
T/K with every bond joining an atom to its near neighbors. The
FIG. 6. The heat capacity, in Kcalmol 'K~ and its derivative as a WOrd bondhere does not necessarily imply chemical bonds,

function of temperature. The circles corresponds to the simulated valuedut rather lines connecting pairs of predefined near neighbor
The solid lines are drawn by using the multihistogram algorithm. The sta-gtoms. Then, the definition @, is3’
tistical errors are smaller than the width of the line.

¢, 200

15.0

10.0

Ao 4 1/2
Q=35 X [Qunl (10
9 mT4
V. THE HEAT CAPACITY with
The heat capacity per molecute(T) for a system com- — 1
posed ofN equal rigid molecules is expressed as Q4,m:n_b§ Yam(6ij, bij), (1D
1]
c,(T)=3kg+NkgB?0p, (9 wheren, is the number of bond¥,, (6, ¢;;) is a spherical

where US is defined in Eq(7). To estimatec,(T) and the harmon_ic, andy;; and¢;; are the polar and azimuthal angles,
other thermodynamic functions at temperatures differenf€SPECtively, of a vector that points from the mass center of
from those of the simulations, we use the multihistogramth€ cluster to the midpoint of theth bond. We have inves-
algorithm3 Figure 6 displays the heat capacity(T) and its tigated dllfferer?t ghm_ces for t.he bonds, and have found that
derivative with respect to the temperature. The peak in thdhey all ylgld S|m|I.ar information. The results presented here
heat capacity corresponds to the solid—liquid transition. W&Vere obtained using the hydrogen—oxygen bond.
characterize the temperature of the transition by the tempera- 1€ @lgorithm to find the bonds is as followd) pick a
ture of the maximum in the heat capacity. We find a value ofVater moleculg and calculate the distanceg, ; from hy-
Tma=178.5 K, which is in reasonable agreement with thedrogene; to the oxygens belonging to other moleculet2)
value obtained by Pedulla and Jordan. look for the smallest of theaj i to decide whether hydrogen
At lower temperatur€20—-90 K), we observe the forma- «; is bonding or not(3) continue with the other hydrogen of
tion of a shoulder irc,(T) indicated by an arrow. The pres- moleculej,;; and(4) repeat all the steps for each of the
ence of the shoulder is further confirmed by a small maxi+emaining molecules.
mum indc, /dT. In addition, we note that the position of the The most sensitive part of this algorithm is the decision
shoulder is consistent with the second region of increasingvhether a hydrogen is bonding or dangling. Considering
correlation signaled by in Table I. Faiig 88 being the smallest distance, st@pis achieved by
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FIG. 7. Expectation valugQ,) for the hydrogen bonds as a function of the . g, probabilityp,(T) that a particular basin or group of basins are
temperature. MT means Metropolis, and PT means parallel tempering. Thgsited.

initial structure is shown in parentheses. See also Table II.

tained by periodic quenching. Up = 10K, we have that
Pp,,=1. At T=15K, traces of thes, state are observed. An
exchange between these two structures occur upl to
=50 K, where the appearance of the other cubic forms is
detected. The first open, or liquidlike structure, is observed at
T=90 K. However, the number of open structures is insig-
andr . ; is the distance from hydrogem to its father oxy- nificant up toT=120 K. At the position of the peak in the
genj. : heat capacity,, T=178.5 K, the distribution of structures
Figure 7 show¢Q,) as a function of the temperature for is almost even between cubic and open forms. At higher
the parallel tempering simulation and for regular Metropolistemperaturesp;iq,iq becomes dominant.
simulations seeded with th2,4 and S, structures. Table |I We note tha{Q,) lets us estimate the onset of the first
gives the values o, for the cubic structures in Fig. 1. For phase change at low temperature. In Fig. 9, we show the
the standard Monte Carlo, we see ti@af remains almost result of applying the multihistogram method to the parallel
constant until the melting region is reached. This is becaustempering simulations, as well to the Metropolis simulation
the systems are trapped in the basins of the initial configu-
rations. HoweverQ, for parallel tempering simulations dis-

executing the following sentence&) if Faio= T B ig then
hydrogen «; dangles;(b) if step (a) is false, andrai,iO
>(rf; + rij )2 then hydrogen; dangles; andc) if steps
(@) and (b) are false, then hydrogen; bonds with oxygen
ig- Here,rj ;. is the distance from oxygepto oxygenig,

plays the transition from a pur®,4 state, to a mixture of T T T T
cubic structures in the temperature range 15-120 K. For - -
larger temperature§), decreases monotonically due to con-
tribution from open structures. 0.2848 .
The information provided byQ, is complemented by i ]
Fig. 8, where we plot the probability,(T) that a particular
basin or group of basins are visited. This probability is ob- 0.2847 = .
<Q4> B o
TABLE Il. Energy per molecules and order parameted, for the cubic
structures of Fig. 1. 0.2846 1= n
Structure s/Kcal mol™! Q. i A
Dag -8.413 0.285 0.2845 - -
S, —8.380 0.299
C, -8.159 0.323 - .
C -8.127 0.336 T T e
Cib —8.084 0.303 028445 10 15 20 25 30 35
Cic —8.066 0.312
Cia —8.052 0.316 T/K
Cs -8.039 0.317

FIG. 9. The same as Fig. 7. The arrow signals the onset tempefiature

Downloaded 30 Aug 2002 to 128.210.142.96. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpoljcpcr.jsp



J. Chem. Phys., Vol. 115, No. 6, 8 August 2001 Phase changes of the water octamer 2627

0.16

lower temperatures suggests a solid—solid phase change.
However, this quantity is not sensitive enough to fully char-
acterize this transition.

We have studied an order parameter to monitor the phase
change at low temperature. This paramet@y,), together
with the probabilityp,(T) that different basins are visited, is
able to locate the onset of the first phase changd @t
=12 K. For temperatures beloily,, we have only the iso-
merD,q. AboveT,, a mixture of the isomerB,4 andS, is
present.

The dependence of the phase changes on the size of the
cluster can provide insights into the nature of the bulk phase
transitions. We have shown that the parallel tempering
method in combination with the multiple histogram algo-
rithm is a successful tool to investigate the phase changes in
these complex systems. An extension of this work to larger
0.1 0.2 0.3 0.4 clusters is currently underway. Initial results fgras a func-

Q4 tion _of temperature for (D)1, and (HO)4¢ indicates the
feasibility of this approach.

0.12
0.08
®Q,)

0.04

0.00

FIG. 10. Landau free energy(Q,) in Kcal mol ™.
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