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We present finite-size scaling calculations of the critical parameters for binding an electron to a
finite linear quadrupole field. This approach gives very accurate results for the critical parameters by
using a systematic expansion in a finite basis set. The model Hamiltonian consists of a chargeQ

located at the origin of the coordinates andk charges2Q/k located at distancesRW i , i 51,...,k.
After proper scaling of distances and energies, the rescaled Hamiltonian depends only on one free
parameterq5QR. Two different linear charge configurations withq.0 andq,0 are studied using
basis sets in both spherical and prolate spheroidal coordinates. For the case withq.0, the finite size
scaling calculations give an extrapolated critical value ofqc51.469 7060.000 05 a.u. by using a
basis set with prolate spheroidal coordinates. For the quadrupole case withq,0, we obtained an
extrapolated critical value ofuqcu53.982 5160.000 01 a.u. for stable quadrupole bound anions. The
corresponding critical exponent for the ground state energya51.996460.0005, with E;(q
2qc)

a. © 2004 American Institute of Physics.@DOI: 10.1063/1.1695552#

I. INTRODUCTION

Recently there has been increasing interest in multipole-
bound negative ions. For the case of dipole-bound negative
ions, the outer electron is weakly bound by the dipole mo-
ment of a neutral molecule in a diffuse orbital localized at
the positive end of the dipole. Fermi and Teller1 have shown
that, within the context of the Born–Oppenheimer approxi-
mation, molecules with dipole moments greater thanmc

51.625 D can bind an electron to form dipole-bound
anions.1–8 The ground-state energy of the system tends to
zero exponentially as the dipole moment reaches its critical
value.9,10 However, subsequent experimental and computa-
tional studies taking into account corrections to the Born–
Oppenheimer approximation gives a more realistic estimate
of mc52.5 D ~Refs. 11–18!.

By analogy with the binding of an extra electron by a
strong dipole field, it is natural to examine the possibility of
electron binding by molecules with significant quadrupole
moments and vanishing dipole moments. The search for
quadrupole-bound anions has attracted both theorists19–24

and experimentalists.25–29 One of the first studies of poten-
tially quadrupole-bound anions was performed by Jordan and
Liebman.19 They considered attachment of an extra electron
to a (BeO)2 dimer and concluded by using a Hartree–Fock
level of theory that the extra electron is bound in the (BeO)2

2

anion primarily by the quadrupole field of the neutral dimer.
Later Gutowski and Skurski calculated at the coupled-cluster
level of theory with single, double, and noniterative triple

excitations the global minimum on the potential energy sur-
face of (BeO)2

2 and showed that it corresponds to a rhombic
D2h structure, which may be considered as a quadrupole-
bound anion.22 This system was reexamined by Gutsev, Jena,
and Bartlett using coupled-cluster singles and doubles with
perturbation triples method.23 They have found that the bind-
ing energy of the extra electron in the (BeO)2

2 anion to be
about 0.9 eV which is larger that the Hartree–Fock value of
0.65 eV~Ref. 19!.

Recently Gutsevet al.23 used coupled-cluster singles and
doubles with perturbation triples method to search for
quadrupole-bound anions. They reported the structure and
properties of KnClm and KnClm

2 (n,m50 – 2). The KCl2 was
found to have an electron affinity of 4.2 eV and is stable
toward dissociation by 26 kcal/mol. The (KCl)2 dimer has a
rhombic ground state with a large electric quadrupole mo-
ment. Rhombic and linear configurations of the~KCl! anion
correspond to stationary states that are nearly degenerate in
total energy. The rhombic anion has a single, weakly bound
state that could be a quadrupole-bound state.23

Prasadet al.21 have evaluated the critical values of the
quadrupole moment required for linear symmetricMX2 sys-
tems to have a bound anion state. Recently Pupyshev and
Ermilov24 determined numerically, using a linear combina-
tion of atomic orbital and finite-difference approximation,
the critical charge values which ensure the existence of
bound state for one electron in the quadrupole and octupole
fields.

In this paper, we present finite-size scaling calculations
of the critical parameters for binding an electron to a finite
quadrupole field. This approach gives very accurate results
for the critical parameters by using a systematic expansion in
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a finite basis set. In Sec. II, we briefly review the finite-size
scaling~FSS! method in quantum mechanics. In Sec. III, we
present rigorous bounds for stable quadrupole-bound anions.
In Sec. IV the FSS calculations for the critical parameters for
stable quadrupole-bound anion in two linear charge configu-
rations are presented in both spherical and prolate spheroidal
coordinates. Finally conclusions are given in Sec. V.

II. FINITE-SIZE SCALING METHOD

The finite-size scaling approach has been developed for
studying the critical behavior of a given quantum Hamil-
tonian H(l1 ,...,lk) as a function of its set of parameters
$l i% ~Refs. 30 and 31!. In this context, ‘‘critical’’ means the
values of$l i% for which a bound-state energy is nonanalytic.
In many cases, this critical point is the point where a bound-
state energy becomes absorbed or degenerate with a
continuum.32

In order to apply the FSS method to quantum mechanics
problems, let us consider a Hamiltonian of the form31

H5H01Vl , ~1!

whereH0 is l independent andVl is thel-dependent term.
We are interested in the study of how the different properties
of the system change when the value ofl varies. Without
loss of generality, we will assume that the Hamiltonian, Eq.
~1!, has a bound stateEl for l.lc which becomes equal to
zero atl5lc . The asymptotic behavior ofEl nearlc de-
fines the critical exponenta:

El ;
l→lc

1

~l2lc!
a. ~2!

In this approach,finite sizecorresponds to the number of
elements in a complete basis set used to expand the exact
wave function of a given Hamiltonian. For a given complete
orthonormall-independent basis set$Fn%, the ground-state
eigenfunction has the expansion

Cl5(
n

an~l!Fn , ~3!

wheren represents an adequate set of quantum numbers. In
order to approximate the different quantities, we have to
truncate the series, Eq.~3!, at orderN. Then the Hamiltonian
is replaced by anM (N)3M (N) matrix, with M (N) being
the number of elements in the truncated basis set at orderN.
In the FSS representation, we assume the existence of a scal-
ing function for the truncated magnitude of any given opera-
tor O such that

^O&l
(N);^O&lFO~Nul2lcun!, ~4!

with a different scaling functionFO for each different opera-
tor but with a unique scaling exponentn.

Now, to obtain the critical parameters, we define the
function

DO~l;N,N8!5
ln~^O&l

(N)/^O&l
(N8)!

ln~N8/N!
. ~5!

If one takes the operatorO5H, then ^H& (N)5El
(N) is

the usual linear-variational approximation to the ground-state

energyEl . From O5]H/]l we obtain a second equation,
which together with Eq.~5! is used to define the function

G~l;N,N8!5
DH~l;N,N8!

DH~l;N,N8!2D]Hl /]l~l;N,N8!
, ~6!

which is independent of the values ofN andN8 at the critical
point l5lc . The particular value ofG at l5lc is the criti-
cal exponenta for the ground-state energy as defined in Eq.
~2! ~Ref. 31!:

a5G~l5lc ;N,N8!. ~7!

Actually Eqs.~6! and~7! are asymptotic expressions. For
three different values ofN,N8,N9 ~we chooseN85N22 and
N95N12) the curves ofG(l,N) as a function ofl will
intersect at successions of pseudocritical pointslc

(N) ,

G~l5lc
(N) ;N22!5G~l5lc

(N) ;N!, ~8!

giving also a set of pseudocritical exponents:

a (N)5G~lc
(N) ;N!. ~9!

The successions of values oflc
(N) anda (N) can be used

to obtain the extrapolated value oflc anda ~Ref. 32!.
This general approach has been successfully applied to

calculate the critical parameters for two-electron atoms,30

three-electron atoms,33 simple diatomic molecules,34 stability
of three-body Coulomb systems,35 and crossover phenomena
and resonances in quantum systems.36

III. ONE ELECTRON IN AN ELECTRIC-QUADRUPOLE
FIELD

In this section, we will present some general results for
an electron in the presence of a quadrupole potential.

We will analyze the case ofk Coulomb centers with the
quadrupole as the first nonvanishing multipole moment. A
short comment about point quadrupole potentials is included
at the end of the section.

The model system consists of a chargeQ at the origin of
coordinates andk charges2Q/k located atRW i , i 51,...,k,
where the position vectorsRW i are chosen with the constraint
that the first nonzero multipole be the quadrupole moment
for k.1. Note that for the dipole system we have a symme-
try in Q→2Q; therefore, the energy is an even function of
the dipole moment. For the case of a quadrupole potential
this symmetry does not apply; thus, the casesQ.0 andQ
,0 have different critical charges.

The Hamiltonian for an electron in this quadrupole field
is given by

Hquad52
1

2
¹22

Q

r
1

Q

k
(
i 51

k
1

urW2RW i u
, k>2. ~10!

For k51 Hamiltonian, Eq.~10!, represents an electron in a
dipole field.

It was shown by Hunziker and Gu¨nter37 that there exists
Q* .0 such that foruQu,Q* the Hamiltonian, Eq.~10!, has
no bound states.
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For the case ofk charges equidistant from the central
chargeuRW i u5R, i 51,...,k, the Hamiltonian could be scaled
in both Q or R variables:

Hquad~Q,R,rW !5Q2Hquad~1,QR,QrW !

5
1

R2 Hquad~QR,1,rW/R!. ~11!

Therefore, it actually has only one free parameter. After scal-
ing distances and energies, the rescaled Hamiltonian in the
new variableq5QR takes the form

Hquad52
1

2
¹22

q

r
1

q

k (
i 51

k
1

urW2 r̂ i u
, ~12!

where r̂ i is a unit vector in the direction of the chargei .
It is straightforward to show, using variational argu-

ments, that the Hamiltonian, Eq.~12!, can support at least
one bound state for large values ofuqu. Using a simple ex-
ponential trial wave function located at the positive charges,
the contribution of the negative charges will be exponentially
small for large values ofuqu. Therefore, the expectation
value of the Hamiltonian, Eq.~12!, is less than zero for large
enough values ofuqu, and at least one bound state exists.
Note that these results holds for both casesq.0 andq,0.
Therefore there is a critical valueqc for binding an electron
in a quadrupole potential.

In particular, forq.0 we also have an upper bound for
the critical chargeqc . From simple variational arguments for
q.0, the following inequality holds:

qc
(k51)5qc

(dipole)<qc
(k52)<qc

(k),qc
(`) , ~13!

whereqc
(k) is the critical parameter of the Hamiltonian, Eq.

~12!, qc
(1) corresponds to the critical value of the dipole, and

qc
(`) is calculated by taking the limitk→` for a fixed value

of q, which corresponds to a chargeq at the center of a
uniform charged sphere of radiusR51 and charge2q. At
this limit, the potential becomes

V~r !5H 2
q

r
1q if r ,1,

0 if r .1.

~14!

The Schro¨dinger equation for this potential is exactly
solvable in terms of continued fractions. Thus one can obtain
the critical parameterqc

(`) with an arbitrary precision. There-
fore we have rigorous lower and upper bounds for the critical
parameter corresponding to 2<k,`:

qc
(dipole)51.278 . . .<qc

(k),qc
(`)51.547 . . . . ~15!

For q,0, the case withk51 is the dipole potential, so
the lower bound is the sameqc

(dipole)51.278. However, there
is no upper boundqc

(`) since for k→` there is no bound
states for any value ofq.

In the next section, we will present numerical calcula-
tions using finite-size scaling for the casek52. The model
Hamiltonian for this system consists of a chargeq at the
origin and two charges2q/2 at z561:

H~q!52
1

2
¹22

q

r
1

q

2 H 1

urW2 ẑu
1

1

urW1 ẑuJ . ~16!

For the above Hamiltonian, Eq.~16!, we have the sym-
metries

@H~q!,Lz#50 and @H~q!,Pz#50, ~17!

whereLz is the angular momentum along thez axis andPz

is the inversion operator,PzF(x,y,z)5F(x,y,2z). There-
fore the ground-state wave function is an even function of
the coordinatez and does not depend on the azimuthal angle.

Hunziker and Gu¨nter have discussed some known bind-
ing and nonbinding criteria for a charged particle moving in
the field of a neutral system ofN fixed-point charges.37 For
our particular case, Hamiltonian, Eq.~16!, we can prove the
following:

Lemma'qc.0 such that foruqu,qc the Hamiltonian,
Eq. ~16!, has no bound states.Proof Let Equad andC0(rW) be
the ground-state energy and wave function of the finite quad-
rupole Hamiltonian, Eq.~16!, respectively, and define

V65
1

urW6 ẑu
2

1

r
. ~18!

Since from condition, Eq.~17!, the ground stateC0(rW) must
be an even function of the coordinatez:

^C0uV1uC0&5^C0uV2uC0&. ~19!

The dipole Hamiltonian can be written in terms of both
V6 :

Hdip52
1

2
¹21qV6 . ~20!

Using the variational principle we obtain

^C0uHdipuC0&>Edip , ~21!

where Edip is the exact ground-state energy of the Hamil-
tonian, Eq.~20!. In addition we can write

^C0uHdipuC0&5^C0uTuC0&1q^C0uV6uC0&, ~22!

whereT is the kinetic energy operator. Using the symmetry
relation ~19! we find that

^C0uHdipuC0&5^C0uT1
q

2
V11

q

2
V2uC0&

5^C0uH~q!uC0&5Equad~q!. ~23!

From Eqs.~21! and ~23! we obtain

Equad~q!>Edip~q!. ~24!

It is rigorously known that the finite dipole Hamiltonian,
Eq. ~20!, does not support bound states forq,qc

dipole

51.278 630, which is the critical value ofq for the point
dipole potential.2 Thus Eq.~24! ensures that there exists a
value qc , uqcu>qc

dipole , such that the finite quadrupole
Hamiltonian, Eq.~16!, has no bound states. Note that be-
causeEdip(q)5Edip(2q), the proof is valid for both cases
q.0 andq,0.

For the case of an electron in a point-quadrupole poten-
tial, the Hamiltonian is given by
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Hpoint52
1

2
¹22

QP2„cos~u!…

r 3 , ~25!

where P2„cos(u)… is the standard Legendre polynomial of
degree 2 and we takeQ.0.

It is known that this Hamiltonian, Eq.~25!, does not
admit physical solutions. The Hamiltonian is not bounded
from below and the square integrable eigenfunctions with
negative energies, which are arbitrarily large in absolute val-
ues, exist for any value ofQ ~Refs. 38 and 39!. Therefore, to
describe the binding of an electron to a molecule with the
quadrupole moment as a dominant term we have to exclude
the divergence atr 50.

There is no unique way to exclude this divergence. One
possibility, as we have done in this study, is to replace the
point quadrupole by a finite one. In this case, the quadrupole
moment is dominant at large distances but the outer multi-
pole series expansion has infinite terms. There are no diver-
gences faster thanr 21 and the Hamiltonian is bounded from
below. A minimum value of the energy~ground state!, if it
exists, is finite and the corresponding square-integrable wave
function does not present the ‘‘fall to the center’’ problem.38

Another possible way to avoid this divergence is to in-
clude a cutoff radiusr c and consider a pure quadrupole po-
tential for r .r c and a hard core repulsion forr ,r c ~Ref.
22!:

V1~rW !5H 1`, r ,r c ,

2
QP2„cos~u!…

r 3 , r .r c .
~26!

A similar qualitative result could be obtained with the
potential

V2~rW !5H 2
QP2„cos~u!…

r c
3 , r ,r c ,

2
QP2„cos~u!…

r 3 , r .r c .

~27!

SinceV2(rW)<V1(rW) ; rW, it is straightforward to prove,
applying the variational principle, that ifV2 does not support
a bound state, thenV1 does not either. Thus the existence of
a critical valueQc

(2) of Q for V2 ensures that a critical value
Qc

(1) of Q for V1 also exists withQc
(2)<Qc

(1) . We may apply
again the variational principle in order to prove thatV2(rW)
does not support a bound state if the central potential of the
form

V~r !5H 2
Q

r c
3 , r ,r c ,

2
Q

r 3 , r .r c ,

~28!

does not have bound states. Using the Calogero inequality
for the maximum number ofS-waves bound states of an
attractive central potential40,41 one can show that a critical
valueQc>p2r c/36 exists for this potential and therefore also
exists for both potentialsV1 andV2 .

IV. FINITE-SIZE SCALING CALCULATIONS

Now, we are in a position to apply the FSS calculations
for the Hamiltonian, Eq.~16!, for both casesq.0 and q
,0. All FSS equations presented in Sec. II are valid with
l5uqu.

For the caseq.0 we expect the Slater basis set in
spherical coordinates to be adequate. A complete basis set for
the ground-state calculations is given by

Fn,l~rW !5F 4pb2n13

~4l 11!~2n12!! G
1/2

e2br /2r nP2l~u!,

n50,1,..., l 50,1,...,@n/2#, ~29!

whereb is a variational parameter used to optimize the nu-
merical results andP2l(u) is the Legendre polynomial of
order 2l .

For q,0 the ground-state wave function is zero at the
origin of the coordinates. Thus, it is natural to work with
prolate spheroidal coordinates~j,h,w! ~Ref. 39! defined as

j5r 11r 2 , h5r 12r 2 , f5tan21~y/x!, ~30!

where

r 15Ax21y21~z21!2, r 25Ax21y21~z11!2. ~31!

j goes from 1 tò , h goes from21 to 1, and the azimuthal
anglew varies from 0 to 2p.

In these coordinates the scaled Hamiltonian takes the
form

H52
1

2
¹21

4qh

j22h2 . ~32!

The symmetries, Eq.~17!, imply that the ground-state wave
function does not depend onw and is an even function ofh.
Therefore, we choose the basis set

Fn,l~j,h!5Cn,le
2bjjnP2l~h!, n50,1,...,

l 50,1,...,@n/2#, ~33!

whereb, as in the Slater basis set, is a free parameter used to
optimize numerical results.

For numerical calculation, the basis set is truncated at a
maximum valueN which determines the sizeM (N) of the
truncated Hamiltonian matrix:

M ~N!5H N214N13

4
for odd N,

S N12

2 D 2

for even N.

Then, we calculate the ground-state energy using the
Ritz-variational method for a nonorthogonal basis set. The
matrix elements for both cases are given in the Appendix.

FSS calculations for both spherical and cylindrical po-
tentials show strong parity effects.32 For this reason we
chooseN85N12 in all cases. In the following subsections,
we present the FSS results for the linear quadrupole Hamil-
tonian, Eq.~16!, for both casesq.0 andq,0.

Note that the particular choice of the scaled Hamil-
tonian, Eq.~16!, with R has a technical reason: the trun-
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cated Hamiltonian matrix is a linear function ofq. There-
fore, the expensive calculations of the matrix elements
~about 10 days of CPU time in a dual 2.6-MHz PC! have to
be done only one time. In order to obtain the limit of a point
quadrupole potential, one should take the limitR→0,q
→`, with qR25const, in the Hamiltonian, Eq.~10!. Since
we scaled the Hamiltonian withR, this limit is not easy to
study numerically. In order to apply the finite-size scaling
method one has to choose an alternative scaling in Eq.~11!
in order to write the Hamiltonian as a function ofR and
calculate the matrix elements for each value ofR.

A. Linear charge configuration with qÌ0

In Fig. 1~a! we showG(q,N), as defined in Eq.~6!, as a
function ofq for even values ofN using the Slater basis set,
Eq. ~29!, in spherical coordinates. Figure 1~b! showsG(q,N)
as a function ofq using prolate spheroidal coordinates, Eq.
~33!. Curves obtained using odd values ofN are qualitatively
identical and they are not shown in the figures.

We show in Fig. 2 the pseudocriticalqc
(N) , defined in Eq.

~8!, as a function of 1/N for even values ofN for both basis
sets. In the case of spherical basis set, the extrapolated value
is qc

(ext)51.469660.0005. Using prolate spheroidal coordi-
nates the extrapolated value isqc

(ext)51.469760.0001.
To obtain the critical exponent for the energy, we plot in

Fig. 3 the valuesa (N), as defined by Eq.~9!, as a function of

1/N for even values ofN. With the spherical basis set we
obtained an extrapolated value of the critical exponent
a (ext)51.9860.03 anda (ext)51.8460.04 using the ellipti-
cal basis set.

We can see in Figs. 2 and 3 that the behavior of the
finite-size calculations has a strong dependence on the basis
sets. In the case of the Slater basis set there exists a non-
monotonic behavior that makes the asymptotic studies diffi-
cult. It is a known result42 that spherically symmetric poten-
tials that go to infinity as 1/r 3 have a critical exponenta
52. If we examine our numerical results, it is reasonable to
assume that our system has the same critical exponent.

In order to support this assumption we can examine the
data collapse for the FSS results. The data-collapse ansatz43

establishes that when scaling laws, Eqs.~2! and ~4!, are
valid, then near the critical pointqc all curvesEl

(N)Na/n plot-
ted against (q2qc)N

1/n must collapse onto a single universal
curve.

Assuming that our model has the same critical exponents
n51 anda52 for the Hamiltonian with a spherical poten-

FIG. 1. G(q,N) as a function ofq for the ground-state energy of the electric
quadrupole (q.0) potential for even values ofN ~a! in spherical coordi-
nates and~b! in the prolate spheroidal basis set.

FIG. 2. qc
(N) as a function of 1/N for the ground-state energy of the electric

quadrupole (q.0) for even values ofN526,...,90. Results for the two
basis sets are shown. The solid points show the extrapolated critical param-
eters. qc

(ext)51.469660.0005 ~triangles! for spherical coordinates and
qc

(ext)51.469760.0001~circles! for prolate spheroidal coordinates.

FIG. 3. a (N) as a function of 1/N for the ground-state energy of the electric
quadrupole (q.0) for even values ofN526,...,90. The results for both
basis sets are shown. The solid points show the extrapolated critical expo-
nents. a (ext)51.9860.03 ~triangles! for spherical coordinates anda (ext)

51.8460.04 ~circles! for prolate spheroidal coordinates.
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tial that goes to infinity as 1/r 3, we can use the data collapse
to estimateqc . In order to obtain the value ofqc , we plot
El

(N)Na/n as a function of (q2qc)N
1/n for different values of

N, leavingqc as a free parameter. Using values of energies
as a function ofq calculated in spherical coordinates, by
minimizing the distance between the two curves we can ob-
tain an approximate value for the critical parameter. Figure 4
shows the estimatedqc51.470 which is in a complete agree-
ment with the previous extrapolated valueqc

(ext)51.4696.

B. Linear charge configuration with qË0

Here, we repeat the above FSS calculations for the quad-
rupole case withq,0. FSS calculations cannot be performed
using the Slater basis set in spherical coordinates since the
exact ground-state wave function vanishes atrW50. So we
cannot obtain accurate near-threshold values of the energy
and its derivative even for very large values ofN. However,
the basis set, Eq.~33!, defined in prolate spheroidal coordi-
nates, seems to be a natural choice to approximate the
ground-state wave function.

Figure 5 shows the intersection ofuqc
(N)u as a function of

1/N using prolate spheroidal coordinates. We obtained the
extrapolated valueuqc

(ext)u53.9825160.00001. We also
present in Fig. 6 the values of the pseudocritical exponent
a (N) as a function of 1/N. The extrapolated value isa (ext)

51.996460.0005.
Even the FSS method, Eq.~6!, does not give accurate

results for critical parameters using the Slater basis set in
spherical coordinates. We test the data-collapse ansatz with
the energies calculated in this basis set. As before, we as-
sume thata52 andn51, and minimizing the distance be-
tweenE0

(50) andE0
(90) , we obtained by data collapse an ap-

proximated critical parameteruqcu.3.977, which is in good
agreement with the above-extrapolated valueuqcu(ext)

53.982 51. The data-collapse results are shown in Fig. 7.

V. CONCLUSIONS

We have presented finite-size scaling calculations of the
critical parameters for the stability of an electron bound by a
quadrupole field. Moreover, we have shown that there is a
strong dependence on the basis set in performing FSS calcu-
lations. For the caseq.0, we assume that spherical coordi-

FIG. 4. Data-collapse curves for the ground-state energy of the quadrupole
q.0 with a52, n51 andqc51.470 for spherical coordinates.

FIG. 5. uqc
(N)u as a function of 1/N for the ground-state energy of the electric

quadrupole (q,0) for even and odd values ofN534,...,90 and for the
prolate spheroidal basis set. The solid point shows the extrapolated critical
parameter.uqc

(ext)u53.982 5160.000 05~triangles!.

FIG. 6. a (N) as a function of 1/N for the ground-state energy of the electric
quadrupole (q,0) for even and odd values ofN534,...,90. Results ob-
tained with the prolate spheroidal basis set. The solid point show the ex-
trapolated critical exponent.a (ext)51.996460.0005~triangles!.

FIG. 7. Data collapse for the ground-state energy of the quadrupole (q
,0) with a52, n51 andqc53.976 75 for spherical coordinates.
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nates are more suitable than prolate spheroidal coordinates.
Although the results with this choice were very accurate, the
oscillating behavior of the FSS calculations introduces noise
in the asymptotic analysis. However, forq,0, the results are
better with prolate spheroidal coordinates. The extrapolated
values obtained forqc using finite-size scaling calculations
are in good agreement with the results of Pupyshev and Er-
milov obtained by other methods.24

In addition, the FSS method permits the calculation of
the critical exponents. Our numerical results are in good
agreement with the one obtained for rotationally invariant
Hamiltonians with potentials having the same asymptotic
properties atr→`. This finding is supported by the data-
collapse ansatz as shown in Figs. 4 and 7.
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APPENDIX: MATRIX ELEMENTS FOR THE
QUADRUPOLE-FIELD HAMILTONIAN

In this appendix we include the matrix elements for the
quadrupole-field Hamiltonian in both spherical and prolate
spheroidal coordinates. Since the problem has cylindrical
symmetry and we need an expansion for the ground-state
wave function, we have to use complete basis sets forS
states. In both coordinates this means that the calculations

are independent of the azimuthal angle. Because of the spe-
cial symmetries as shown in Eq.~17!, we consider only Leg-
endre polynomials of even degree inu in spherical coordi-
nates and inh in prolate spheroidal coordinates.44

1. Basis set and matrix elements
in spherical coordinates

The overlap integral is given by

^m,num8,n8&5
~m1m812!!

@~2m12!! ~2m812!! #1/2
dn,n8 , ~A1!

the kinetic energy matrix elements take the form

^m,nuTum8,n8&

5
b2~m1m8!!

2@~2m12!! ~2m812!! #1/2

3S 2n~2n11!2
1

4
@~m2m8!22~m11!

2~m811!# D dn,n8 , ~A2!

and finally the potential energy matrix elements are given by

^m,nu
1

r
um8,n8&5

b~m1m811!!

@~2m12!! ~2m812!! #1/2dn,n8 ~A3!

and

^m,nu
1

urW6 k̂u
um8,n8&5bA ~4n11!~4n811!

~2m12!! ~2m812!!
(

kpar52un2n8u

kpar52un1n8u gnn8k
2

2n12n81k11

3
~m1m81k12!! 1b2k11G~m1m82k12,b!2G~m1m81k13,b!

bk11
, ~A4!

whereb is a variational parameter used to optimize the nu-
merical results:

gnn8k5
t~n1n81k!

t~n1n82k!t~n2n81k!t~2n1n81k!
~A5!

and

t~n!5
n!

A~2n!!
. ~A6!

2. Basis set and matrix elements
in prolate spheroidal coordinates

In prolate spheroidal coordinates~j,h,w! defined by Eqs.
~30! and ~31! we use a nonorthogonal basis set forS states.

The normalization constant is defined by the normalization
condition ^m,num,n&51

Cm,n5H 2

~4n11! Fa2(m11)~2b!

2
~8n214n21!a2m~2b!

~4n21!~4n13! G J 21/2

~A7!

andak(x) is an exponential integral related to the incomplete
gamma function45

ak~x!5E
1

`

e2xttkdt5
G~k11,x!

xk11 . ~A8!

Then the overlap integral is given by
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^m,num8,n8&5
2

4n11
Cm,nCm8,n8H Fam1m812~2b!

2
~8n214n21!am1m8~2b!

~4n21!~4n13! Gdn,n8

2
2~n11!~2n11!am1m8~2b!

~4n13!~4n15!
dn8,n11

2
2n~2n21!am1m8~2b!

~4n23!~4n21!
dn8,n21J ,

~A9!

and the kinetic energy has the form

^m,nuTum8,n8&

5Cm,nCm8,n

4dn,n8
4n11

$2b2am1m812~2b!12b~m811!

3am1m811~2b!1@b22m822m812n~2n11!#

3am1m8~2b!22bm8am1m821~2b!

1m8~m811!am1m822~2b!%. ~A10!

Finally, the terms in the potential corresponding to two equal
sign charges, located at (0,0,61) in scaled units, take the
form

^m,nu
1

urW2 k̂u
1

1

urW1 k̂u
um8,n8&

5^m,nu
8j

j22h2
um8,n8&

5
8

4n11
Cm,nCm8,nam1m811~2b!dn,n8 . ~A11!

For the matrix elements of potential 1/r we used the
standard expansion of 1/urW2rW8u in Legendre functions in
prolate spheroidal coordinates39 with rW850:

1

r
52(

k50

`
~21!k~4k11!~2k21!!!

2kk!
P2k~h!Q2k~j!,

~A12!

wherePn(x) and Qn(x) are the Legendre polynomials and
Legendre associated functions of the second kind,
respectively.45 Therefore we need the integrals

Um,n
k ~x!5E

1

`

e2xjjkQm~j!Pn~j!dj. ~A13!

These integrals can be calculated by applying a recursive
formula beginning with U0,0

k which has an analytical
expression.46 Since recursive processes are numerically un-
stable, we calculate these matrix elements with a multipreci-
sion FORTRAN 90 code47 with 100 digits testing 32 correct
digits for the value of the matrix elements in order to use
them in standard real~16! FORTRAN codes.
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