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We present finite-size scaling calculations of the critical parameters for binding an electron to a
finite linear quadrupole field. This approach gives very accurate results for the critical parameters by
using a systematic expansion in a finite basis set. The model Hamiltonian consists of a@harge

located at the origin of the coordinates aknaharges— Q/k located at distanceéi ,i=1,... k.

After proper scaling of distances and energies, the rescaled Hamiltonian depends only on one free
parameteg=QR. Two different linear charge configurations wik»0 andq<0 are studied using

basis sets in both spherical and prolate spheroidal coordinates. For the cage-@ijtthe finite size

scaling calculations give an extrapolated critical valuegof 1.469 7G-0.000 05 a.u. by using a

basis set with prolate spheroidal coordinates. For the quadrupole casq<withwe obtained an
extrapolated critical value df}.|=3.982 51+ 0.000 01 a.u. for stable quadrupole bound anions. The
corresponding critical exponent for the ground state energyl.9964+0.0005, with E~(q

- © 2004 American Institute of Physic§DOI: 10.1063/1.1695552

I. INTRODUCTION excitations the global minimum on the potential energy sur-

. N . . face of (BeO) and showed that it corresponds to a rhombic
Recently_the_re has been increasing _mterest in muIt|p0I_e|-32h structure, which may be considered as a quadrupole-
_bound negative ions. Fo_r the case of d|pole-bounq negatlvgound aniorf? This system was reexamined by Gutsev, Jena
lons, the outer electron is wgakly .bound by. the d|p(_)le MO nd Bartlett using coupled-cluster singles and doubles with
ment of a neutral molecule in a diffuse orbital localized at

the positive end of the dipole. Fermi and Tellbave shown perturbation triples method. They have found that the bind-

that, within the context of the Born—Oppenheimer approxi—mt? etngrgy 3f t?? Ex.trall elect:ﬁntltnhths (I?egoaar;lonkto ?e f
mation, molecules with dipole moments greater than about 9.5 EV-WHICH 1S farger that Ihe Hartree—Fock vaiue o

=1.625 D can bind an electron to form dipole-boundo'esReV(R(Tf'Glg' d led-cl inal q
anionst~® The ground-state energy of the system tends to ecently Gutseet al.” used coupled-cluster singles an

zero exponentially as the dipole moment reaches its criticaﬁjOUbles with perturb_atlon triples method to search for
value®'® However, subsequent experimental and Cc)mput(,j(_:]uadrupole-bound anions. They reported the structure and

tional studies taking into account corrections to the Born-Properties of KCly and K,Cly, (n,m=0-2). The KC} was

Oppenheimer approximation gives a more realistic estimatéPund o have an electron affinity of 4.2 eV and is stable
of u.=2.5 D (Refs. 1118 toward dissociation by 26 kcal/mol. The (KGlilimer has a

By analogy with the binding of an extra electron by g rhombic groupd state with a Ia}rge glectric quadrupqle mo-
strong dipole field, it is natural to examine the possibility of Ment. Rhombic and linear configurations of #&Cl) anion
electron binding by molecules with significant quadrupolecorrespond to stationary states that are.nearly degenerate in
moments and vanishing dipole moments. The search footal energy. The rhombic anion has a single, weakly bound
quadrupole-bound anions has attracted both thebtidfs State that could be a quadrupole-bound _ﬁ%te.
and experimentalists~2° One of the first studies of poten- Prasadet al?! have evaluated the critical values of the
tially quadrupole-bound anions was performed by Jordan anguadrupole moment required for linear symmem; sys-
Liebman!® They considered attachment of an extra electrorféms to have a bound anion state. Recently Pupyshev and
to a (BeO), dimer and concluded by using a Hartree—FockErmilov** determined numerically, using a linear combina-
level of theory that the extra electron is bound in the (BgO) tion of atomic orbital and finite-difference approximation,
anion primarily by the quadrupole field of the neutral dimer.the critical charge values which ensure the existence of
Later Gutowski and Skurski calculated at the coupled-clustepound state for one electron in the quadrupole and octupole

level of theory with single, double, and noniterative triple fields.
In this paper, we present finite-size scaling calculations

a o . of the critical parameters for binding an electron to a finite
Electronic mail: ferron@tero.fis.uncor.edu . . .

bEjectronic mail: serra@famaf.unc.edu.ar quadrupql_e field. This approach gives very accurate resul_ts
9Electronic mail: kais@purdue.edu for the critical parameters by using a systematic expansion in
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a finite basis set. In Sec. I, we briefly review the finite-sizeenergyE, . From O=H/d\ we obtain a second equation,

scaling(FSS method in quantum mechanics. In Sec. Ill, we yhich together with Eq(5) is used to define the function
present rigorous bounds for stable quadrupole-bound anions.

In Sec. IV the FSS calculations for the critical parameters for T Ay(NN,NT)
2 : , (N N,NY) (6)
stable quadrupole-bound anion in two linear charge configu-

T AROGNIND) = A i (GNNT
rations are presented in both spherical and prolate spheroidal -
coordinates. Finally conclusions are given in Sec. V. which is independent of the valuesifandN’ at the critical

point \=\.. The particular value oF at \=\. is the criti-

cal exponentx for the ground-state energy as defined in Eq.
Il. FINITE-SIZE SCALING METHOD (2) (Ref. 31:

The finite-si;g scaling gpproach has been developed. for a=T(A\=\g:N,N’). %)
studying the critical behavior of a given quantum Hamil-
tonian H(\4,...,A,) as a function of its set of parameters Actually Egs.(6) and(7) are asymptotic expressions. For
{\i} (Refs. 30 and 3L In this context, “critical” means the three different values dfi,N’,N” (we chooseN'=N—2 and
values of{\;} for which a bound-state energy is nonanalytic. N"=N+2) the curves ofl’(A,N) as a function of\ will
In many cases, this critical point is the point where a boundintersect at successions of pseudocritical po}lﬁ@ ,
igantfinueunrﬁ?rgy becomes absorbed or degenerate with a F(R:X(CN) ;N—2)=F()\=7\§N) N), ®

In order to apply the FSS method to quantum mechanicgiving also a set of pseudocritical exponents:
problems, let us consider a Hamiltonian of the fotm N) N

aM=TOM:N). 9

H=Ho+V,, (1) . " N
o , The successions of values ®f¥ anda®™ can be used
whereH, is A independent antf, is theX-dependent term. . Jii-in the extrapolated value bf and « (Ref. 32.

We are interested in the study of how the diff_erent properties This general approach has been successfully applied to
of the system change when the valuelobaries. Without .50 ate the critical parameters for two-electron atdhs,

loss of generality, we will assume that the Hamiltonian, Ed.yee_electron atoni€ simple diatomic molecule¥, stability

(1), has a bound staté, for A>\ which becomes equal 0 ¢ tree_hody Coulomb systerisand crossover phenomena
zero ath =\.. The asymptotic behavior dE, neark. de- 4 resonances in quantum systéfhs.

fines the critical exponent:
Eyn ~ (A—AQ% v

+

A= IlI. ONE ELECTRON IN AN ELECTRIC-QUADRUPOLE

In this approachfinite sizecorresponds to the number of FIELD
elements in a complete basis set used to expand the exact
wave function of a given Hamiltonian. For a given complete
orthonormal\-independent basis sé®,}, the ground-state
eigenfunction has the expansion

In this section, we will present some general results for
an electron in the presence of a quadrupole potential.

We will analyze the case & Coulomb centers with the
quadrupole as the first nonvanishing multipole moment. A
short comment about point quadrupole potentials is included

‘Fx:; an(M) @, 3 at the end of the section.
The model system consists of a chafyeat the origin of
wheren represents an adequate set of quantum numbers. %ordinates and charges— Q/k located atR i=1. Kk
(I} H Ny

order to approximate the different quantities, we have to

truncate the series, E(B), at orderN. Then the Hamiltonian xg?rﬁéhﬁrgf?gr?ge\rlgcrfﬁii Ei)rlee Cbheoiﬁg WSQ dtrrlle gl?e ni:gar:?;m
is replaced by aM (N)X M (N) matrix, with M(N) being P q P

the number of elements in the truncated basis set at drder for k>1. Note that for the dipole system we have a symme-

In the FSS representation, we assume the existence of a sc%ﬁ-’ in Q— —Q; therefore, the energy is an even function of

: . : : the dipole moment. For the case of a quadrupole potential
1[2? (fou rslzté(r)]nt;grtthe truncated magnitude of any given OPCT&his symmetry does not apply; thus, the caQes0 andQ

<0 have different critical charges.
(O ~(O) Fo(NIN=\["), (4) The Hamiltonian for an electron in this quadrupole field

with a different scaling functiof , for each different opera- is given by

tor but with a unique scaling exponent k
: ¢ . 1, Q Q 1
Now, to obtain the critical parameters, we define the  Hgyag= — =V ——+—2 —, k=2 (10
function 2 ro kiFLr—Ry|
In((O)YN7(OyNY) For k=1 Hamiltonian, Eq(10), represents an electron in a

Ap(N;N,N")=

In(N'/N) (5)  dipole field. _ i _
It was shown by Hunziker and @ter’ that there exists
If one takes the operatap="H, then(H)N=EW is  Q*>0 such that fofQ|<Q* the Hamiltonian, Eq(10), has
the usual linear-variational approximation to the ground-stat@o bound states.
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_ 1v2
) F—2] " [F+2|

charge|R||=R, i=1,... k, the Hamiltonian could be scaled H(a) 2 o
in both Q or R variables:

For the case ok charges equidistant from the central q q[ 1 1
- = . (16

For the above Hamiltonian, E416), we have the sym-

Hauad Q.R,7) = Q*Hguad 1LQR,QF) metries
1 Heo  QRAFIR) 1) [H(q),L,]=0 and[H(q),I1,]=0, (17
R - wherelL, is the angular momentum along thexis andIl,

Therefore, it actually has only one free parameter. After scalt the inversion operatoHZ(D(x,y,;) =<.I>(x,y, —2). Therg-
. . . o =7 fore the ground-state wave function is an even function of
ing distances and energies, the rescaled Hamiltonian in th% ; .
new variableq=QR takes the form the coordinate and does not depend on the azimuthal angle.
€ Hunziker and Goter have discussed some known bind-

1 ing and nonbinding criteria for a charged particle moving in
(12)  the field of a neutral system & fixed-point charged’ For
our particular case, Hamiltonian, E@.6), we can prove the
following:

Lemma3aq.>0 such that forg|<q,. the Hamiltonian,
Eq. (16), has no bound stateBroof Let Eg,q and¥o(r) be

ments, that the Hamiltonian, E@12), can support at least h q q ‘ . f the fini d
one bound state for large values|gf. Using a simple ex- the groun -§tatg e€nergy and wave gncUon oft c Inite quad-
rupole Hamiltonian, Eq(16), respectively, and define

ponential trial wave function located at the positive charges,
the contribution of the negative charges will be exponentially 1 1
small for large values ofq|. Therefore, the expectation Vi:|r* T (18)
value of the Hamiltonian, Eq12), is less than zero for large
enough values ofq|, and at least one bound state exists.Since from condition, Eq17), the ground statd () must
Note that these results holds for both cagesd andq<0. be an even function of the coordinate
Therefore there is a crl_t|cal valwg, for binding an electron (W[ V. [ W)= (Wo|V_|Wy). (19)
in a quadrupole potential.

In particular, forq>0 we also have an upper bound for The dipole Hamiltonian can be written in terms of both
the critical chargey.. From simple variational arguments for V- :
g>0, the following inequality holds:

(]

2

1
—_ — — 2_ —+ —
Havaa=— 3V ALk

~lQ

r

wheref; is a unit vector in the direction of the charge
It is straightforward to show, using variational argu-

I+

1
_ , _ . Haip=—5V?+qV. . (20)
qi~=q{tiPeld<ql=2<qW<q{”, (13 P2

whereq( is the critical parameter of the Hamiltonian, Eq. YSI"d the variational principle we obtain

(13),.q£1 corresponds tq the crit!cal value of thg dipole, and (‘I’o|Hdip|‘I’o>>Edip, (21
g\ is calculated by taking the limk—c for a fixed value
of g, which corresponds to a chargeat the center of a
uniform charged sphere of radili®s=1 and charge-q. At

where Eg;,, is the exact ground-state energy of the Hamil-
tonian, Eq.(20). In addition we can write

this limit, the potential becomes (W o Haipl W oy = (W o| T|W o)+ q(Wo| Vo Vo), (22)
q . L whereT is the kinetic energy operator. Using the symmetry
——+q if r<i, ; :
V(r)= Fd (14 relation (19) we find that
0 if r>1. q q
(VolHaipl Wo)=(Wo| T+ §V+ + §V7|‘I’0>

The Schrdinger equation for this potential is exactly
solvable in terms of continued fractions. Thus one can obtain =(WolH(q)|Wo)= Equadd)- (23
" () . . .. _
the critical pz‘;lrf';lmetemc with an arbitrary precision. Ther.e_ From Egs.(21) and (23 we obtain
fore we have rigorous lower and upper bounds for the critical

parameter corresponding tosX<<o: Equad @)=Eqip(q). (29
qlaireld—1 278 <q®W<q)=1.547. .. . (15) It is rigorously known that the finite dipole Hamiggglliean,

Eqg. (20), does not support bound states fqrq,
For <0, the case wittk=1 is the dipole potential, so =1.278630, which is the critical value af for the point
the lower bound is the sangg?'P°'®=1.278. However, there dipole potentia? Thus Eq.(24) ensures that there exists a

is no upper bound)(” since fork—o there is no bound value q., |q.|=q%"°'®, such that the finite quadrupole
states for any value df. Hamiltonian, Eq.(16), has no bound states. Note that be-

In the next section, we will present numerical calcula-causeEyiy(q)=Eqi,(—0), the proof is valid for both cases
tions using finite-size scaling for the cake 2. The model >0 andg<0.
Hamiltonian for this system consists of a chameat the For the case of an electron in a point-quadrupole poten-
origin and two charges-q/2 atz=+1: tial, the Hamiltonian is given by
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1 . QP,(cog0)) IV. FINITE-SIZE SCALING CALCULATIONS

Hpoint:_zvz_ PR (25) _ N .
Now, we are in a position to apply the FSS calculations

for the Hamiltonian, Eq(16), for both caseqq>0 andq
<0. All FSS equations presented in Sec. Il are valid with

A=|ql.

where P,(cos(@)) is the standard Legendre polynomial of
degree 2 and we tak@>0.

It is known that this Hamiltonian, Eq25), does not For the caseq>0 we expect the Slater basis set in

admit physical solutions. The.Hamlltonlan_ IS not poundeq spherical coordinates to be adequate. A complete basis set for
from below and the square integrable eigenfunctions Wlﬂ‘{he ground-state calculations is given by

negative energies, which are arbitrarily large in absolute val-

ues, exist for any value @ (Refs. 38 and 30 Therefore, to ) 4 pnt3
describe the binding of an electron to a molecule with the P, (M= (4l+1)(2n+2)!
guadrupole moment as a dominant term we have to exclude

the divergence at=0. n=0,1,.., 1=0,1,..[n/2], (29)

There is no unique way to exclude this divergence. ON§ynere 3 is a variational parameter used to optimize the nu-

possibility, as we have done in this study, is to replace the,qrical results and,,(0) is the Legendre polynomial of
point quadrupole by a finite one. In this case, the quadrupolg,yer 7 .

moment is dominant at large distances but the outer multi- ., q<0 the ground-state wave function is zero at the
pole series expansion has infinite terms. There are no dive[)'rigin of the coordinates. Thus, it is natural to work with

gences fast_er than * and the Hamiltonian is boundec_;l f_rom prolate spheroidal coordinatés z,¢) (Ref. 39 defined as
below. A minimum value of the energiground statg if it

exists, is finite and the corresponding square-integrable wave £=f1+r,, 7=r;—r,, ¢=tan *(y/x), (30)

function does not present the “fall to the center” problén.
Another possible way to avoid this divergence is to in-

clude a cutoff radius . and consider a pure quadrupole po- r=Vx2+y%+(z—1)2%, r,=yx’+y?+(z+1)2 (31

tential forr>r. and a hard core repulsion fo<r, (Ref.

1/2
e—Br/ZrnPZI( 0)'

where

£ goes from 1 too, 5 goes from—1 to 1, and the azimuthal

22): angle ¢ varies from 0 to .
+o, r<ry, f In these coordinates the scaled Hamiltonian takes the
orm
Vi(f)={ QPz(cog6)) (26)
e e H=— Sy2y 07 32
- 2 §2_ 772' ( )
A similar qualitative result could be obtained with the
potentisall rar quaitaliv su . ! W The symmetries, Eq17), imply that the ground-state wave
function does not depend gnand is an even function af.
QP,(cog §)) Therefore, we choose the basis set
- 3 ) r [ _
" re ¢ @, (&,7)=Cy e PE"Py(7), n=0.1,..,
Vo(F)= P (27)
~ QPy(cog8)) et 1=0,1,..[n/2], (33
3 c-

r . . .
wherep, as in the Slater basis set, is a free parameter used to

SinceV,(f)<V,(F) ¥ F, it is straightforward to prove, ©Ptimize numerical results. _ _
applying the variational principle, thatf, does not support For numerical cal_culatlon, th_e basis sgt is truncated at a
a bound state, thew; does not either. Thus the existence of Maximum valueN which determines the siz&l(N) of the
a critical valueQ(® of Q for V, ensures that a critical value truncated Hamiltonian matrix:

QY of Q for V; also exists witQ?=Q" . We may apply N2+ 4N+ 3
again the variational principle in order to prove thaf(r) — for odd N,
does not support a bound state if the central potential of the  nj(N)=
form N+2)|?
— for even N.
2
—23, r<re, Then, we calculate the ground-state energy using the
V(r)= Fe (28) Ritz-variational method for a nonorthogonal basis set. The
Q matrix elements for both cases are given in the Appendix.

r>re,

Wi

=

FSS calculations for both spherical and cylindrical po-
tentials show strong parity effects.For this reason we
does not have bound states. Using the Calogero inequalitghooseN’ =N+ 2 in all cases. In the following subsections,
for the maximum number oS-waves bound states of an we present the FSS results for the linear quadrupole Hamil-
attractive central potent*! one can show that a critical tonian, Eq.(16), for both cases>0 andq<0.
valueQ.= 7°r /36 exists for this potential and therefore also Note that the particular choice of the scaled Hamil-
exists for both potential¥; andV,. tonian, Eq.(16), with R has a technical reason: the trun-
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1 ) ] ] ] 1 ] 1

1.46 1.465 1.47
q
FIG. 1.T'(q,N) as a function ofj for the ground-state energy of the electric
quadrupole §>0) potential for even values dfl (a) in spherical coordi-

nates andb) in the prolate spheroidal basis set.

cated Hamiltonian matrix is a linear function gf There-
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1.4725

(N)
% 147
1

| ] ! | ] ] !
1 ‘46750 003

0.04

FIG. 2. g™ as a function of M for the ground-state energy of the electric
guadrupole §>0) for even values oN=26,...,90. Results for the two
basis sets are shown. The solid points show the extrapolated critical param-
eters. q(ce“)= 1.4696+ 0.0005 (triangles for spherical coordinates and
qge“>= 1.4697+0.0001(circles for prolate spheroidal coordinates.

1/N for even values ofN. With the spherical basis set we
obtained an extrapolated value of the critical exponent
a(®9=1.98+0.03 anda(®*¥=1.84+0.04 using the ellipti-
cal basis set.

We can see in Figs. 2 and 3 that the behavior of the
finite-size calculations has a strong dependence on the basis
sets. In the case of the Slater basis set there exists a non-
monotonic behavior that makes the asymptotic studies diffi-
cult. It is a known resuft that spherically symmetric poten-
tials that go to infinity as 1# have a critical exponen
=2. If we examine our numerical results, it is reasonable to
assume that our system has the same critical exponent.

In order to support this assumption we can examine the
data collapse for the FSS results. The data-collapse &hsatz

fore, the expensive calculations of the matrix elementssiaplishes that when scaling laws, E¢®. and (4), are

(about 10 days of CPU time in a dual 2.6-MHz P@ve to

valid, then near the critical poir, all curvesE{"’N*’* plot-

be done only one time. In order to obtain the limit of a point g against§— q.)NY* must collapse onto a single universal

guadrupole potential, one should take the linit-0,q
—, with qR?=const, in the Hamiltonian, Eq10). Since
we scaled the Hamiltonian witR, this limit is not easy to

study numerically. In order to apply the finite-size scaling

method one has to choose an alternative scaling in(Ek).
in order to write the Hamiltonian as a function B and
calculate the matrix elements for each valueRof

A. Linear charge configuration with  g>0

In Fig. 1(a) we showI'(qg,N), as defined in Eq6), as a
function ofq for even values oN using the Slater basis set,
Eq. (29), in spherical coordinates. Figurédl showsI'(qg,N)
as a function ofg using prolate spheroidal coordinates, Eq.
(33). Curves obtained using odd valueshbfire qualitatively
identical and they are not shown in the figures.

We show in Fig. 2 the pseudocritiog{’, defined in Eq.
(8), as a function of M for even values oN for both basis

curve.
Assuming that our model has the same critical exponents
v=1 anda=2 for the Hamiltonian with a spherical poten-

2.25 e e e I
2 — —
OL(N) - a
175 S, —
15 ] ] ] ] ] | 1
0 0.01 0.02 0.03 0.04
1/N

sets. In the case of spherical basis set, the extrapolated value

is q{®*Y=1.4696+ 0.0005. Using prolate spheroidal coordi-
nates the extrapolated valued&*)=1.4697+0.0001.

To obtain the critical exponent for the energy, we plot in
Fig. 3 the valuesrV), as defined by Eq9), as a function of

FIG. 3. o™ as a function of M for the ground-state energy of the electric
qguadrupole §>0) for even values oN=26,...,90. The results for both
basis sets are shown. The solid points show the extrapolated critical expo-
nents. a(®*9=1.98+0.03 (triangle$ for spherical coordinates ana(®*?
=1.84+0.04 (circles for prolate spheroidal coordinates.
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2 T T 25— T T
2.04 5, ” -
2.03F X .
o™ 2.02- -
- o Nodd -1
2 — —
" 7] i 1 ] 1 | ] | L ]
Q ! l I 19 001 002 003 0.04
0.5 0 0.5 N

v
(q-g)N ) .
¢ FIG. 6. ™ as a function of MM for the ground-state energy of the electric

FIG. 4. Data-collapse curves for the ground-state energy of the quadrupof@u@drupole ¢<0) for even and odd values =34,...,90. Results ob-
q>0 with @=2, »=1 andq,=1.470 for spherical coordinates. tained with the prolate spheroidal basis set. The solid point show the ex-

trapolated critical exponent(®*9=1.9964+ 0.0005(triangles.

tial that goes to infinity as 1f, we can use the data collapse
to estimateg.. In order to obtain the value af., we plot
ENN®” as a function of §— q,)NY for different values of
N, leavingq. as a free parameter. Using values of energies . A
as a function ofq calculated in spherical coordinates, by 3(1)9324‘1 fouggt(l)c;n of M. The extrapolated value is'®*?
minimizing the distance between the two curves we can ob- .Even thé FSé method, E€f), does not give accurate
tain an approximate value for the critical parameter. Figure 4 ' '

. - L results for critical parameters using the Slater basis set in
shows the estimategi.= 1.470 which is in a complete agree- spherical coordinates. We test the data-collapse ansatz with
ment with the previous extrapolated valg )= 1.4696. P ' P

the energies calculated in this basis set. As before, we as-
sume thate=2 andv=1, and minimizing the distance be-
tweenE® andES?, we obtained by data collapse an ap-

Here, we repeat the above FSS calculations for the quadoximated critical parametgq|=3.977, which is in good
rupole case witly<0. FSS calculations cannot be performed@dreement with the above-extrapolated Val\u?c|(e_x0
using the Slater basis set in spherical coordinates since thg3-98251. The data-collapse results are shown in Fig. 7.
exact ground-state wave function vanishegat0. So we
cannot obtain accurate near-threshold values of the energy, CONCLUSIONS
and its derivative even for very large valueshf However,
the basis set, Eq33), defined in prolate spheroidal coordi-
nates, seems to be a natural choice to approximate t
ground-state wave function.

Figure 5 shows the intersection |(ufc'\‘)| as a function of

1/N using prolate spheroidal coordinates. We obtained the
extrapolated value|q{®*9|=3.98251+0.00001. We also
é)resent in Fig. 6 the values of the pseudocritical exponent

B. Linear charge configuration with  g<<O

We have presented finite-size scaling calculations of the
hcritical parameters for the stability of an electron bound by a
e , ;
quadrupole field. Moreover, we have shown that there is a
strong dependence on the basis set in performing FSS calcu-
lations. For the casg>0, we assume that spherical coordi-

3.9826
L L T T T T T T T T
- 2 Nodd | H
3.98221 B, —
™) - ®
q. ‘e 7]
3.9821- n"ne —
3.9818|- T
39816 -
1 l L | 1 be
0 0.01 1/18.02 0.03 Y AN T B S S R A
3002 -1 0 1 2 3
(N) i . } v
FIG. 5. |gf"| as a function of M for the ground-state energy of the electric (lal-la.hH N

quadrupole §<0) for even and odd values di=34,...,90 and for the
prolate spheroidal basis set. The solid point shows the extrapolated critic#|G. 7. Data collapse for the ground-state energy of the quadrumple (
parameter|q{®*?|=3.982 51 0.000 05(triangles. <0) with =2, v=1 andqg,=3.976 75 for spherical coordinates.
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nates are more suitable than prolate spheroidal coordinateasre independent of the azimuthal angle. Because of the spe-
Although the results with this choice were very accurate, thecial symmetries as shown in EQL7), we consider only Leg-
oscillating behavior of the FSS calculations introduces nois@ndre polynomials of even degree énin spherical coordi-
in the asymptotic analysis. However, fp 0, the results are  nates and iry in prolate spheroidal coordinaté&s.
better with prolate spheroidal coordinates. The extrapolated
valugs obtained fog, usin'g finite-size scaling calculations 1 Basis set and matrix elements
are in googl agreement with the results of Pupyshev and Egz, spherical coordinates
milov obtained by other method$.
In addition, the FSS method permits the calculation of ~ The overlap integral is given by
the critical exponents. Our numerical results are in good

. . . . . (m+m’+2)!
agreement with the one obtained for rotationally invariant (m,n|m’,n"y= = Ot (A1)
Hamiltonians with potentials having the same asymptotic [(2m+2)1(2m’+2)!]"
properties ar —oo. This finding is supported by the data- he kinetic energy matrix elements take the form
collapse ansatz as shown in Figs. 4 and 7.
(m,n|T|m’,n")
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4

APPENDIX: MATRIX ELEMENTS FOR THE
QUADRUPOLE-FIELD HAMILTONIAN —(m'+1)]| 6, (A2)

n,n’

In this appendix we include the matrix elements for the _ _ _ _
quadrupole-field Hamiltonian in both spherical and prolateand finally the potential energy matrix elements are given by
spheroidal coordinates. Since the problem has cylindrical 1 B(m+m’ +1)!

symmetry and we need an expansion for the ground-state (m,n|—|m’,n’)= | - 7172 On,n’ (A3)
wave function, we have to use complete basis setsXfor r [(2m+2)l(2m"+2)!]
states. In both coordinates this means that the calculatiorend
|
T (4n+1)(4n'+1) Far 200l Yo
(mn|——|m".n")=5 , PRSP
|F= k| (2m+2)1(2m’'+2)! Kpar=2[n—n’| 2n+2n’"+k+1
><(m+m’+k+2)!+,32"+11“(m+m'—k+2,,/.~.’)—1“(m+m’+k+3,ﬁ) )

k1
B

where B is a variational parameter used to optimize the nu-The normalization constant is defined by the normalization
merical results: condition{m,n|m,n)=1

3 m(n+n'+k)
Ik T —K)r(n—n’ + k) r(—n+n’+k)

(A5) Chmn= @zm+1)(28)

(4n+1)

(8n2+4n—1)a,m(2B)]] ~Y2

and T n-1)(4n+3) (A7)

7(n)= n! (A6) and«,(x) is an exponential integral related to the incomplete

Jzn)!t gamma functiof?
_ ) F ek I'(k+1x)

2. Basis set and matrix elements ak(x)zf e Xthdt= —7—. (A8)
in prolate spheroidal coordinates 1 X

In prolate spheroidal coordinaté$ 7,¢) defined by Egs.
(30) and(31) we use a nonorthogonal basis set ¥ostates. Then the overlap integral is given by
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Amem +2(28)

2
(m,n|m’,n’>= mcm’ncm/'nr[

_(8n1+4n—1)am+m&2ﬁ)(5
(4n—1)(4n+3) nn’

20+ 120+ Dag. w(28)

(4n+3)(4n+5) n.n+1
2n(2n—1)apw(28)
T @n-3)an-1) omaifs
(A9)

and the kinetic energy has the form
(m,n|T|m’,n")

46,
4n+1

:Cm,ncm’,n {_lgzam+m/+2(2ﬂ)+2ﬁ(ml+l)

X s +1(28) +[ B2—m'2—m’ +2n(2n+1)]
Xamem (2B)—2BM' Ay m—1(28)

+m' (M + 1) amym —2(28)}- (A10)
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