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ABSTRACT

A new algorithm is presented for the location of the global minimum of a
multiple minima problem. It begins with a series of randomly placed probes in
phase space, and then uses an iterative Gaussian redistribution of the worst
probes into better regions of phase space until all probes converge to a single
point. The method quickly converges, does not require derivatives, and is
resistant to becoming trapped in local minima. Comparison of this algorithm
with others using a standard test suite demonstrates that the number of function
calls has been decreased conservatively by a factor of about three with the same
degree of accuracy. A sample problem of a system of seven Lennard]Jones
particles is presented as a concrete example. Q 1997 by John Wiley & Sons, Inc.

Introduction

he recent explosion of publications relatingT algorithms for the location of the global mini-
mum in a multiple minima function demonstrates
both the importance of this problem in practically
all fields of science and that further development
toward such a method is still needed. Such an
algorithm would find applications in fields such as
drug design, molecular modeling, quantum me-
chanical calculations, and mathematical biological
calculations.1 ] 8 Unfortunately, the problem of lo-
cating the global minimum in nearly all cases is
hindered by the presence of local minima.

All minimization algorithms face the difficulty
of locating the global minimum in the presence of
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a series of local minima. Once a local minimum is
converged on, there is no sure method to deter-
mine if another deeper minimum might exist
somewhere else without leaving the comfort of the
minimum located. The problem becomes more
harrowing as one increases the dimensionality of
the problem. Fortunately, several newer methods9

for function minimization are showing vast im-
provements in the ability to spot local versus global
minima.

Some of the older minimization algorithms are
local deterministic methods, primarily based on
extensions of Newton’s methods.10 These work by
following the terrain of the function, either utiliz-
ing the numerical steepest downhill approach, or
some derivative of the function which indicates
the best path to follow. These methods were noto-
rious for finding themselves locked in local min-
ima. More recently, these approaches have been
usurped by other methods resistant to becoming
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trapped in local minima. Simulated annealing11 is
based on a classical dynamics approach, wherein a
probe is moved and allowed to overcome small
maxima in the beginning, thereby having the abil-
ity to move out of local minima. The tabu search12

utilizes several randomly chosen guesses for the
global minimum within a given region of phase
space, restricting the number of times it can look
in that region before it must move on, hopefully to
find a lower minimum in another such region. The
genetic algorithm13 also starts with several random
guesses as to where the minimum might be, but
then changes some of the variables of the worst
guesses until they all converge. These methods
have been compared in several review articles,12

and show improving accuracy and efficiency. It
must also be noted that the presented method
combines features of the genetic algorithm and
simulated annealing, similar to work done by
Fox14 ; however, this method does not borrow from
the tabu search algorithm.

The algorithm being introduced shows a great
improvement in efficiency of the location of the
global minimum. It begins with a series of random
guesses as to where the minimum might be, then
redistributes the worst guesses into better regions
of phase space until all probes converge to a single
point. This new method locates the global mini-
mum in a multiple minima problem, without the
necessity of including computationally expensive
estimates for the derivative of the function, is
generally applicable, avoids entrapment in local
minima, and is conceptually simple and easy to
program.

Methodology

Phase space is defined to be the set of points
bounded by the minimum and maximum values
of all variables in the system. The dimensionality
of the problem is this number of variables. The
task is to find the global minimum within the

Ž . Ž .defined phase space, min f s : s g S, where f s is
the function to be minimized and s is a point in
phase space S. This begins with the random place-
ment of probes within phase space, which are used
as a means of sampling regions of the entire space.

Ž .For convenience, a flowchart Fig. 1 has been
included to illustrate this method step by step.

The probes are themselves complete sets of all
variables in the phase space, and thus each probe
has the specific value of the function to be mini-

FIGURE 1. Flow chart for this method for global
optimization. N is the total number of probes, M is the
number of probes to be eliminated, Q is the number of
cycles between Gaussian contractions, and R is the
Gaussian scaling factor.

mized at that location. Initially, these probes are
randomly placed within phase space, and the func-
tion value at the location of each probe is deter-
mined. The number of probes chosen is arbitrary,
but with enough probes to get a good statistical
distribution. With too many probes, the algorithm
runs too slowly, but without enough probes, one is
likely to find a local rather than global minimum.
A balance between these two extrema is required,
with more probes necessary for more sharply vary-
ing functions. Once the probes are initially placed,
then one begins sampling even more of the phase
space by the relocation of the worst of these probes
to be nearer to the best.

Before one can choose where to relocate the
worst probes, it first becomes necessary to choose
how many probes should be relocated. It is then
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necessary to rank the existing probes according to
their values of the function to be minimized. It
must be noted that this method borrows conceptu-
ally from the genetic algorithm in this part, but
that it substantially differs in how new probes are
chosen, as will be detailed. The number of probes
to be relocated is also arbitrary. A satisfactory
amount is roughly one third of the total number of
probes. At each iteration of the algorithm, one then
replaces a certain number of the probes, choosing
to replace the worst guesses at all times, keeping
the best guesses unchanged. The larger the per-
centage of probes to be relocated, the more calcula-
tions that are required at each iteration, but fewer
iterations should be required. This saves computa-
tional time on reranking the probes at each step.
Furthermore, it is necessary to keep enough of the
best probes to avoid the possibility that one is
deleting the probe closest to the global minimum
because a second probe happens to be sitting lower
in a local minima well. The probes to be relocated
are placed near one of the better probes, called a
pivot probe, in a random fashion.

Recognizing the problem that one may be too
close to a local minimum in the first iteration, one
chooses the pivot probe in a random fashion with
a probability based on the value of each probe. To
do this, one assigns a probability to each of the
probes not to be relocated in a Boltzmann distribu-
tion; that is, for probe i, its probability is P si

Ž Ž .. nym Ž Ž ..exp yf i rP, where P s Ý exp yf i , n is theis1
total number of probes, m is the number of probes

Ž .relocated at each iteration, and f i is the function
value of probe i. Each probe to be relocated is
placed randomly near one of these remaining
probes, with the best probe getting most of the
relocated probes near it, but it is important to note
that all remaining probes have a finite chance of
being used as a pivot probe. Each probe to be
relocated chooses its own pivot probe based on
these probabilities. Typically, in a single iteration,
there are at least three or four pivot probes chosen,
depending on how sharply varying the function is,
how many choices of pivot probes there are, and
how many probes will be relocated. In this way,
one is always moving probes to better regions of
phase space, but hopefully slowly enough so as
not to overlook a global minimum. The distance of
the location of the relocated probe from the pivot
probe is a decision that must be carefully weighed.

Much like simulated annealing, it is best to
begin with a fairly large distribution of relocated
probes from the pivot probe. The relocated probes
are placed in a Gaussian distribution centered on

the pivot probes with a standard deviation input
as an arbitrarily adjustable parameter, s . This
standard deviation defines a space around each
pivot probe, where the relocated probes are found
inside this region half of the time, and outside of
this region the rest of the time. Initially, this size
should be chosen to be large, much like simulated
annealing, so that a fairly large portion of phase
space is covered by the pivot probes. This process
repeats for several iterations.

The number of iterations for any given standard
deviation value can be varied. The more steps
taken, the better phase space is sampled, but the
longer it will take for the algorithm to converge.
Once a predetermined number of iterations have
elapsed using this standard deviation, this value is
then decreased at some given rate. This rate, R,
decreases the standard deviation s to some new
value, s 9, where s 9 s Rs . The rate used for the
functions tested was R s 0.466. At each new stan-
dard deviation, the algorithm repeats as many
times as with the initial standard deviation, until
s is decreased again. In effect, this means that the
probes will in time converge on some given small
point, and, with a good sampling of phase space,
this point should be the global minimum. The
choice of stopping criteria therefore becomes
important.

There are several possible choices of stopping
criteria. One is to choose a small given range of
values for the function, or some given standard
deviation of the average values of the parameters
of phase space. By choosing a stopping criteria
based on the standard deviation of the phase space
variables, hopefully one avoids finding several lo-
cal minima wells with equal energies. Unfortu-
nately, it is also possible for the system to become
trapped in several minima and, if the cooling rate
is too high, to simply never leave those wells,
effectively resulting in an infinite loop. It is always
a good idea to set a maximum number of itera-
tions to avoid such a loop. In the end, however, it
is common practice just to look at the value of the
best probe, with the hope that the probe is closest
to the true global minimum. If a value for the
global minimum is known one can stop once the
best probe is within a given error of this value. Of
course, the implementation of this algorithm de-
pends on what is known of the function initially.

If the behavior of the function is known to be
smoothly varying, it would be best to choose few
probes and a large number of probes to be relo-
cated at each iteration. If it is sharply varying, it is
best to use a larger number of probes with a
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smaller number to be relocated at each iteration. If
the behavior of the function is not known at all, it
is best to repeat the algorithm at least twice, in-
creasing the number of probes. If a different mini-
mum is found, then it is a sharply varying func-
tion and yet another run would be warranted. For
the test cases, the values of the global minima
were known and we chose to use stopping criteria
appropriate to this knowledge.

In the test cases, several well established func-
tions were used for comparison with established
methods of optimization. These functions included

Ž . Ž .Goldstein]Price GP , Branin BR , Hartman three-
Ž .and six-dimensional variants H3 and H6 , and

Ž .Shubert SH . The full details of the functions
tested can be found elsewhere.12,15 Notice that all
of these functions except for the H3 and the H6 are
two dimensional and that all of these have similar
results. The stopping criteria selected was for the
probe with the best value to be at worst within 3%
of the known global minimum, or for it to stop if
the number of iterations exceeded a certain
amount. This latter criteria was set high enough
that if it were the cause for stopping the algorithm
it could be safely stated that the probes were
trapped in a local minima. For the H6 function,
repeating boundary conditions were introduced,
which essentially cause the probes to ‘‘wrap
around’’ the area being searched rather than be
pushed to the edges of phase space. It was deter-
mined that this enabled more of phase space to be
searched, and significantly improved the results.
Note that this technique was not used on the other
functions tested, but the results obtained from H6
strongly indicate that this would not detract in any
way from their efficiency and should in fact im-
prove the algorithm overall.

As a rule of thumb, a number of probes equal to
5]15 times the dimensionality of the function were
used, and a third of them were moved at each
iteration. Clearly, with fewer probes the method
runs much more quickly, but one also has a greater
chance of being caught in a local minimum. The
selected cooling rate came from some preliminary
results in attempting to optimize the search pa-
rameters and was used throughout for consistency.
The initial phase was 10 iterations, as was the
number of steps between each reduction of the
standard deviation as described above. In our spe-
cific example in the next section, we demonstrate
that it can be useful to vary the number of steps
between cooling. The step size taken is crucial. It is
very important that the steps taken are not too
small initially, as that will cause probes to never

leave the region of a local minima. It is advisable
to begin with large steps and cool to much smaller
ones. In general, the initial step size should be on
the same order of magnitude as the phase space
being searched. This especially holds true if one is
using repeating boundary conditions, as this in-
sures that all of phase space will be adequately
searched. As a specific example, for H6, which has
a range of 0]1 for each variable, an initial standard
deviation of 1 was used, which implies that half of
the time the probe was relocated in such a way
that repeating boundary conditions were invoked.
This in turn shows that the entire space is searched.

A Concrete Example

The previous sampling of the performance of
this new algorithm using a standard test suite of
mathematical functions suffices to demonstrate its
usefulness for functions of low dimensionality. In
general, however, one is interested in a function of
more than only six dimensions. Therefore, to illus-
trate this method’s usefulness to more realistic
problems, we present a simple Lennard]Jones
cluster of seven particles. While this is clearly very
far from anything new, its very simplicity can be
used to implement this method relatively easily.

Specifically, one must establish an array con-
taining the coordinates of seven points in three-
dimensional space, and a function that yields the
standard Lennard]Jones energy when that array is
passed to it.8 One must also establish an array
capable of holding an arbitrary number of these
sets of seven points. Each set of seven is referred to
as a ‘‘probe’’ of the space in question. In our
particular implementation we chose to use 150 of
these ‘‘probes’’ to explore the potential.

One must then place each of these ‘‘probes’’ in
the space to be searched. We chose to confine our
search to a region of three-dimensional space de-
fined by a cube extending from y2 to 2 in each
direction, and any ‘‘probe’’ which moved outside
of this region was placed back into it by using
repeating boundary conditions. Each ‘‘probe’’ is
placed randomly, which is to say that for each of
our 150 ‘‘probes’’ we randomly place seven points
inside the cube from y2 to 2.

Next, each ‘‘probe’’ has an energy assigned to it
by using the Lennard]Jones function previously
mentioned, and the whole set of 150 is sorted from

Ž .best to worst lowest to highest . Specifically, we
use the Quicksort algorithm for this purpose.
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At this point, we chose to discard the worst 50
sets of points and choose 50 new sets of points
based on the remaining 100. Each of these ‘‘probes’’
is assigned a probability of being chosen according
to a Boltzmann distribution, as explicitly described
in the previous section. Each of the 50 new
‘‘probes’’ then separately chooses a ‘‘probe’’ to be
based on. Note that it is entirely possible for two
or more of the new sets of points to be based on
the same ‘‘probe.’’ We then vary the selected set of
points by a Gaussian distribution around it, and
the new values of coordinates for the set of points
becomes the new ‘‘probe.’’ We initially chose for
the width of this Gaussian distribution to be 2, or
one half the width of the cube being searched. This
serves to establish that all of the space is being
searched properly.

At this point, all 50 of the new ‘‘probes’’ must
have their energies evaluated, and then the entire
set of 150 is resorted. Again, the worst 50 are
selected out, rechosen, reevaluated, and reranked.
This entire process continues 100 times in our
particular example.

After this occurs 100 times, we change the width
of the Gaussian distribution by a factor of 0.9,
which serves to narrow the region of space being
searched. We wish to confine our search to regions
that we believe likely to yield the global mini-
mum. At this point we also determined the statis-
tical deviation of the energies of all 150 probes. If
the deviation is below 10y7 we decide that the
system has converged sufficiently to assume that
we are finished. If the deviation is insufficiently
low we repeat another 100 steps of selecting out
and choosing new ‘‘probes,’’ and at the end of this
time the Gaussian is once again contracted and
statistics are once again performed.

Clearly, we could have used the known global
minimum value of y16.5058 for this particular
problem as the stopping criteria, but we wish to
demonstrate that this method is fully capable of
finding an unknown global minimum quite as
effectively as a known one. Having run this entire
routine 100 times, this method found the global
minimum of y16.505 a total of 75 times. In addi-
tion, it took this method an average of 390,383 calls
to the potential for each of the times that it suc-
cessfully found that minimum. Admittedly, this
does not represent a 90% convergence, but it suf-
fices to prove that this method will find a global
minimum without previously knowing exactly
what that number is. One can improve the conver-
gence rate if one is willing to sacrifice speed in so
doing simply by increasing the number of probes

or by increasing the number of cycles between
cooling.

This simple demonstration of this method is
quite easily repeated in any programming lan-
guage capable of performing simple mathematical
operations. One run of this particular implementa-
tion takes approximately 7]10 minutes on a
486DXr33 with 8 megabytes of RAM, and takes
substantially less time on an IBM RSr6000. One
hundred runs of this took less than 9 hours on a
nondedicated RSr6000. This should demonstrate
adequately that this method is quite fast.

The bulk of the time is in merely insuring that
the implementation itself is behaving properly,
and with this simple illustration one should be
able to follow along with little trouble.

Results and Discussion

The results given in Table I reflect this algo-
rithm converging a minimum of 90% of the time
to within, at most, 3% of the known global mini-
mum of the function in question. In many cases
the error was significantly less than 3%, and the
convergence exceeds 90% on a few. This is identi-
cal with the established reliability of the tabu
search method.12 The number of function calls
listed is the average value of the times that the
algorithm converged. This indicates a two- to four-
fold improvement over the best method found for
optimization, the tabu search method, for all func-
tions tested. It must be noted, however, that Kan
and Timmer16 have released results that are par-

TABLE I.
Number of Function Evaluations in the Global
Optimization of Five Test Functions Defined

ain the Text.

bMethod GP BR H3 H6 SH

PRS 5125 4850 5280 18,090 6700
MS 4400 1600 2500 6000 }
SA1 5439 2700 3416 3975 241,215
SA2 563 505 1459 4648 780
TS 486 492 508 2845 727
Present work 112 144 122 1536 281

a The majority of these data are taken directly from ref. 12.
The results of the new method have been added for compar-
ison.
b ( )The methods are the pure random search PRS , multistart
( ) (MS , simulated annealing types 1 and 2 SA1 and SA2,

) ( )respectively , and tabu search TS . The references for these
methods can be found in ref. 12.
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ticularly noteworthy for a similar test suite of
functions, but a lack of clearly staged convergence
criteria prevents one from using their results as a
basis of comparison. Had such criteria been estab-
lished, their results would be included in the table
to indicate the relative merit of the various meth-
ods presented. We also have presented a concrete
example that should be very easy for anyone fa-
miliar with programming to implement, which
enables users to see directly the value of this
method.

This method of searching for a global minimum
of an arbitrary function has proven to be efficient,
seldom gets trapped in a local minimum, does not
require the computationally expensive use of
derivatives, and is easy to implement. A mathe-
matical basis for the efficiency of this method is
currently being investigated, which hopefully will
lead to additional refinements. We are currently
using this method to find minimum energy struc-
tures of noble gas clusters, as well as electronic
structure using dimensional scaling theory.3,17
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