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The finite size scaling ansatz is combined with the variational method to extract information about critical
behavior of quantum Hamiltonians. This approach is based on taking the number of elements in a complete
basis set as the size of the system. As in statistical mechanics, the finite size scaling can then be used directly
in the Schro¨dinger equation. This approach is general and gives very accurate results for the critical parameters,
for which the bound-state energy becomes absorbed or degenerate with a continuum. To illustrate the
applications in quantum calculations, we present detailed calculations for both short- and long-range potentials.

I. Introduction

In statistical mechanics, the singularities in thermodynamic
functions associated with a critical point occur only in the
thermodynamic limit, when all the dimensions of the system
under consideration tend to infinity. Strictly speaking, there
are no phase transitions in a finite system at nonzero temper-
ature, and yet, experiments as well as numerical calculations
all use finite systems.1 To address this problem, the finite size
scaling method was formulated by Fisher2 and others3 to
extrapolate information obtained from a finite system to the
thermodynamic limit.

In quantum mechanics, when using variation methods, one
encounters the same finite size problem in studying the critical
behavior of a quantum HamiltonianH(λ1,...,λk) as a function
of its set of parameters{λi}. In this context, critical means the
values of{λi} for which a bound-state energy is nonanalytic.
In many cases, as in this study, this critical point is the point
where a bound-state energy becomes absorbed or degenerate
with a continuum. In this case, the finite size corresponds not
to the spatial dimension but to the number of elements in a
complete basis set used to expand the exact wave function of a
given Hamiltonian.

Recently, we used the finite size scaling and phenomenologi-
cal renormalization equations for calculations of the critical
charges for two-4,5 and three-electron systems.6 This approach
is based on taking the lowest eigenvalues of a quantum
Hamiltonian as the leading eigenvalues of a transfer matrix of
a classical pseudosystem.

In this paper we will assume that there exists a scaling
function for the truncated mean value of a given operator, and
with the help of the Hellmann-Feynman theorem we can obtain
a direct finite size scaling approach to the Schro¨dinger equation.7

This approach is general and can be used to study critical
behavior of a quantum Hamiltonian as a function of its
parameters. To illustrate this approach, we include detailed
calculations for the critical parameters for two cases with
qualitatively different behavior: one with short-range interaction,
the Yukawa potential, and one with a long-range interaction,
the inverse power law potential.

II. Finite Size Scaling

In statistical mechanics, the finite size scaling method (FSS)
allows a systematic way to extract the critical behavior of infinite
systems from studies done on finite systems.2,3 If in the
thermodynamic limit,N f ∞, a quantityK develops a singularity
as a function of the temperatureT in the form

and in particular for the correlation length

then the FSS ansatz assumes the existence of scaling function
FK such that

whereFK(y) is an analytical function. Since the FSS ansatz,
eq 3, should be valid for any quantity that exhibits an algebraic
singularity in the bulk, we can apply it to the correlation length
ê itself. Thus, the correlation length in a finite system should
have the form8

The special significance of this result was first realized by
Nightingale,9 who showed how it could be reinterpreted as a
renormalization group transformation of the infinite system. The
phenomenological renormalization (PR) equation for finite
systems of sizesN andN′ is given by

and has a fixed point atT(N,N′). It is expected that the succession
of points {T(N,N′)} will converge to the trueTc in the infinite
size limit.
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K(T) ) lim
Nf∞

KN(T) ≈ |T - Tc|-F (1)
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Nf∞

êN(T) ≈ |T - Tc|-V (2)

KN(T) ≈ K(T)FK ( N
ê(T)) (3)

êN(T) ≈ Nφê(N
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In order to apply the FSS to quantum mechanics problems,
let us consider the following Hamiltonian of the form

whereH0 is λ-independent andVλ is theλ-dependent term. We
are interested in the study of how the different properties of
the system change when the value ofλ varies. In this study a
critical point λc will be defined as a point for which a bound
state becomes absorbed or degenerate with a continuum.

Without loss of generality, we will assume that the Hamil-
tonian, eq 6, has a bound stateEλ for λ > λc, which becomes
equal to zero atλ ) λc. As in statistical mechanics, we can
define some critical exponents related to the asymptotic behavior
of different quantities near the critical point. In particular, for
the energy we can define the critical exponentR as

For general potentials of the formVλ ) λVh, Simon10 showed
that the critical exponentR is equal to 1 if and only ifH (λc)
has a normalizable eigenfunction with eigenvalue equal to zero.
The existence or absence of a bound state at the critical point
is related to the type of singularity in the energy. Using
statistical mechanics terminology, we can associate “first-order
phase transitions” with the existence of a normalizable eigen-
function at the critical point. The absence of such a function
could be related to “continuous phase transitions”.

In quantum calculations, the variation method is widely used
to approximate the solution of the Schro¨dinger equation. To
obtain exact results, one should expand the exact wave function
in a complete basis set and take the number of basis functions
to infinity. In practice, one truncates this expansion at some
order N. In the present approach, the finite size corresponds
not to the spatial dimension, as in statistical mechanics, but to
the number of elements in a complete basis set used to expand
the exact eigenfunction of a given Hamiltonian. For a given
complete orthonormalλ-independent basis set{Φn}, the ground-
state eigenfunction has the following expansion

wheren represents the set of quantum numbers. In order to
approximate the different quantities, we have to truncate the
series, eq 8, at orderN. Then the Hamiltonian is replaced by
M(N) × M(N) matrix H (N), with M(N) being the number of
elements in the truncated basis set at orderN. By use of the
standard linear variation method, theNth-order approximation
for the energies are given by the eigenvalues{Λi

(N)} of the
matrix H (N),

The corresponding eigenfunctions are given by

where the coefficientsan
(N) are the components of the ground-

state eigenvector. In this representation, the expectation value
of any operatorO at orderN is given by

whereOn,m are the matrix elements ofO in the basis set{Φn}.
In general, the mean value〈O〉 is not analytical atλ ) λc, and
we can define a critical exponent,µO, by the relation

In statistical mechanics, the singularities in thermodynamic
functions associated with a critical point occur only in the
thermodynamic limit. In the variation approach singularities
in the different mean values will occur only in the limit of
infinite basis functions.

As in the FSS ansatz in statistical mechanics,11 we will
assume that there exists a scaling function for the truncated
magnitudes such that

with a different scaling functionFO for each different operator
but with a unique scaling exponentV.

Now we are in a position to obtain the critical parameters by
defining the following function

At the critical point, the mean value depends onN as a power
law, 〈O〉 ≈ N-µO/V; thus, one obtains an equation for the ratio
of the critical exponents

which is independent of the values ofN andN′. Thus, for three
different valuesN,N′ and N′′ the curves defined by eq 14
intersect at the critical point

In order to obtain the critical exponentR, which is associated
with the energy, we can takeO ) H in eq 15 withµO ) R,

and by using the Hellmann-Feynman theorem,12 we obtain

Taking O ) ∂Vλ/∂λ in eq 15 gives an equation for (R - 1)/V
that, together with eq 17, gives the exponentsR andV.

The FSS equations are valid only as asymptotic expressions,
N f ∞, but with a finite basis set, unique values ofλc, R, and
V can be obtained as a succession of values as a function ofN,
N′ andN′′. The relation betweenN, N′ andN′′ was extensively
studied in FSS in statistical mechanics,3 and it is known that
the fastest convergence is obtained when the difference between
these numbers is as small as possible. In this study we took
∆N ) 1, and when there are parity effects, we used∆N ) 2. In
order to obtain the extrapolated values forλ(N), R(N), andV(N) at

〈O〉λ
(N) ) ∑

n,m

N

an
(N)(λ)* am

(N)(λ) On,m (11)

〈O〉λ ≈ (λ - λc)
µO for λ f λc

+ (12)

〈O〉λ
(N) ≈ 〈O〉λFO(N|λ - λc|V) (13)

∆O(λ;N,N′) )
ln(〈O〉λ

(N)/〈O〉λ
(N′))

ln (N′/N)
(14)

∆O(λc;N,N′) )
µO

V
(15)

∆O(λc;N,N′) ) ∆O(λc;N′′,N) (16)

R
V

) ∆H (λc;N,N′) (17)

∂Eλ

∂λ
) 〈∂H

∂λ 〉
λ

) 〈∂Vλ

∂λ 〉
λ

(18)

H ) H0 + Vλ (6)

Eλ ≈ (λ - λc)
R for λ f λc

+ (7)

Ψλ ) ∑
n

an(λ)Φn (8)

Eλ
(N) ) min

{i}
{Λi

(N)} (9)

Ψλ
(N) ) ∑

n

M(N)

an
(N)(λ)Φn (10)
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N f ∞, we used the algorithm of Bulirsch and Stoer13 with N′
) N + ∆N andN′′ ) N - ∆N. This algorithm was also studied
in detail and gives very accurate results for both statistical
mechanics problems14 as well as electronic structure critical
parameters.4-6

III. Numerical Calculations

To illustrate the applications of the FSS method in quantum
mechanics, two cases with qualitatively different behavior near
the critical point have been studied: one with short-range
interaction, the Yukawa potential, and one with a long-range
interaction, the inverse power law potential. In both cases the
potential is spherically symmetric, and therefore, the critical
behavior can be studied for zero and nonzero angular momen-
tum.

A convenient orthonormal basis set that can be used in both
cases is of the form

whereLn
(2)(r) is the Laguerre polynomial of degreen and order

2 andYl,m(Ω) are the spherical harmonic functions of solid angle
Ω.15

In this basis set, one has to calculate the lowest eigenvalue
and eigenvector of the finite Hamiltonian matrix. The matrix
elements of the kinetic energy operator can be calculated
analytically, and therefore, the problem reduces to calculation
of the matrix elements of the particular potential. Now, in order
to obtain the numerical values forλc, R, andV, we can use eqs
16-18 or we can simply define the following function

which is also independent of the values ofN andN′ at the critical
point λ ) λc. Plotting ΓR(λ;N,N′) as a function ofλ gives a
family of curves with an intersection atλc. At the pointλ ) λc

one can read the critical exponentR,

and from eq 17 the critical exponentV is readily given by

A. Short-Range Potentials. There are many rigorous results
known about the critical behavior of short-range one-body
potentials. Klaus and Simon16 consider a family of Schro¨dinger
operators,-∇2 + λV, with coupling constantλ and short-range
potentialV. Their results address two general questions. (i) Is
the eigenvalueE(λ) analytic atλ ) λc? (ii) What is the leading
order of the expansion in (λ - λc)R?

In this section we will analyze these two questions for the
Hamiltonian of the screened Coulomb potential. In atomic units
the Hamiltonian can be written as

It is well-known that the perturbation expansion inσ around
the Coulombic limit,σ ) 0, is asymptotic with zero radius of
convergence.17

In order to linearize the Hamiltonian in the external parameter,
we perform the following scaling transformation

With λ ) 1/σ the Hamiltonian takes the final form

This Hamiltonian has bound states for large values ofλ, and
the exact value of the critical exponentR is R ) 2 for states
with zero angular momentum andR ) 1 for states with nonzero
angular momentum.16

We used the finite size scaling equations, eqs 20-22, in order
to obtain the pseudocriticalλ(N), R(N), andV(N). Owing to parity
effects, we have to take∆N ) 2. The extrapolated results for
both states with angular momentuml ) 0 and l ) 1 are
summarized in Table 1. The behavior of the ground-state
energy,E0

(N), as a function ofλ for different values ofN is
shown in Figure 1a. Forl ) 0, the energy curve goes smoothly
to zero as a function ofλ but the second derivative function
develops a discontinuity in the neighborhood of the critical point,
λc = 0.8399. This behavior is different from that ofl ) 1
results, where the energy curve bends sharply to zero at the
critical point, λc = 4.5409, as shown in Figure 1b. As one
should expect, there is a discontinuity in the first derivative as
a function ofλ.

For the casel ) 0, the eigenfunction is not normalizable at
λ ) λc. It is interesting to note that for the Hu¨lten Hamiltonian,
another potential with an exponential decay and exact solution
for the ground state,18 the expansion coefficients of the wave
function have the asymptotic form

independent of the basis set and the value ofn. It seems that
this result is general and suggests that there is a unique critical
exponent for the expansion coefficients. We assume that, with
R * 1, there is a unique critical exponentµa defined by

Assuming this is a universal behavior for the coefficients{an}
it is possible to show, by use of the expansion, eq 8, in the
Hellmann-Feynman theorem, thatµa ) (R - 1)/2.

To verify these results, parts a and b of Figure 2 show the
behavior of the leading coefficientsa0

(N) anda1
(N) as a function

of λ. The curves bend to zero atλc, and in the limit ofN f ∞
botha0 anda1 take the value zero for allλ belowλc. Figure 3
show the extrapolated value for the critical exponentµ as a

TABLE 1: Comparison of the Critical Parameters λc, r, and
W for the Short-Range Yukawa Potential for l ) 0 and l ) 1

evenN oddN ref

l ) 0
λc 0.8399039(1) 0.8399039(1) 0.839908
R 2.00000(2) 1.999995(5) 2 (exactb)
V 0.9999(2) 0.9999(5)

l ) 1
λc 4.540980(3) 4.540979(1) 4.541a

R 0.9999(3) 0.9998(2) 1 (exactb)
V 0.501(1) 0.501(1)

a From ref 26.b From ref 16.

r f σr; H f
H

σ2
(24)

H (λ) ) - 1
2
∇2 - λe-r

r
(25)

an(λ) ≈ (λ - λc)
1/2 for λ f λc

+ (26)

an(λ) ≈λfλc
+ (λ - λc)

µa for λ f λc
+ (27)

Φn,l,m(r,Ω) ) 1

x(n + 1)(n + 2)
e-r/2Ln

(2)(r)Yl,m(Ω) (19)

ΓR(λ;N,N′) )
∆H (λ;N,N′)

∆H (λ;N,N′) - ∆∂Vλ/∂λ(λ;N,N′)
(20)

R ) ΓR(λc;N,N′) (21)

V ) R
∆H (λc;N,N′)

(22)

H ) - 1
2
∇2 - e-σr

r
(23)
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function of 1/N for the first four expansion coefficientsn ) 0,
1, 2, 3. The extrapolated values are 0.4865, 0.4865, 0.4477,
and 0.4233, respectively. The larger the value ofn, the larger
is the numerical error, so we expect the most accurate result is

for the casen ) 0. Our conjecture is that the exact value ofµn

is equal to1/2 for all n; that is,µ is a “universal exponent” for
the coefficients independent of the value ofn or the basis set.

B. Long-Range Potentials. For the two-electron Coulomb
problem, a long-range two-body potential, the ground state is
degenerate with the continuum with a critical exponentR ) 1
and has a normalizable eigenfunction at the critical point.19 The
critical point is the minimum value of the nuclear charge
necessary to bind two electrons and is about 0.911 16. Stillinger
discussed another family of long-range potentials that can be
solved exactly.20 For the ground state of the potentialV(r) )
-3/32r2 + b/(8xr) - c/(8r), he showed that there exists a
normalizable eigenfunction at the critical point and that the
critical exponent isR ) 1.

To illustrate the applications of the finite size scaling method
for long-range potentials, we investigated the following potential

For this potential there is no parity effect, and we choose∆N
) 1. The finite size scaling results are qualitatively very similar
to the results of the two-electron atoms.5 We have found that
the energy curves as a function ofλ bends over sharply atλc to
become degenerate with the continuum. This behavior of the
ground state for different values ofN is shown in Figure 4. In
virtue of this behavior, we expect that the first derivative of the
energy with respect toλ will develop a steplike discontinuity
at λc. The first derivative is shown in Figure 5. The
extrapolated values ofλc andR are listed in Table 2.

(a)

(b)

Figure 1. Variational energy for the Yukawa potential as a function
of λ for N ) 10, 20, 30, ..., 100: (a) for the ground-state energy with
l ) 0; (b) for the state with angular momentuml ) 1. The value of the
extrapolatedλc is also shown by an arrow.

(a)

(b)

Figure 2. Expansion coefficients for the ground-state wave function
of the Yukawa potential as a function ofλ for N ) 10, 20, 30, ..., 100:
(a) leading coefficienta0

(N); (b) second coefficienta1
(N).

Figure 3. Critical exponentµn
(N) as a function of 1/N for n ) 0, 1, 2,

3. Open circles representN ) 50, 60, 70, 80, 90, 100, and the
extrapolated value of the critical exponent is shown by a dot.

Figure 4. Variational energy for the ground state of the long-range
potential (eq 29 in the text) as a function ofλ for N ) 10, 20, 30, ...,
100. The value of the extrapolatedλc is also shown by an arrow.

Vλ(r) ) - 1
r

+ λ
r1/2

(28)
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IV. Conclusions

In the field of atomic and molecular physics, it has been
suggested for some time that there are possible analogies
between critical phenomena and singularities of the energy.21-23

In particular, it has been noted that the energy curves of the
two-electron atoms as a function of the inverse of the nuclear
charge resemble the free energy curves as a function of the
temperature for the van der Waals gas.21 Using the large
dimension limit model for electronic structure problems, we
showed that symmetry breaking of the electronic structure
configurations for the many-electron atoms and simple molecular
systems can be studied as mean-field problems in statistical
mechanics.24,25

Recently, we have shown that the FSS method can be used
indirectly to obtain critical parameters for quantum Hamiltonians
by taking the lowest eigenvalues of a quantum Hamiltonian as
leading eigenvalues of a transfer matrix of a classical pseudo-
system. This approach was successfully used to obtain the
critical charges for two- and three-electron atoms.4-6 In this
study we present a direct FSS approach for studying the critical
behavior of quantum Hamiltonians without the need to make
any explicit analogy to classical statistical mechanics. The
critical parameters can be calculated by a systematic expansion
in a finite basis set.

In this paper we have found that there are fundamental
differences between short-range and long-range potentials. For
the ground state of the Yukawa potential, the critical exponent
R ) 2, the wave function is not normalizable atλ ) λc, the
energy curves go smoothly to zero as a function ofλ, and the
second derivative develops a discontinuity in the neighborhood

of the critical point. This type of behavior resembles a
“continuous phase transition”. For the ground state of the
inverse power law potential, the critical exponentR ) 1, the
wave function is normalizable atλ ) λc, the energy curves bend
over sharply atλc to become degenerate with the continuum,
and the first derivative develops a steplike discontinuity atλc,
which resembles a “first-order phase transition”.

It is worth noting that we assumed that for the expansion
coefficients of the wave function there is a unique “universal”
critical exponent. For the Yukawa and the Hu¨lten potentialsµ
) 1/2 and in generalµ ) (R - 1)/2, which is related to the critical
exponent on the energyR. This assumption needs further
verification, but numerical results in this study indicate that this
assumption is general and correct.
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Figure 5. First derivative of the ground-state energy of the long-range
potential (eq 29 in the text) as a function ofλ for N ) 10, 20, 30, ...,
100. The value of the extrapolatedλc is also shown by an arrow.

TABLE 2: Comparison of the Critical Parameter λc and r
of the Long-Range Potential Eq 29 forl ) 0 and l ) 1

l ) 0 l ) 1

λc 0.581093706(3) 0.2813341273714(7)
R 1.0000000(4)a 1.000000000(3)a

a ExactR ) 1 (ref 16).
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