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Phase Transitions

*» Classical: Classical phase transitions are driven by thermal energy
fluctuations +p ’ -’

Like the melting of an ice cube:

Solid — Liquid — Gas

+ Quantum: Quantum phase transitions, at T=0, are driven by the
Heisenberg uncertainty principle

Like the melting of a Wigner crystal: Two dimensional electron
layer trapped in a quantum well
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Quantum Phase Transitions

Transitions that take place at the absolute zero of
temperature, T=0, where crossing the phase
boundary means that the quantum ground state
energy Eq(4) , of the system changes in some
fundamental way.

This is accomplished by changing some parameter
in the Hamiltonian of the system Hy(1) .

We shall identify any point of non-analyticity in the
ground state energy (2 =4c , as a quantum phase
transition.



Phase Transition

- EE
S
Free energy: f[K]=-kgT log[Z] S

Coupling Constants: {K,, K,; Ky}

As a function of [K], f[K] is analytic almost everywhere

Possible non-analyticities of f[K] are points (Ds=0),
lines (Dg=1), planes (Dg=2), ...

Regions of analyticity of f[K] are called phases



Phase Transitions

First-order:

of /oK, is discontinuous across a phase boundary

Continuous Phase Transition:

All of /oK, are continuous across the phase boundary.
But, second derivatives or higher derivatives are
discontinuous or divergent



First-order transition Continuous transition
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Phase Transitions

Critical
Exponent

Order
Parameter



Critical Exponents

The critical exponents describe the nature of the singularities in various measurable
quantities at the critical point [e, B,7,5,1,V]

Inthelimit T > T,

¢ Heat Capacity: C~[T-Tc["
¢ Order Parameter: M ~[T T
% Susceptibility: x~T-T|”

 Equation of State: - y¥°
¢ Correlation Length: £~[T-T,

-V

Scaling Laws:

¢ Fisher: y=v(2-n)
+¢* Rushbrooke: a+2B+y=2
s Widom: y =B -1)

¢ Josephson: v =2-a



Universality Classes
Near a second-order phase transition
macroscopic quantities show a universal
scaling behavior that is characterized
by critical exponents that depend
only on general properties of the
system, such as

its dimensionality,
symmetry of the order parameter, or
range of interaction.

Accordingly, phase transitions are classified
in terms of universality classes.



Critical Exponents
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TH. Theoretical values (from scaling laws); EXPT. Experimental values (from a variety of
systems); MFT. Mean field theory; ISINGd. Ising model in d dimension; HEIS3. classical

Heisenberg model. D=3

Kenneth G. Wilson (1982)



The Nobel Prize in Physics 1982

Kenneth G. Wilson

Cornell University

Renormalization Group

"for his theory for critical phenomena in
connection with phase transitions”



Finite Size Scaling

In statistical mechanics, the finite size scaling method provides a
systematic way to extrapolate information obtained from a finite
system to the thermodynamic limit

Importance

Yang and Lee

The Nobel Prize in
Physics 1957




Finite—size effects in
Statistical Mechanics




FSSscaled variable y=N/&(1), where £ is the
correlatio n length of the infinite system.

(y~1 Critical effects are expected to occur
y>>1 Bulk - like behavior
y<<1 Finite -size effects are manifested

J\

If a thermodyn amical quantity K develops a
singularit y as a function of A inthe form




and In particular for the correlatio n length

the FSS ansatz assumes that

where f, (y)Is an analytical function. Fora
finite N, K, Is also analytical , so the behavior
of f,(y) must be




It follows that at A,

If K9(2)is the gth derivative of K(1), K{9(1)
IS also singular at A,

and therefore




Since KN (1) is an analytical function in A, it
has a Taylor expansion around A, and Ky, (1)

can be expressed as

where ¢, Is a scaling function w hich is regular
around A..
We can apply FSSto the correlatio n length £.



Nightingal e developed the phenomenol ogical
renormaliz ation (PR) equation for finite systems
of sizes Nand N'is given by




and has a fixed point at (N,N"). It is expected

that the succession of points {21 }in the
imit of infinite  sizes to converge to the true A..

Using the definition of the correlatio n length,
then at the fixed point can be written as




Statistical Mechanics

Classical

4

Quantum

4

Free Energy
F(K)=-KgT log(Z)

T —0
Ground State E,(4)

v

v

Critical Phenomena

Critical Phenomena

Correlation Length

S~(T _Tc)_v

Mass Gap of H
5_)A_1E~(}~_ﬂ~c)_v

Thermodynamic Limit
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Applications
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In the present approach, the finite size corresponds not to the
spatial dimension, as in statistics, but to the number of elements
In a complete basis set used to expand the exact eigenfunction of a
given Hamiltonian.

Quantum Mechanics

o0 M
v =Y ad =D ad
n=0 n=0

(Variational Calculations)

Phys. Rev. Letters 79, 3142 (1997)




Finite Size Scaling: Quantum Mechanics

In order to apply FSS to quantum mechanics problems, let us
consider the following Hamiltonian of the form

For a given complete orthonormal A-independent basis set -,
the ground state eigenfunction has the following expansion




The Nth-order approximation for the energies are given
by the elgenvalues of the matrix HN),

The corresponding eigenfunction are given by

The expectation value of any operator O

The FSS ansatz




The curves intersect at the critical point

In order to obtain the critical exponent @ for the

o -

Hellmann-Feynman Theorem




Finite Size Scaling: Quantum Mechanics

The FSS ansatz

The curves intersect at the critical point




Short Range Potentials
Yukawa Potential

Hamiltonian

Basis Set

Where - is the Laguerre polynomial of degree
n and order 2 and [in(@ are the spherical harmonic
functions of the solid angle




Yukawa
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Phys. Rev. A 57, R1481 (1998)



Finite Size Scaling with Gaussian Basis Sets

The main 1dea i1s to use Gaussian basis sets to do FSS calculations
for large atomic and molecular systems.

The basis-set is an over-complete set of Gaussian functions:

Where Cy, are the normalization constants and fis a free
parameter.
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Finite Size Scaling
Data Collapse
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Quantum Mechanics

Complex Complex Complex Complex
Angular Time Energy Charge
Momentum
................ ) S ! TR AN A
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Two Electrons Atoms

He like system H like +e-
Egs(2) H- He 2




Finite Size Scaling procedure

«» Hamiltonian:

«» Basis Set:

+» Hamiltonian Matrix:

“+ Renormalization Equation:
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Critical Charges and Stable Atoms and Ions

H He
0.91 Z
H He- Li
2.08 y4
He Li Be



EA(N-1)[eV]

Surcharge >
Se= N-ZC

}Lan‘lhanides L
1 1 L 1 @

30 40 50 60 70 80

N

Int. J. Quantum Chem. 75, 533 (1999)



» Do doubly charged negative atomic ions exist
In the gas phase?

NO

» What is the smallest object that can bind two
extra electrons?

This is a challenge for
experiment and theory!

The two electrons must be
separated by at least 5.6 A



Model Potential for Spherical Molecular Dianions

From classical electrostatics, the electrostatic poten-
tial between an electron (¢ = ¢) and a dielectric sphere of
radius R 1s given by

(e — 1)/ R
Z ! ;_|_ lff-|-1 S PI(CGS 6})’

p(r) =

Il‘—l"l

potential between an electron at a distance r > R and
a negatively singly-charged sphere can be obtained using
the method of images

V(r)= -V, r <R,

v (e— R . 1 +,f(/+ )
7(r) = -

2(e+2)r*(rP—R?) r 2
where the constant —V 1s an average attractive field
inside the sphere.

r > R,



Stability of Spherical Carbon Cluster Dianions

Coo

V()]

The interaction potential
of an electron at a
distance from a singly
charged negative sphere of —V
radius R and dielectric
constant ¢




V(r)

E(R)

-V

v R

. Interaction potential V' (r) of an electron at distance
rfrom a singly negative sphere of radius R (left) compared
with a pure Coulomb repulsive potential (right).
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Molecular Physics 100, 475 (2002)




Stability of Dianions of

EAl =+ 2.65¢eV

EA2 =-0.3 eV 60

RC — 56/ =ssssssssssssssssssssssssEsEsEsmEsEnnn C;g_

EAL = + 3.14 eV

EA2 = + 0.44 eV __
Cas

Advances in Chemical Physics, Volume 125, 1 (2003).



Stability of Linear Dianions
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Phase Transitions and Stability of
Three Body Coulomb Systems

(m,q) He <> He™ +e°

(m,q) (m,q) N

M) MO MO _




VOLUME 69, NUMBER 17 PHYSICAL REVIEW LETTERS 26 OCTOBER 1992

Positronium Negative Ion: Molecule or Atom?

J. M. Rost"" and D. Wintgen®

“)Departmem of Chemistry, University of Washington, BG-10, Seattle, Washington 98195
D Fakultat fiir Physik der Universitdt, Hermann-Herder-Strasse 3 7800 Freiburg, Germany
(Received 22 May 1992)

A highly accurate calculation is supplemented by an adiabatic approximation to explore the resonance
spectrum of the positronium negative ion (Ps ™). Surprisingly, the spectrum can be understood and
classified with H2* quantum numbers by treating the interelectronic axis of Ps ~ as an adiabatic param-
eter. We report and interpret the existence of 'S shape resonances, a phenomenon so far unknown in
three-body Coulomb systems. The new results on Ps ~ combined with previous results for H ™ suggest
the existence of a resonance spectrum and its similarity for all ABA Coulomb systems with charges
|Z4/Zgl =1 and masses m4/mg=> 1.

e+

Molecule Atom
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Three Body Coulomb Systems (ABA)

~0496 | N=30 =l i
Afte
k=0 )
1.20 t EO[N]O») - ple "
K =0.35 i
~0.498 ' I
1.08 116 3, 124 o
Unstable Phase i ’
1.10 ﬁl—)d PS ttttttttttt
wi e D=
............................. Stable Phase
K. =0.35
1.00 L
0.0 0.2 0.4 0.6 08 10
K

S. Kais, Phys. Rev. A 62, 06050 (2000)

Particles
e: electron
p: proton
u: muon

d: deuteron
t: tritium

Mass

1
1836.15
206.76
3670.5
5476.92



Phase Transitions and Stability of
Three Body Coulomb Systems

Charge density probability

A =124 < 117% =1.2402
Bound States

A =1.241> 137" =1.2402
Coulomb Explosion

(b) AV =20) 0 )\((:N=20)



FSS for Critical Conditions
for Stable Dipole Bound

Anions

The Hamiltonian e €

R

1
cy(”(Z;R;f):—ivz—Z(—ﬁ— _ )

Slater Basis Set:

n=0,1,...: 1 =0,...,n,

Chem. Phys. Lett. 372,205 (2003)
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FSS for Critical Conditions for
Stable Quadrupole Bound Anions

Hamiltonian: Consists of a charge q at the origin and two charges —q/2 at
z=+1&-1

1 qg q | 1
= — — 2—— —
==V o =2 T 1i+2
Slater Basis Set:
4 T 182” +3 1/2
b 2\ — ,— pr/2 NP
.1(7) A+ )2n+2)r| ¢ 2/(0)

n=0,1,..., [=0]1,....[n/2].

Where B is the variational parameter used to optimize the numerical results
and P, () is the Legendre polynomial of order |.

q—» q=QR
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Journal of Chemical Physics, 120, 8412 (2004)



KCl,, Q,,=10 a.u
K,Cl- Q,,=27 a.u
(BeO),” (13,13,0.5)
CS,” Q,,=4 a.u
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Journal of Chemical Physics, 120, 8412 (2004)




FSS for Critical Conditions

for Stable Dipole—Bond

. Dianions
The Hamiltonian e- e-

2

H=§:—iﬁ_g S i
il - R/2 |r+ H/2 12
Basis Set:
{I}n — (_E’_'E I:{I-":n fﬁ{;ﬂ n ‘|— f?‘n??fn EF?‘-!-?IE‘H-) TE“ !
“f — (Tﬂ+rﬁ']r N = f:i”a—?’*,[,.],

Prolate spheroidal coordinates

J. Chem. Phys. (in press, 2007)



Stability diagram for two electron dipole
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Atomic & Molecular Stabilization

by
Superintense Laser Fields
with
Prof. Dudley Herschbach
Harvard University

Ff*x :
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Multiply charged negative
atomic ions
IN superintense laser fields




) : The peak-power of
Superintense Laser Fields (I > a.u.) pulsepd |aszrs has

increased by 12 orders
of magnitude during

PWI Chi | - 10%
Shiipad puisa g the past 4 decades
ETW i ° 110" &
Frea- =
EIE"-"'I""rl.lnr.uir'lg 410" 3
2 Mode locking 2
%MW- 1 1012 E
& ~—— Q-switching =z QUESTION: What is the
ol H10* g highest-level intensity
! | | = presently possible?
1960 1970 1980 1990 2000
"Strong Laser-Field": Intensities in the Range ANS\.NER' The highest
possible focused laser

of 10" ... 10"W /cm? Comparison: Electric field on 1st
Bohr-Orbit in Hydrogen

E = 1% _51x10/m ~ T This level of intensity can
drep ap be achieved with
+— 24

1 I femtosecond laser based

T = 2 — 16 2 ]
peock = 3:51 x 107 W /cm v on Chirped Pulse
Amplification (CPA).

At the same time: very short pulses possible:
~5fs(1fs =10""%)
= 2...4 optical cycles in the visible region

intensity =101° W/cm?




Laser Atom Interaction

The electric field of a monochromatic plane wave
can be written

With e, and e, orthogonal to each other and to the
propagation direction

Moving frame of reference which follows the quiver motion of the classical electron




High Frequency Floquet Theory

Hamiltonian of atomic system in super-intense laser fields

Vo is the “dressed” Coulomb potential, is the time average of the shifted
Coulomb over one period of the laser

Structure Equation: HY =E ((XO) Y
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M. Pont, et al. Phys. Rev. Lett. 61, 939 (1988) J. H. Eberly, et al Science 262, 1229 (1993)



Linear Charge and Circular Charge

For linear polarization, the For circular polarization, the
“dressed” potential is the same “dressed” potential is the same
as that generated by a “linear as that generated by a “circular
charge”: the trajectory a(t) charge”.
o0 Chargeg density o0

= ao »!

Linear charge Circular charge



Prolate Spheroidal Coordinates
for Linear Polarization
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Basis Set (Linear Polarization)

One-electron basis functions in elliptical
coordinates

We used about 100 basis functions
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The electronic orbitals for the ground states. The presentation is given in a plane
passing through the axis of the field taken as polar axis z
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Negative of the detachment energy of the ground state of He-, He?~, Li-,and
Li%>~ in a linearly polarized high-frequency laser field as a function of
0,=E/®?, where E, and o are the amplitude and frequency of the laser field.



Critical parameters for stability of He—, He?~, Li~ and Li*~ in superintense laser fields.

The intensity is determined by the following equation: I(W/em?2) = |Eg(a.u.)[? x 3.509 x 1016,

2

where Ey = w e, we choose w = 5eV

For example, when ultra-high-power KrF laser (5 eV photons) are used, the peak

intensity in the experiments should be I = 1016W/cm?

agr el (g ) (TN (W em?®) o= ™™ (g ) | T ™ (T /em? ) | Detachment Energy (eV)
He™ 11 4.8 x 10%° 26 2.7 x 10 1.2
He?- 82 2.7 % 1317 180 1.2 % 101 0.12
Li~ 16 1.0 x 1016 42 7.1 x 106 1.2
Li*~ 105 4.4 x 107 250 2.5 x 10™ 0.13




Oblate Spheroidal Coordinates
for Circular Polarization

=-1.0
n=-0.8
n=-0.4 L n=0.4
T‘I-
?'1 + rz
= l=§f=cwx
R
Fiy—=r
n= R —l=p=1

n=0.8



Basis Set (Circular Polarization)

We used over 200 basis functions
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Large-D stability in Linearly polarized
superintense laser fields

Dudley Herschbach, Harvard



Large D stability in super-intense circular
polarized laser fields
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polarized high-frequency laser field as a function of a,=E/®?, where E, and o are the
amplitude and frequency of the laser field.
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Critical parameters for stability of atomic anions in super-intense laser fields

DQuantity
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? L. and C denote linear and circular polarization, respectively. Data pertain to ©» = SeV.



Do atoms in superintense laser fields behave
like diatomic molecules ?

10 T | i
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Large-D stability of molecules in linearly polarized superintense laser field
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At the D—o [Imit
As per D-Scaling method:

N 1 1 + y Xiy Yis Z; +N ) 1
H.Z:Z[W)] ;V"( Yn2) ;;[\/(xi—xj)z“L(yi—Yj)2+(zi_zi)2]

V, (X, Y, Z)(chzjf\/ de : jz

(z+d*cos(p)) +(y) +(x—dsin( 20)
o

d=2
2

This is the problem to be minimized



Our Potential

» Potential generated by application of
Relativistic Trajectory in HFFT
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Alternate View




Trajectory

*The new relativistic trajectory used:

0ty (t) = @ (X, COS(@h) — X, (@@ ine) SIN(26) ), Wherex, L x;

*This trajectory was used within the p
HFFT potential, and the potential T
traces the equivalent parametric
equation:

%, sin(2t),0,dcos(t)), t=(0,27) =
d=a,=v/2

*The curve reaches it’s maximum |
at t=rt/4; the potential and 100}
electron density reach their
extremes as well
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Summary

Symmetry breaking of electronic structure
configurations resemble classical phase transitions

Atomic dianions are unstable in the gas phase

Multiply charged negative ions are stable in
superintense laser fields
(Intensity > 1 a.u. ~ 10 W/cm?)




For more details See the review article;
« Sabre Kais and Pablo Serra, "Quantum Critical Phenomena and Stability of

Atomic and Molecular lons", Int. Rev. Phys. Chem. Vol 19, 97-121 (2000).
« S. Kais and P. Serra, "Finite Size Scaling for Atomic and Molecular Systems",
Advances in Chemical Physics, Volume 125, 1-100 (2003).




Further Directions

Combinations of linearly polarized lasers can deliver more exotic potentials with the

chance of binding even more electrons.

300"

Two lasers fired in the

Y direction, linearly polarized
in the X and Z directions

g
400

Two lasers fired,
inthe Xand Y
directions, both
polarized in the Z



Efimov States

Efimov State is a stable of three
particles, with any two particle subsystem is unstable. It was
proposed by In 1970 theoretically
and was observed experimentally in 2006
for ultracold gas of atoms.

Remove any one ring and the other two will fall apart.

Letter to: Nature 440, 315-318 (16 March 2006)
Evidence for Efimov quantum states in an ultracold gas of caesium atoms

T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B. Engeser, A. D. Lange,
K. Pilch, A. Jaakkola, H.-C. Nagerl and R. Grimm


http://en.wikipedia.org/wiki/Quantum_mechanics
http://en.wikipedia.org/wiki/Bound_state
http://en.wikipedia.org/wiki/Vitaly_Efimov
http://en.wikipedia.org/wiki/Caesium
http://www.uibk.ac.at/exphys/ultracold/projects/levt/efimov/BorromeanRings.jpg
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