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Phase Transitions

 Classical: Classical phase transitions are driven by thermal energy 
fluctuations

Like the melting of an ice cube:

Solid GasLiquid

P

T

Solid
Liquid

Gas

CP

 Quantum: Quantum phase transitions, at T=0, are driven by the 
Heisenberg uncertainty principle

Like the melting of a Wigner crystal: Two dimensional electron 
layer trapped in a quantum well

crystalWigner liquid Fermi



Quantum Phase Transitions

Transitions that take place at the absolute zero of 
temperature, T=0, where crossing the phase 
boundary means that the quantum ground state 
energy          , of the system changes in some 
fundamental way.

This is accomplished by changing some parameter 
in the Hamiltonian of the system          .

We shall identify any point of non-analyticity in the 
ground state energy           , as a quantum phase 
transition.
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Phase Transition

Free energy: f[K]=-kBT log[Z]

Coupling Constants: {K1, K2; KD}

As a function of [K], f[K] is analytic almost everywhere

Possible non-analyticities of f[K] are points (DS=0), 
lines (DS=1), planes (DS=2), …

Regions of analyticity of f[K] are called phases

Partition 
Function



Phase Transitions

First-order:

is discontinuous across a phase boundaryiKf 

Continuous Phase Transition:

All           are continuous across the phase boundary. 
But, second derivatives or higher derivatives are 
discontinuous or divergent

iKf 
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Phase Transitions
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Critical Exponents

The critical exponents describe the nature of the singularities in various measurable 

quantities at the critical point ],,,,,[ 

In the limit CTT 

 Heat Capacity:

 Order Parameter:

 Susceptibility:

 Equation of State:

 Correlation Length:

Scaling Laws:

 Fisher:

 Rushbrooke:

Widom:

 Josephson:
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Universality Classes

Near a second-order phase transition
macroscopic quantities show a universal 

scaling behavior that is characterized 
by critical exponents  that depend 
only on general properties of the 

system, such as 

its dimensionality, 
symmetry of the order parameter, or 

range of interaction. 

Accordingly, phase transitions are  classified 
in terms of universality classes.



Critical Exponents
],,,,,[ 

Exponent TH EXPT MFT ISING2 ISING3 HEIS3

0-0.14 0 0 0.12 -0.14

0.32-0.39 ½ 1/8 0.31 0.3

1.3-1.4 1 7/4 1.25 1.4

4-5 3 15 5

0.6-0.7 ½ 1 0.64 0.7

0.05 0 ¼ 0.05 0.04

2 2.00 ±0.01 2 2 2 2

1 0.93 ±0.08 1 1 1

1 1.02 ±0.05 1 1 1 1

1 4/d 1 1 1
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TH. Theoretical values (from scaling laws); EXPT. Experimental values (from a variety of 
systems); MFT. Mean field theory; ISINGd. Ising model in d dimension; HEIS3. classical 
Heisenberg model. D=3

Kenneth G. Wilson (1982)



Renormalization Group

The Nobel Prize in Physics 1982

"for his theory for critical phenomena in 
connection with phase transitions"

Kenneth G. Wilson

Cornell University 



Finite Size Scaling

In statistical mechanics, the finite size scaling method provides a 

systematic way to extrapolate information obtained from a finite 

system to the thermodynamic limit

Importance

The existence of phase transitions is associated with singularities 

of the free energy. These singularities occur only in the 

thermodynamic limit.

Yang and Lee Phys. Rev. 87, 404 (1952)

The Nobel Prize in 

Physics 1957



Finite-size effects in 
Statistical Mechanics
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Statistical Mechanics

Classical Quantum

Phase Transitions

Free Energy             
F(Ki)=-KBT log(Z)

Phase Transitions

T          0
Ground State ……:      )(0 iE 

Critical Phenomena

Correlation Length
  )(~ CTT

Critical Phenomena

Mass Gap of H
 


 )(~1

CE

Finite Size Scaling
Thermodynamic Limit

N

Finite Size Scaling
Number of Basis Functions

M

Applications Applications



In the present approach, the finite size corresponds not to the 

spatial dimension, as in statistics, but to the number of elements 

in a complete basis set used to expand the exact eigenfunction of a 

given Hamiltonian.

Quantum Mechanics
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Phys. Rev. Letters 79, 3142 (1997)



Finite Size Scaling: Quantum Mechanics

In order to apply FSS to quantum mechanics problems, let us 
consider the following Hamiltonian of the form

VHH  0

termdependent - is V andt independen- is  where 0  H

For a given complete orthonormal λ-independent basis set        ,  
the ground state eigenfunction has the following expansion
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The Nth-order approximation for the energies are given 
by the eigenvalues of the matrix H(N),}{
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Finite Size Scaling: Quantum Mechanics
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Short Range Potentials                               
Yukawa Potential
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Where          is the Laguerre polynomial of degree 
n and order 2 and          are the spherical harmonic 
functions of the solid angle
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Finite Size Scaling with Gaussian Basis Sets

The main idea is to use Gaussian basis sets to do FSS calculations 

for large atomic and molecular systems.

The basis-set is an over-complete set of Gaussian functions:

kji

ijkkji zyxrCx )exp();( 2
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Where Cijk are the normalization constants and βis a free 

parameter.
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Finite Size Scaling                    
Data Collapse
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Data Collapse

1   ,2  
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Chem. Phys. Letters 319, 273 (2000)
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Quantum Mechanics
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Two Electrons Atoms
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Finite Size Scaling procedure

 Hamiltonian:

 Basis Set:

 Hamiltonian Matrix:

 Renormalization Equation:
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Critical Charges and Stable Atoms and Ions

N=2

0.91 Z

N=3

2.08 Z

N=4

2.85 Z

H- He

H-- He- Li

He-- Li- Be



Int. J. Quantum Chem. 75, 533 (1999)

Surcharge      
Se=N-ZC



 Do doubly charged negative atomic ions exist 

in the gas phase?

NO

What is the smallest object that can bind two 

extra electrons?

This is a challenge for 

experiment and theory!

The two electrons must be 

separated by at least 5.6 Å



Model Potential for Spherical Molecular Dianions



Stability of Spherical Carbon Cluster Dianions

   C60

The  interaction potential 
of an electron at a 

distance from a singly 
charged negative sphere of 
radius R and dielectric 

constant ε
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NC=79

RC~5.5
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Molecular Physics 100, 475 (2002)



Stability of Dianions of 
Fullerenes

C 60

C84

C 79

EA1 = + 2.65 eV

EA2 = - 0.3 eV

EA1 = + 3.14 eV

EA2 = + 0.44 eV

R = 5.6 Ac

_

_ _

_ _

Advances in Chemical Physics, Volume 125, 1 (2003). 



Stability of Linear Dianions

RC=5.6 Å

-- CC-Be-CC 
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Phase Transitions and Stability of 
Three Body Coulomb Systems
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or
?

Molecule Atom

e- e-

e+

R

r1r2

e- e-
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Three Body Coulomb Systems (ABA)

Particles Mass

e: electron     1

p: proton       1836.15

u: muon 206.76

d: deuteron    3670.5

t: tritium       5476.92

Stable     )p(                Stable     )e(e ---  

S. Kais, Phys. Rev. A 62, 06050 (2000)



Phase Transitions and Stability of 
Three Body Coulomb Systems

H2
+

Charge density probability 

2402.124.1 20  N
C

                   States Bound

2402.1241.1 20  N
C

         Explosion  Coulomb



FSS for Critical Conditions 
for Stable Dipole Bound 

Anions
The Hamiltonian

Slater Basis Set:

Chem. Phys. Lett. 372,205 (2003)
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H3C-CN

H2CCC

C3H4O3

C3H2O3

µ= 4.3 D

µ= 4.34 D

µ= 5.5 D

µ = 4.5 D

Ea=108 cm-

Ea=173 cm-

Ea=40 meV

Ea=20 meV

µc=0.655 a.u =1.625D without B.O =2.5D

Electron will be trapped with µc>2.5D

µc=0.655 

a.u



FSS for Critical Conditions for 
Stable Quadrupole Bound Anions

Hamiltonian: consists of a charge q at the origin and two charges –q/2 at 

z = +1 & -1

Where β is the variational parameter used to optimize the numerical results 

and             is the Legendre polynomial of order l.

Slater Basis Set:
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Journal of Chemical Physics, 120, 8412 (2004)



Journal of Chemical Physics, 120, 8412 (2004)
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FSS for Critical Conditions 
for Stable Dipole-Bond 

Dianions
The Hamiltonian

Basis Set:

J. Chem. Phys. (in press, 2007)
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Prolate spheroidal coordinates
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Stability diagram for two electron dipole
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Atomic & Molecular Stabilization 
by

Superintense Laser Fields
with

Prof. Dudley Herschbach
Harvard University



Multiply charged negative 

atomic ions 

in superintense laser fields



The peak-power of 
pulsed lasers has 
increased by 12 orders
of magnitude during 
the past 4 decades.

QUESTION: What is the 
highest-level intensity 
presently possible?

ANSWER: The highest 
possible focused laser 
intensity =1019 W/cm2

This level of intensity can 
be achieved with 
femtosecond laser based 
on Chirped  Pulse 
Amplification (CPA).

Superintense Laser Fields (I > a.u.)



The electric field of a monochromatic plane wave 
can be written 
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Laser  Atom Interaction

Moving frame of reference which follows the quiver motion of the classical electron
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High Frequency Floquet Theory

Vo is the “dressed” Coulomb potential, is the time average of the shifted 

Coulomb over one period of the laser 
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Hydrogen atom in super-intense linear laser fields

J. H. Eberly, et al Science 262, 1229  (1993)M. Pont, et al. Phys. Rev. Lett. 61, 939 (1988)



For linear polarization, the 

“dressed” potential is the same 

as that generated by a “linear 

charge”: the trajectory α(t)

For circular polarization, the 

“dressed” potential is the same 

as that generated by a “circular 

charge”. 

Circular charge

0a

Charge density

0a



Linear charge



Linear Charge and Circular Charge



Prolate Spheroidal Coordinates 

for Linear Polarization
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Basis Set (Linear Polarization)
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The electronic orbitals for the ground states. The presentation is given in a plane 

passing through the axis of the field taken as polar axis z



Negative of the detachment energy of the ground state of He-, He2−, Li-,and 

Li2− in a linearly polarized high-frequency laser field as a function of 

α0=E0/ω
2, where E0 and ω are the amplitude and frequency of the laser field. 



electrons N  theof onedetach   toneededenergy  The

01  NN- EE energyDetachment

J. Chem. Phys. 124, 201108  (2006). 

For example, when ultra-high-power KrF laser (5 eV photons) are used, the peak 

intensity in the experiments should be I ≈ 1016W/cm2.



Oblate Spheroidal Coordinates 

for Circular Polarization

z

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Basis Set (Circular Polarization)
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Large-D stability in Linearly  polarized 

superintense laser fields
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Large D stability in super-intense circular 

polarized laser fields
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Negative of the detachment energy of the ground state of He-,H2− and He2− in a circularly 

polarized high-frequency laser field as a function of α0=E0/ω
2, where E0 and ω are the 

amplitude and frequency of the laser field. 



Linear



Circular





Do atoms in superintense laser fields behave
like diatomic molecules ? 



Large-D stability of molecules in linearly polarized superintense laser field

R
zVzV





 ),(),(

1

2

1
2,01,02
















2

0 2
02

2

2

2
1,0

)cos()sin(2

1
),(

Sinzx

d
zV

RR














2

0 2
02

2

2

2
2,0

)cos()sin(2

1
),(

Sinzx

d
zV

RR

0




1e

z

 x

z

0
e

R

0E






00 

8.00 

0.20 

The laser polarization 

along the molecular 

axis  (θ=0)


2H



00 

8.00 

0.20 

The laser polarization 

is vertical to the 

molecular axis (θ=90)


2H



At the D→∞ limit
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Our Potential

• Potential generated by application of 

Relativistic Trajectory in HFFT

• ν = 400



Alternate View



Trajectory

•The new relativistic trajectory used:

   
jifinejirel xxwheretxtxt  ,)2sin()()cos( 00 

•This trajectory was used within the
HFFT potential, and the potential
traces the equivalent parametric 
equation:
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•The curve reaches it’s maximum    
at t=π/4;  the potential and 
electron density reach their 
extremes as well



Morphology



Summary

Symmetry breaking of electronic structure 

configurations resemble classical phase transitions

Quantum phase transitions can be used to explain and 

predict the stability of atoms, molecules and quantum 

dots.

Atomic dianions are unstable in the gas phase

Multiply charged negative ions are stable in 

superintense laser fields 

(Intensity > 1 a.u. ~ 1016 W/cm2)



Future Work
Combining FSS with Ab Initio and DFT

Combining FSS with Finite Element Methods

New Classification of Chemical Reactions 

FSS and Efimov Systems 

Stability of Matter in Superintese Laser Fields 

For more details See the review article: 

• Sabre Kais and Pablo Serra, "Quantum Critical Phenomena and Stability of 

Atomic and Molecular Ions", Int. Rev. Phys. Chem. Vol 19, 97-121 (2000). 

• S. Kais and P. Serra, "Finite Size Scaling for Atomic and Molecular Systems", 

Advances in Chemical Physics, Volume 125, 1-100 (2003). 



Further Directions

Combinations of linearly polarized lasers can deliver more exotic potentials with the 
chance of binding even more electrons.

Two lasers fired in the
Y direction, linearly polarized
in the X and Z directions

Two lasers fired, 
in the X and Y 
directions, both 
polarized in the Z



Efimov States

Efimov State is a quantum mechanical stable bound state of three 

particles, with any two particle subsystem is unstable. It was 

proposed by Vitaly Efimov in 1970 theoretically

and was observed experimentally in 2006

for ultracold gas of caesium atoms.

Remove any one ring and the other two will fall apart.

Letter to: Nature 440, 315-318 (16 March 2006) 

Evidence for Efimov quantum states in an ultracold gas of caesium atoms

T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B. Engeser, A. D. Lange, 

K. Pilch, A. Jaakkola, H.-C. Nägerl and R. Grimm

http://en.wikipedia.org/wiki/Quantum_mechanics
http://en.wikipedia.org/wiki/Bound_state
http://en.wikipedia.org/wiki/Vitaly_Efimov
http://en.wikipedia.org/wiki/Caesium
http://www.uibk.ac.at/exphys/ultracold/projects/levt/efimov/BorromeanRings.jpg
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