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We use the ® nite size scaling method to study the critical points, points of non-analyticity, of
the ground state energy as a function of the coupling parameters in the Hamiltonian. In this
approach, the ® nite size corresponds to the number of elements in a complete basis set used to
expand the exact eigenfunction of a given molecular Hamiltonian. To illustrate this approach,
we give detailed calculations for systems of one electron and two nuclear centres, Z‡e¡Z‡ .
Within the Born± Oppenheimer approximation, there is no critical point, but without the
approximation the system exhibits a critical point at Z ˆ Zc ˆ 1:228 279 when the nuclear
charge, Z, varies. We show also that the dissociation occurs in a ® rst-order phase transition
and calculate the various related critical exponents. The possibility of generalizing this
approach to larger molecular systems using Gaussian basis sets is discussed.

1. Introduction

The calculations of critical parameters for stability of
atomic and molecular systems, such as particle masses,
nuclear charges and external ® elds, is a research area of
increasing interest. This increasing interest is motivated
by the following [1]: recent experimental searches for the
smallest stable multiply charged anions in the gas phase
[2± 4]; ® nding limits on the stability of positive molecular
ions [5± 7], and experimental and theoretical work on
systems in external electric and magnetic ® elds [8, 9].
For example, Rost et al. [8] presented the ® rst experi-
mental observation of the control of the dissociation
energy of a polyatomic molecule with an external mag-
netic ® eld. They observed that the NO2 photodissocia-
tion threshold is linearly lowered with magnetic ® eld
strength. So, estimating the critical ® eld for breaking
molecular bonds is of great value.

Moreover, by calculating the critical nuclear charges,
the minimum charge necessary to bind N electrons,
one can explain and predict the stability of atomic
anions. Morgan and co-workers [10] concluded that
the critical charge obeys the following inequality,
N ¡ 2 µ Zc µ N ¡ 1. Our numerical results [11], as
well as the ab initio results of Hogreve [12] and that of
Davidson and co-workers [13] for atoms up to N ˆ 18,
con® rmed this inequality, and showed that at most, only
one electron can be added to a free atom in the gas
phase.

Recently with Serra [1] we have found that one can
describe stability of atomic ions and symmetry breaking
of electronic structure con® gurations as quantum phase
transitions and critical phenomena. Quantum phase
transitions can take place when some parameter in the
Hamiltonian of the system is varied. We identify any
point of non-analyticity in the ground state energy as
a critical point. The non-analyticity could be either the
limiting case of an avoided level crossing or an actual
level crossing [14]. For the Hamiltonian of N-electron
atoms, this parameter was taken to be the reciprocal
nuclear charge. As the nuclear charge reaches a critical
point, the quantum ground state changes its character
from being bound to being degenerate or absorbed by a
continuum. For two- [15] and three-electron atoms [16],
we have used the ® nite size scaling method to obtain the
critical nuclear charges. The ® nite size scaling method
was formulated in statistical mechanics to extrapolate
information obtained from a ® nite system to the ther-
modynamic limit [17, 18]. In quantum mechanics, the
® nite size corresponds to the number of elements in a
complete basis set used to expand the exact wave func-
tion for a given Hamiltonian [19].

Molecular systems are challenging from the critical
phenomenon point of view. In this paper, we present
the ® nite size scaling calculations to obtain critical par-
ameters for simple molecular systems. As an example we
give detailed calculations for the critical parameters for
H‡

2 -like molecules without making use of the Born±
Oppenheimer approximation. The system exhibits a cri-
tical point and dissociates through a ® rst-order phase
transition.
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2. Scaled quantum Hamiltonian

In this section, the general Hamiltonian for A charged
point particles under Coulomb interactions is repre-
sented, in Cartesian coordinates, by
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where Pi, Ri ˆ ‰Xi ;Yi ;ZiŠ, Mi and Qi are the momentum
operator, column-vector coordinates, mass, and charge
of particle i respectively. Atomic units (au) are used
unless otherwise speci® ed.

After separation of the translational motion [20] of
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the Hamiltonian becomes
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where a ˆ A ¡ 1; the ·i are the reduced masses with
·0 ˆ M0 and ·i ˆ …M1Mi‡1†=…M1 ‡ Mi‡1†; rij ˆj rij jˆ
j Ri‡1 ¡ Rj‡1 j and ri ˆj ri jˆj Ri‡1 ¡ R1 j ; …r0† is the
CM vector, and …r1 ;r2 ; . . . ; ra† are the vectors of internal
coordinates of particle 2 ;3 ; . . . ;A respectively, and
…p0 ;p1 ;p2 ; . . . ;pa† are their corresponding momenta. It
is interesting to note that equations (2) and (3), for the
separation of the translational degrees of freedom, do
not change the representation of the Coulomb poten-
tials.

Now, an explicit form of the coulombic interactions V
for a quantum system including B electrons and C posi-
tive charged centres (protons) may be written as
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where the indices i; j are for electrons and k ; l for pro-
tons with b ˆ B ¡ 1 and a ˆ A ¡ 1 ˆ B ‡ C ¡ 1. The
potential V in equation (5) includes electron± electron
repulsive terms, electron± proton attractive terms and
proton± proton repulsive terms.

The Z2-scaled Hamiltonian, if we consider the
internal motion only, is given by
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For atoms, C ˆ 1 and a ˆ b ‡ 1, the last term in equa-
tion (6) drops out, and we may choose Z ˆ Zb‡1 and
then introduce ¶ ˆ 1=Z to put the Hamiltonian in the
general form [21]
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Equation (7) is a Z2-scaled non-adiabatic Hamiltonian
for a quantum system with one proton and B electrons.
Assuming an in® nite mass approximation for the
proton, one recovers the atomic Hamiltonians used in
the ® nite size scaling calculations [15, 16].

Generally, we should choose ¶ ˆ 1=Z to maintain a
linear operator for a multi-electron and multi-proton
system, where the ¶-dependent part includes both repul-
sive and attractive terms. However, for one-electron
system, B ˆ 1, b ˆ 0 and a ˆ C, the Z2-scaled Hamilto-
nian becomes
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where the electron± electron term drops out compared to
equation (6) but H is still a function of Z and fZkg. In
the special case of equal charged centres, we may choose
¶ ˆ Z ˆ Zk and the simpli® ed Hamiltonian reads
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Therefore, the Hamiltonian of simple molecular systems
can be represented as

1486 Q. Shi and S. Kais



H…¶† ˆ H0 ‡ V¶ ; …10†
where H0 is ¶ independent and V¶ is the ¶-dependent
part. This Hamiltonian has the correct general form for
the application of the ® nite size scaling method to deter-
mine the critical value of the parameter ¶ [15, 16].

3. Finite size scaling theory

We have shown that the ® nite size scaling method is
very e� cient and accurate for the calculations of the
critical parameters of the few-body SchroÈ dinger equa-
tion [19]. The ® nite size scaling method was formulated
in classical statistical mechanics to extrapolate informa-
tion obtained from a ® nite system to the thermodynamic
limit [17, 18]. In quantum mechanics, the ® nite size cor-
responds to the number of elements in a complete basis
set used to expand the exact wave function of a given
Hamiltonian [1].

As in the atomic studies, for a given Hamiltonian,
H…¶†, we have to choose a complete orthonormal ¶-
independent basis set fFng. In this case, the eigenfunc-
tion of H…¶† has the following expansion

C…¶† ˆ
X

n
cnFn ; …11†

where the sum is over all adequate sets of indices which
characterize the commutation of all symmetry opera-
tions with the Hamiltonian. To calculate the di� erent
quantities, we have to truncate the in® nite series expan-
sion, equation (11), at order N. For the Hamiltonian
H…¶†, we project equation (10) to the ® nite basis set
and obtain a M…N† £ M…N† Hamiltonian matrix,
where M…N† is the expansion length.

Using standard diagonalization procedures, an
approximate energy series can be obtained at order N
for negative and positive eigenvalues fL…N†

i g. The lowest
eigenvalue corresponds to the ground state as a function
of the parameter ¶ at order N,

E…N†
0 …¶† ˆ min

i
fL…N†

i g: …12†

The corresponding eigenvector is the projection of the
eigenfunction onto the ® nite basis set fFng which is
given by

C…N†
0 …¶† ˆ

XM…N†

n
c…N†

n …¶†Fn: …13†

In this representation, the expectation value of any
operator O at order N is given by

hOiN…¶† ˆ
XM…N†

n;m
c…N†

n …¶†c…N†
m …¶†On ;m ; …14†

where On ;m is the matrix elements of O in the basis set
fFng.

Generally, the mean value of the operator O is not
analytic at ¶ ˆ ¶c and can be written as

hOi…¶† ¹
¶!¶c

…¶ ¡ ¶c†·O ; …15†

where ·O is the corresponding exponent.
The ® nite size scaling hypothesis assumes the exist-

ence of a scaling function such that [18]

hOi…N†…¶† ¹ hOi…¶†FO…N=¹1…¶††; …16†
where ¹1…¶† is the correlation length in the in® nite
system. Equation (16) should be valid for di� erent dyna-
mical quantities. In particular, it is correct for the cor-
relation length itself which is singular at ¶ ˆ ¶c

¹…N†…¶† ¹ N¿¹…N1=¸ j ¶ ¡ ¶c j†: …17†
Here ¿…x† is an analytic function and ¸ is the critical
exponent for the singularity of the correlation length.

Once ¶ approaches ¶c for a large but ® nite system,
¿…x† approaches a constant. Hence the ® nite size scaling
intrinsically gives for ® nite systems of sizes N and N 0

¹…N†…¶†
N

ˆ ¹…N 0†…¶†
N 0 : …18†

This equation was originally developed by Nightingale
[22] as a realization of an approximate renormalization
group transformation of the in® nite system [23].

In order to obtain an explicit expression of the corre-
lation length, we utilize the following mapping : ® rst, a d-
dimensional quantum system is equivalent to a d ‡ 1-
dimension classical system [14, 24]; and second, the
transfer matrix of a classical system is non-negative, as
is its leading eigenvalue [23]. Hence we may take the two
eigenvalues of the quantum Hamiltonian H…¶† as those
of the transfer matrix for the corresponding classical
pseudo system. This mapping allows us to approxi-
mately de® ne the correlation length of a ® nite quantum
system as [15]

¹…N†…¶† ˆ ¡
1

log …E…N†
1 …¶†=E…N†

0 …¶††
; …19†

where E…N†
0 …¶† is given by equation (12) and E…N†

1 …¶† is
the second lowest eigenvalue.

4. One electron diatomic systems
Several investigators have performed calculations

on the stability of H‡
2 -like systems in the Born±

Oppenheimer approximation. Critical charge par-
ameters separating the regime of stable, metastable
and unstable binding were calculated using ab initio
methods [25± 28]. However, we have shown [29], using
the ® nite size scaling approach that this critical charge is
not a critical point (here a critical point, in the language
of phase transitions, means a point of non-analyticity in
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the energy). But, without making use of the Born±
Oppenheimer approximation the H‡

2 -like system exhi-
bits a critical point. In this section, we introduce the
basis sets we used and the calculations of the critical
parameters using the ® nite size scaling approach.

4.1. Basis set
As an example, we choose H‡

2 -like systems to show
the critical phenomena and phase transitions of simple
molecules. Equation (9) is used with ¶ ˆ Z, a ˆ C ˆ 2,
· ˆ M=…1 ‡ M† and M ˆ 1836:152 701 au.

The ground state eigenfunction is expanded in the
following basis set [30] F…n ;m;l†,

F…n ;m;l†…r1 ;r2 ; r12† ˆ N0¿n…x†¿m…y†¿l…z†; …20†
where N0 is the normalization coe� cient and ¿n…x† is
given in terms of Laguerre polynomials L n…x†,

¿n…x† ˆ L n…x† exp …¡x=2†: …21†
The coordinates x ;y ;z are expressed in the following
perimetric coordinates [31]

x ˆ ³

kx
…r1 ‡ r2 ¡ r12†;

y ˆ ³

ky
…¡r1 ‡ r2 ‡ r12†;

z ˆ ³

kz
…r1 ¡ r2 ‡ r12†: …22†

Here we choose kx ˆ 1 ˆ ky=2 ˆ kz=2 and adopt the
de® nition of Pekeris [31]. ³ is an adjustable parameter
which will be given in the following subsection.

Calculating the matrix elements of the Hamiltonian in
this basis set gives a sparse, real and symmetric
M…N† £ M…N† matrix of order N. By systematically
increasing the order N we obtained the lowest two eigen-
values at di� erent basis lengths M…N†. For example,
M…N† ˆ 946, 20 336 at N ˆ 20, 60 respectively. The
symmetric matrix is represented in a sparse row-wise
format [32] and then reordered [33] before triangulariza-
tions. The Lanczos method [34] of block-renormaliza-
tion procedure was employed.

4.2. Calculations
We chose ³ ˆ ³t= 1.5 in equation (22) for the H‡

2 -like
systems. Our calculations over 1 < ³ < 10 show that ³t
accelerates the convergence of the ratio of the two
lowest eigenvalues and thus the series f¶…N†g converges
to the critical point ¶c. This procedure is di� erent from
the technique of minimization to obtain the leading
eigenvalue. In fact, over all possible ¶, ³ and N the
minimization leads to a stable ground state corre-
sponding to ¶ ˆ Z ˆ 1, which is far from the critical
point. The minimization produces the ® rst and second

eigenvalues for H‡
2 , ¡0:597 139 063 119 au and

¡0:587 155 679 091 au at N ˆ 63 and ³ ˆ ³m ˆ 8:9,
which might compare with the results of
¡0:597 139 063 123 au at N ˆ 70 and ¡0:587 155 679 212 au
at N ˆ 74 by GreÂ maud et al. [30] with ³ ˆ ³m ˆ 9:5.

In the following sections, we will give the numerical
results for the critical point and the related critical expo-
nents. The present results cover the range 7 µ N µ 60
with a numerical accuracy better than 1.0£ 10¡4 with a
¶-mesh interval of 5£10¡5.

4.3. Critical point
For the ground state of H‡

2 -like molecules, the critical
point ¶c of H…¶† may be de® ned as a point at which the
bound state energy E…¶† is degenerate or absorbed at the
® rst threshold Eth

0 ,

Eth
0 ¡ E…N†

0 …¶† ¹
¶!¶¡

c

…¶c ¡ ¶†¬ ; …23†

Here ¬ is the energy critical exponent and Eth
0 ˆ

¡0:499 727 84 au is the ground state energy of the
atomic hydrogen in the ® nite mass calculations. Figure
1 shows the ground state energy E…N†

0 …¶† as a function of
¶ ˆ Z for di� erent values of N, 31 µ N µ 60 at
³ ˆ ³t ˆ 1:5.

One method to obtain the critical value ¶c is to equate
the energy with the known threshold,

E…N†
0 …¶† ˆ Eth

0 : …24†
This equation gives a series f¶…N†g which is analogous to
the series obtained in the ® rst-order method used in
classical statistical mechanics [1]. As we have done in
previous works, we employ the extrapolation arithmetic
of Bulirsch and Stoer [35, 36]. The ® nal extrapolated
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Figure 1. The ground state energy, E…N†
0 …¶†, for the H‡

2 -like
molecules as a function of ¶ …ˆ Z† at ³t= 1.5 for
N ˆ 31;32 ; . . . ;60.



value is listed in table 1 together with the error which
mainly comes from the interpolation on an equally
spaced ¶-mesh of an interval 5£10¡5.

In order to check the extrapolation arithmetic and get
a more accurate value for the critical point ¶c, we com-
bined the minimization procedure with the ® rst
threshold method to produce another series f¶…N†g

E…N†
0 …¶† j

³ˆ³
…N†
o

ˆ Eth
0 ; …25†

where ³…N†
o is the optimal value obtained from the energy

minimization. This is a procedure to approach the ® rst
threshold through a continuous stable state of the H…¶†
system. The series f¶…N†g and the corresponding ³…N†

o are
shown in ® gure 2. Here the optimization accuracy is
1:0 £ 10¡8 and ¶c ˆ 1:228 279. The value of ¶c, along
with the upper and lower boundary values of the varia-
tional approximations of Rebane [37], are listed for
comparison in table 1.

Using the ® nite size scaling equation directly we can
obtain the ® xed point by putting equation (19) into
equation (18) to obtain,

E…N†
1 …¶†

E…N†
0 …¶†… †

N

ˆ E…N 0†
1 …¶†

E…N 0†
0 …¶†… †

N 0

: …26†

Figure 3 shows the curves E…N†
1 …¶†=E…N†

0 …¶† as a function
of ¶ for N ˆ 31 up to N ˆ 60. In virtue of this behav-
iour, we expect that the ® rst derivative of the energy as a
function of ¶ develops a step-like discontinuity at ¶c as
shown in ® gure 4. The crossing points between two
di� erent sizes N and N ‡ 1 give another series for
f¶…N†g. Figure 5 shows the oscillatory behaviour of the

crossing points as a function of the size N. This behav-
iour makes the extrapolation arithmetic a di� cult task.
However, the pseudo-convergent points stay between
1.226 and 1.232 at N > 30 as presented in ® gure 5. By
systematically increasing the order N, one can reach a
reasonable critical point ¶c ˆ 1:2286 with an error listed
in table 1. Here ¶c and the error are estimated using the
® nal minimum and maximum values and their di� erence
over 48 < N < 60. This value is in agreement with the
previous estimate of ¶c.

4.4. Critical exponents
For a given operator, equation (15) de® nes its non-

analytic properties by giving the critical point and the
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Table 1. The critical parameters ¶c …ˆ Zc†, ¬, ¸
and hr12ic for H‡

2 -like molecules.

Method Value Error

¶c

Equation (24) 1.228 21 §0:000 05
Equation (25) 1.228 279 §0:000 001
Equation (26) 1.228 6 §0:000 5
[37] 1:237 0a

[37] 1:207 3b

¬
Equation (28) 1.000 §0:005

¸
Equation (31) 0.3 §0:2

hr12ic
Equation (24) 2.78 §0:02
Equation (25) 2.765 41 §0:000 01

a Reciprocal of 0.8084 [37].
b Reciprocal of 0.8283 [37].

0 10 20 30 40
N

2.0

4.0

6.0

q o(N
)

1.20

1.21

1.22

1.23

l
(q

o(N
) )

Figure 2. The f¶…N†g series (upper) determined by equation
(25), and the optimal ³…N†

o (lower) as a function of the
order of the expansion N.
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N=31

N=54
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Figure 3. The ratio between the ground state energy and the
second lowest eigenvalue raised to a power N as a func-
tion of ¶ …ˆ Z† at ³t ˆ 1:5 for N ˆ 31;32 ; . . . ;60.



related critical exponent. In particular, for the Hamilto-
nian operator H…¶†, the energy exponent ¬ is given by
equation (23) while the correlation length ¹…N†, which is
singular at ¶ ˆ ¶c, has the critical exponent ¸, which is
de® ned as

¹…¶† ¹
¶!¶c

…¶ ¡ ¶c†¡¸ : …27†

For the exponent ¬, we start from the series f¬…N†…¶†g
and follow the direct approach of ® nite size scaling for
the SchroÈ dinger equation [19] which gives,

¬…N†…¶† ˆ G…¶; N;N 0†; …28†

where the function G…¶; N;N 0† is given by

G…¶; N;N 0† ˆ DH…¶; N;N 0†
DH…¶; N;N 0† ¡ D@H=@¶…¶; N;N 0† ; …29†

N ˆ N 0+ 1, and D in this expression is de® ned as

DO…¶; N;N 0† ˆ
ln Oh i…N†

¶ Oh i…N 0†
¶

ln N 0=N… † : …30†

Using equations (28), (29) and (30), we obtain the series
¬…N†…¶c† shown in ® gure 6. From these data, we esti-
mated the energy critical exponent to be
¬ ˆ 1:000 § 0:005.

Now, after calculating the critical exponent ¬, the
critical exponent f̧ …N†…¶†g is readily given by

¸…N†…¶† ˆ ¬…N†…¶†
DH…¶†…¶; N;N 0† : …31†

The results of the calculations for the ¸…N†…¶† series are
shown in ® gure 7. The data do not reach a limit at N up
to 60, but it does show that the correlation exponent is
smaller than one and decreases as N increases. We esti-
mate the value using the ® nal maximum and minimum
points over 48 < N < 60. This result, ¸ ˆ 0:3 § 0:2, is
also listed in table 1.

In a molecular system as we have shown, there are
three basic length scales involved : the correlation
length ¹…¶†, the dimensionality N of the basis set
space, and the microscopic length, i.e. the Bohr radius
a0 (= 1). The ® nite size scaling hypothesis assumes that,
close to the critical point, the microscopic length drops
out against the continuous increment of the correlation
length. This is shown in ® gure 8, where the correlation
length has a linear behaviour as a function of N at
³t ˆ 1:5. Here we may relate the correlation length,
de® ned in equation (19), to the energy interval. As N
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Figure 4. First derivative of the ground state energy as a
function of ¶ …ˆ Z† at ³t ˆ 1:5 for N ˆ 20;21 ; . . . ;45.
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Figure 5. The f¶…N†g series, as determined by equation (26),
as a function of N at ³t ˆ 1:5.
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Figure 6. The f¬…N†…¶c ˆ 1:228 279†g series as a function of
N at ³t ˆ 1:5.



increases near the critical point, the lowest two eigen-
values satisfy an asymptote of the form

E…N†
0 …¶† ! E…N†

1 …¶†: …32†

If we de® ne the energy interval D E…N†
10 ˆ

E…N†
1 …¶† ¡ E…N†

0 …¶† and expand log …1 ¡ D E= j E0 j† to
® rst-order in D E= j E0 j, equation (19) gives

¹…N†…¶† ˆ j E0 j

D E…N†
10 …¶†

: …33†

Under these considerations, ¹…N†…¶† can be mapped to
the energy interval, or in the terminology of the ® eld
theory, the mass gap [24].

4.5. Dissociation limit
From the present calculations, the expectation value

of the operator r12 may provide a direct physical picture
about the thermodynamic stability and dissociation of
H‡

2 -like molecules. As shown in ® gure 9, there is a ver-
tical jump of the mean value r12 at ¶c. At ¶ ! ¶¡

c , equa-
tion (24) gives the mean value 2.78 au, which is in
agreement with 2.765 41 au using equation (25). For
¶ ˆ 1 (H‡

2 molecule) we estimated the mean value
hr12i ˆ 2:063 9139 au. The step-like discontinuity tells
us about the behaviour of r12 close to the critical
point. As ¶ ! ¶¡

c

hr12i ¹ …¶ ¡ ¶c†¡½ ; …34†

where the exponent ½ should be zero.
From ® gure 9, we note that there are similarities and

di� erences between helium-like atoms and H‡
2 -like mol-

ecules. In previous studies of helium-like systems, based
on an in® nite mass assumption, we show that the elec-
tron at the critical point leaves the atom with zero
kinetic energy in a ® rst-order phase transition. This
limit corresponds to the ionization of an electron as
the nuclear charge varies.

For the H‡
2 -like molecules, the two protons move in

an electronic potential with a mass-polarization term.
They move apart as ¶ approaches its critical point and
the system approaches its dissociation limit through a
® rst-order phase transition.

It is important to note that the present ® nite size
scaling calculations indicate that for H‡

2 -like molecules,
one approaches the critical point through periodically
attenuated vibrations in the ¶c vicinity, rather than
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Figure 7. The f̧ …N†…¶c ˆ 1:228 279†g series as a function of
N at ³t ˆ 1:5.
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function of order N at ³t ˆ 1:5.
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simply a direct approach from above or below the cri-
tical point. We also notice that there is no ionization of
the molecular system over the region of 1:0 µ ¶ µ 1:5.

5. Conclusions and discussion

We present the ® nite size scaling calculations for the
H‡

2 -like molecules without making use of the Born±
Oppenheimer approximation. As the nuclear charge
varies, the system exhibits a critical point at Zc ˆ
1:2283 where the symmetry breaking occurs and the
system dissociates into a proton and a hydrogen-like
atom. This transition, from the H‡

2 -like stable molecule
to the dissociation phase, was shown to be a ® rst-order
phase transition. The ® rst derivative of the ground state
energy with respect to Z developed a step-like disconti-
nuity at Zc. By investigating the behaviour of inter-
nuclear distance hr12i as Z varies, one can see clearly
from ® gure 9 that there is a step-like discontinuity at
Zc which tells us about the jump in hr12i and the dis-
sociation of the H‡

2 -like molecule. In comparison with
the helium-like atoms, the critical point is the critical
value of the nuclear charge Zc for which the energy of
a bound state becomes degenerate with the threshold.
For Z < Zc ˆ 0:911 one of the electrons jumps to in® -
nity, in a ® rst-order phase transition, with zero kinetic
energy [15].

Large molecular systems are challenging from the cri-
tical phenomenon point of view. In order to apply the
® nite size scaling method, one needs to have a complete
basis set. The present basis set used for the ® nite size
scaling calculations is built up on the perimetric coordi-
nates which is only suitable for the three-body systems,
and thus restricts its extension to treat larger molecules.
Modern quantum chemistry computations are generally
carried out using three types of basis sets : Slater orbitals,
Gaussian orbitals and plane waves, the last being
reserved primarily for extended systems in solid states.
Each of these has their advantages and disadvantages.
Evaluation of molecular integrals, four-centre integrals
for example, are very di� cult and time-consuming with
Slater basis functions. These integrals are relatively easy
to evaluate with Gaussian basis functions.

We have tested several types of Gaussian basis sets.
The ® rst one has the following general form

C ˆ …1 ‡ P12†
XM

mˆ1

exp …¡¬mr2
1 ¡ ­ mr2

2 ¡®mr2
12†; …35†

where M is the expansion length, P12 is the exchange
operator and ¬m, ­ m and ®m are the variational par-
ameters. The ® nite size scaling results using this basis
set were strongly dependent on the initial values of the
variational parameters. Another two types of Gaussian
basis sets which we used have the general form

C ˆ …1 ‡ P12†
XM

mˆ1

exp …¡¬mr2
1 ¡ ­ mr2

2 ¡ ®mr2
12†… †

£
XN

kˆ0

Cmkr2k
12 ; …36†

where k µ N, N is the order and M is expansion length
for a set of given parameters f¬m ; ­ m ;®mg, and

C ˆ …1 ‡ P12†
XM

mˆ1

exp …¡¬mr2
1 ¡ ­ mr2

2 ¡ ®mr2
12†… †

£
XN

i; j;k

Cmijkr2i
1 r2j

2 r2k
12 ; …37†

where i‡ j ‡ k µ N. These Gaussian basis sets are cor-
related and involve power law terms [20], which are
equivalent to the power law terms used in the Laguerre
polynomials in equation (21) . Using equations (36) and
(37) we have identi® ed the ® rst-order phase transition
for the H‡

2 -like system. Clearly this basis set will be suit-
able for larger diatomic molecules. The details of the
calculations and the existence of problems in the ® nite
size scaling studies on various kinds of Gaussian basis
sets will be discussed elsewhere [38].

The present ® nite size scaling method provides a
powerful tool to study molecular stability as a function
of the coupling constants in the Hamiltonian. For
atoms, the fact that for two-electron atoms the critical
charge Zc ’ 0:9110 explains why the H¡ is a stable
negative ion while for three-electron atoms Zc ’ 2:01
and He¡ is not stable. For one-electron molecular
systems the fact that Zc ’ 1:2283 explains why H‡

2 is
the only stable ion. Research is still underway to com-
bine the ® nite size scaling with Gaussian basis functions
to treat larger molecular systems and also to investigate
the e� ect of external ® elds on the molecular stability and
whether or not one can use this approach to selectively
break chemical bonds in polyatomic molecules.
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