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Finite-size scaling approach for the Schro¨dinger equation
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We present a finite-size scaling approach for the calculations of the critical parameters of the few-body
Schrödinger equation. This approach gives very accurate results for the critical parameters by using a system-
atic expansion in a finite basis set. To illustrate this approach we added detailed calculations for the critical
screening length and the critical exponents for the Yukawa potential.@S1050-2947~98!50103-5#

PACS number~s!: 31.15.2p, 05.70.Jk
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A finite-size scaling approach@1# has been used to stud
problems of critical behavior in statistical mechanics in ord
to extrapolate the information available from a finite syst
to the thermodynamic limit. This approach has been u
increasingly as a method of analyzing numerical data, es
cially from two-dimensional lattice systems and Monte Ca
calculations@2–5#.

Recently@6# we presented a method to calculate the cr
cal parameters of a few-body quantum Hamiltonian. In t
method we assumed that the two lowest eigenvalues of
quantum Hamiltonian could be taken as the leading eig
values of a transfer matrix of a classical pseudosystem.
ing finite-size scaling arguments@1,5#, the phenomenologica
renormalization equation@7# was used to obtain the critica
properties of the classical pseudosystem and therefore o
quantum system.

In this paper we present a direct finite-size scaling~FSS!
approach to study the critical behavior of the quant
Hamiltonian without the need to make any explicit analo
to classical statistical mechanics. This approach assume
explicit form for the asymptotic behavior of the quantu
mean values near the critical point. The critical parame
can be calculated by a systematic expansion in a finite~trun-
cated! basis set.

In order to present this approach, let us consider a gen
Hamiltonian of the form

H5H01Vl , ~1!

whereH0 is l-independent andVl is thel-dependent term
We are interested in the study of the critical behavior of
Hamiltonian, Eq.~1!, as a function of the parameterl. A
critical pointlc is defined as a point for which a bound sta
becomes absorbed or degenerate with the continuum. W
out loss of generality, we will assume that the threshold
ergy or the bottom of the continuum is equal to zero.

As in statistical mechanics, we can define some criti
exponents related to the asymptotic behavior of differ
magnitudes near the critical point. We will assume that
Hamiltonian, Eq.~1!, has a bound stateEl for l.lc that
becomes equal to zero atl5lc . In particular, this energy
defines the critical exponenta

El ;
l→lc

1

~l2lc!
a. ~2!
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The existence or absence of a bound state at the cri
point is related to this kind of singularity. For general pote
tials of the formVl5lV, Simon @8# has proven that the
critical exponenta is equal to 1 if and only ifH(lc) has a
normalizable eigenfunction with eigenvalue equal to ze
Using statistical-mechanics terminology, we can assoc
‘‘first-order phase transitions’’ with the existence of a no
malizable bound state at the critical point.

In statistical mechanics, the finite-size scaling meth
provides a way of extrapolating information obtained from
finite ~or partially infinite! system to the thermodynami
limit. In the present approach, the finite size corresponds
to the spatial dimension but to the number of elements i
complete basis set used to expand the exact eigenfunctio
a given Hamiltonian. For a given complete orthonorm
l-independent basis set$Fn%, the ground-state eigenfunctio
has the following expansion:

Cl5(
n

an~l!Fn , ~3!

wheren represents the adequate set of quantum number
order to approximate the different quantities, we have
truncate the series, Eq.~3! at orderN. Then the Hamiltonian
is replaced by theM (N)3M (N) matrix H(N), with M (N)
being the number of elements in the truncated basis se
order N. Using the standard linear variational method, t
Nth-order approximation for the energies is given by t
eigenvalues of the matrixH(N).

The Nth-order approximation for the energy is given b

El
~N!5min

$ i %
$L i

~N!%, ~4!

where $L i
(N)% are the eigenvalues of the matrixH(N). The

corresponding eigenfunctions are given by

Cl
~N!5 (

n

M ~N!

an
~N!~l!Fn , ~5!

where the coefficientsan
(N) are the components of th

ground-state eigenvector. In this representation, the expe
tion value of any operatorO at orderN is given by

^O&l
~N!5(

n,m

N

an
~N!~l!am

~N!~l!On,m , ~6!
R1481 © 1998 The American Physical Society



at

-

of
er

f

nc

ts

wo
n
t

es-

as

ics
ed

ll as

to

se
the

RAPID COMMUNICATIONS

R1482 57PABLO SERRA, JUAN PABLO NEIROTTI, AND SABRE KAIS
whereOn,m are the matrix elements ofO in the basis set
$Fn%.

In general, the mean valuêO& is not analytical atl
5lc , and we can define a critical exponent,mO , by the
relation

^O&l ;
l→lc

1

~l2lc!
mO. ~7!

As in the FSSAnsätzein statistical mechanics@9#, we will
assume that there exists a scaling function for the trunc
magnitudes such that

^O&l
~N!;^O&lFO~Nul2lcun!, ~8!

with a different scaling functionFO for each different opera
tor but with a unique scaling exponentn. In statistical
mechanics, the exponentn is defined by the singularity of the
correlation length at the critical point. In the framework
the Schro¨dinger equation we do not have yet a clear int
pretation for this exponent. Since the^O&l

(N) is analytical in
l @10#, then from Eqs.~7! and~8! the asymptotic behavior o
the scaling function must have the form

FO~x!;x2mO /n. ~9!

Now, to obtain the critical parameters, we define the fu
tion

DO~l;N,N8!5
ln~^O&l

~N!/^O&l
~N8!!

ln~N8/N!
. ~10!

At the critical point, this functionDO along with Eqs.~8! and
~9! gives an equation for the ratio of the critical exponen

DO~lc ;N,N8!5
mO
n

, ~11!

which is independent of the values ofN and N8. Thus, for
three different valuesN, N8, andN9 the curves defined by
Eq. ~10! intersect at the critical point

DO~lc ;N,N8!5DO~lc ;N9,N!. ~12!

In order to obtain the critical exponents, we need t
independent equations for the same quotient of expone
These two equations can be obtained for the exponena,
which is associated with the energy@see Eq.~2!#. If we take
O4H, we obtain from Eq.~11! with mO5a

a

n
5DH~lc ;N,N8!. ~13!

From Eq.~2! we know that

]El

]l
;

l→lc
1

~l2lc!
a21, ~14!

and by using the Hellmann-Feynman theorem@11# we obtain
ed

-

-

,

ts.

]El

]l
5 K ]H

]l L
l

5 K ]Vl

]l L
l

. ~15!

Taking O5]Vl /]l in Eq. ~11! gives an equation for
(a21)/n that together with Eq.~13! give the exponentsa
andn. Now, we can define the function

Ga~l;N,N8!5
DH~l;N,N8!

DH~l;N,N8!2D]Vl /]l~l;N,N8!
,

~16!

which is also independent of the values ofN andN8 at the
critical point l5lc and gives the critical exponenta,

a5Ga~lc ;N,N8!. ~17!

From Eq.~13! the critical exponentn is readily given by

n5
a

DH~lc ;N,N8!
. ~18!

The FSS equations are valid only as symptotic expr
sions, but unique values oflc , a, andn ~or any other quan-
tity of interest! can be obtained as a succession of values
a function ofN, N8, andN9. The relation amongN, N8, and
N9 was extensively studied in FSS in statistical mechan
@5#, and it is known that the faster convergence is obtain
when the difference among these numbers is as sma
possible. This condition meansDN51, except when there
are parity effects; then one has to takeDN52.

Then forN85N1DN, N95N2DN, we can obtain from
Eqs.~16! and ~18! successions of values forl (N), a (N), and
n (N). The problem of the extrapolation of these data
N→` was also studied in detail@12#, and in that study we
used the algorithm of Bulirsch and Stoer@13# to obtain the
extrapolated values of all the magnitudes.

At this point, as an example, let us illustrate how to u
this approach to calculate the critical parameters for
Yukawa potential (exp@2sr#/r). The scaled Hamiltonian for
the Yukawa potential in atomic units (r→sr ; H→H/s2)
can be written as

FIG. 1. Ga(l;N,N22) as a function ofl for the ground state of
the Yukawa potential for even values of 4<N<100.



n

l
m

r
os
ti

of
te
i

ly.

as

ing

tudy
e

ery
we

orted
ns.
for

om
s

n-

n-

l.

a

RAPID COMMUNICATIONS

57 R1483FINITE-SIZE SCALING APPROACH FOR THE . . .
H~l!52
1

2
¹22l

e2r

r
, ~19!

where l51/s. It is known that perturbation expansio
around the Coulombic limits50 is asymptotic with zero
radius of convergence@14#. This Hamiltonian has bound
states for large values ofl, and the exact value of the critica
exponent isa52 for states with zero angular momentu
anda51 for states with nonzero angular momentum@15#.

To carry out the calculations for the critical paramete
one should proceed with the following scheme. First, cho
a convenient orthonormal basis set; for the Yukawa poten
this is given by

Fn~r ,V!5
1

A~n11!~n12!
e2r /2Ln21

~2! ~r !Yl ,m~V!,

~20!

whereLn
(2)(r ) is the Laguerre polynomial of degreen and

order 2 andYl ,m(V) are the spherical harmonic functions
the solid angleV @16#. In this basis set one has to calcula
the lowest eigenvalue and eigenvector of the finite Ham

FIG. 2. l (N) vs 1/N for the ground state of the Yukawa pote
tial. The value of the extrapolatedlc is also shown by a dot.

FIG. 3. a (N) vs 1/N for the ground state of the Yukawa pote
tial. The exact value ofa is also shown by a dot.
s
e
al

l-

tonian matrix. Second, use Eqs.~16!, ~17!, and~18! in order
to obtainl (N), a (N), andn (N). Due to parity effects we have
to chooseDN52.

For the ground state, the curves ofGa(l;N,N22) as a
function 1/N for even values ofN are shown in Fig. 1 for
4<N<100. The curves ofl (N), a (N), andn (N) against 1/N
for 10<N<100 are shown in Figs. 2, 3, and 4, respective
It seems that a reasonable, large-N regime was obtained
when N.20. Finally, obtain the extrapolated values
N→` by using the algorithm of Bulirsch and Stoer@13#. The
extrapolated values calculated with the points correspond
to 20<N<100 for l 50 are given in Table I and are in
excellent agreement with the numerical value oflc @17# and
the exact value fora @15#.

In summary, we have presented an FSS approach to s
directly the critical behavior of the different quantities in th
Schrödinger equation. Results show that the method is v
accurate for estimating the critical parameters. As far as
know these results are the most accurate estimates rep
using an FSS approach for systems with no exact solutio
The method can be used to obtain the critical parameters
excited states. This can be achieved if the Hamiltonian c
mutes with a given operatorA. Then, if we choose the basi
set $Fn% as eigenfunctions ofA, the Hamiltonian becomes

FIG. 4. n (N) vs 1/N for the ground state of the Yukawa potentia
The value of the extrapolatedn is also shown by a dot.

TABLE I. Comparison of the critical parameters for the Yukaw
potential forl 50 andl 51.

EvenN Odd N Ref.

l 50
lc 0.839 903 9(1) 0.839 903 9(1) 0.839 908
a 2.000 00(2) 1.999 995(5) 2~exacta!
n 0.9999(2) 0.9999(5)

l 51
lc 4.540 980(3) 4.540 979(1) 4.541a

a 0.9999(3) 0.9998(2) 1 ~exactb!
n 0.501(1) 0.501(1)

aFrom Ref.@17#.
bFrom Ref.@15#.
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block-diagonal, and therefore the method will be useful
the lowest eigenvalue of each block. An important case
when the Hamiltonian commutes with the total angular m
mentum. In this case we can study the critical behavior
each lowest-energy eigenvalue corresponding to a g
value of the angular momentum. Results for estimating
critical parameters for Yukawa withl 51 are also given in
t
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,

ca
,

r
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-
f
n
e

Table I. The method is general, simple to implement, and
be generalized in a straightforward manner to treat Hami
nians with many parameters$l i%.
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