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Finite-size scaling approach for the Schrdinger equation
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We present a finite-size scaling approach for the calculations of the critical parameters of the few-body
Schralinger equation. This approach gives very accurate results for the critical parameters by using a system-
atic expansion in a finite basis set. To illustrate this approach we added detailed calculations for the critical
screening length and the critical exponents for the Yukawa pote[fi4050-29478)50103-3

PACS numbeps): 31.15-p, 05.70.Jk

A finite-size scaling approadi] has been used to study  The existence or absence of a bound state at the critical
problems of critical behavior in statistical mechanics in ordemoint is related to this kind of singularity. For general poten-
to extrapolate the information available from a finite systemtials of the form vk:m_), Simon [8] has proven that the
to the thermodynamic limit. This approach has been usedritical exponentx is equal to 1 if and only ifH(\.) has a
increasingly as a method of analyzing numerical data, espéormalizable eigenfunction with eigenvalue equal to zero.
cially from two-dimensional lattice systems and Monte CarloUsing statistical-mechanics terminology, we can associate
calculationg2—-5]. “first-order phase transitions” with the existence of a nor-

Recently[6] we presented a method to calculate the criti-malizable bound state at the critical point.
cal parameters of a few-body quantum Hamiltonian. In that |n statistical mechanics, the finite-size scaling method
method we assumed that the two lowest eigenvalues of therovides a way of extrapolating information obtained from a
quantum Hamiltonian could be taken as the leading eigenfinite (or partially infinitd system to the thermodynamic
values of a transfer matrix of a classical pseudosystem. Usimit. In the present approach, the finite size corresponds not
ing finite-size scaling argumenit$,5], the phenomenological to the spatial dimension but to the number of elements in a
renormalization equatiofi’] was used to obtain the critical complete basis set used to expand the exact eigenfunction of
properties of the classical pseudosystem and therefore of the given Hamiltonian. For a given complete orthonormal
quantum system. \-independent basis sgb,}, the ground-state eigenfunction

In this paper we present a direct finite-size scaliR§9 has the following expansion:
approach to study the critical behavior of the quantum
Hamiltonian without the need to make any explicit analogy W _2 NP
to classical statistical mechanics. This approach assumes an A& an(M) P,
explicit form for the asymptotic behavior of the quantum
mean values near the critical point. The critical parametersvheren represents the adequate set of quantum numbers. In
can be calculated by a systematic expansion in a fitite-  order to approximate the different quantities, we have to

)

cated basis set. truncate the series, E@) at orderN. Then the Hamiltonian
In order to present this approach, let us consider a gener# replaced by thev (N)x M(N) matrix H™N), with M(N)
Hamiltonian of the form being the number of elements in the truncated basis set at
order N. Using the standard linear variational method, the
H=Ho+ V), (1) Nth-order approximation for the energies is given by the

eigenvalues of the matrix/).

where, is A-independent and, is thex-dependent term. 1€ Nth-order approximation for the energy is given by

We are interested in the study of the critical behavior of the E(N):min{A_(N)} ()
Hamiltonian, Eq.(1), as a function of the parametar A Moy
critical point) . is defined as a point for which a bound state
becomes absorbed or degenerate with the continuum. Wittwhere{Ai(N)} are the eigenvalues of the matri¥™). The
out loss of generality, we will assume that the threshold eneorresponding eigenfunctions are given by
ergy or the bottom of the continuum is equal to zero.

As in statistical mechanics, we can define some critical (N)_ N)
exponents related to the asymptotic behavior of different vy = ; a, (N @y, ®)
magnitudes near the critical point. We will assume that the

Hamiltonian, Eq.(1), has a bound statg, for N>\ that  where the coefficientsa™ are the components of the
becomes equal to zero at=A.. In particular, this energy  ground-state eigenvector. In this representation, the expecta-

M(N)

defines the critical exponeat tion value of any operato® at orderN is given by
N
Ex ~ (A=ho)" @
P (ORY=2, a(M)an’ () Onm, )
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where O, , are the matrix elements @ in the basis set 3.0
{®n}-
In general, the mean valug)) is not analytical at\
=\, and we can define a critical exponepty,, by the
relation

(O)y ~ (N=2)ro. 7 L, 20

ANy

As in the FSSAnsazein statistical mechanid®], we will
assume that there exists a scaling function for the truncated
magnitudes such that

(OYN—(O),Fo(N]A =], ®) 0.835

with a different scaling functiof ,, for each different opera-

tor but with a unique scaling exponent In statistical FIG. 1.T ,(\;N,N—2) as a function ok for the ground state of
mechanics, the exponents defined by the singularity of the the Yukawa potential for even values o&N<100.

correlation length at the critical point. In the framework of

the Schrdinger equation we do not have yet a clear inter- IEy _[IH\ [N 1
pretation for this exponent. Since the)N) is analytical in N \an[ o\ on ] (19
A [10], then from Eqs(7) and(8) the asymptotic behavior of
the scaling function must have the form Taking O=dV, /N in Eq. (11) gives an equation for
(a—1)/v that together with Eq(13) give the exponenta
Fo(x)~x"#o', (9  andv. Now, we can define the function
~ Now, to obtain the critical parameters, we define the func- Ay (NN,N7)
tion I (N N,N") = ;
Az(NSNINT) = Ay on (N NNT)
(N) (N") 16
AO(MN’N,):IMOM I[{ON ) 10 (16)
In(N"/N) which is also independent of the valueshfandN’ at the
critical pointA =\ and gives the critical exponeant,
At the critical point, this functiorA ,, along with Eqs(8) and
(9) gives an equation for the ratio of the critical exponents, a=T,(A¢;N,N"). (17)
Ao(hg NN = % 11 From Eq.(13) the critical exponent is readily given by
o
which is independent of the values NfandN’. Thus, for V= AH()\C;NIN’). (18)
three different valuedN, N’, andN" the curves defined by
Eq. (10) intersect at the critical point The FSS equations are valid only as symptotic expres-
sions, but unique values af;, «, andv (or any other quan-
Ap(Ne;N,N)Y=A (A N”,N). (12) ity of interes} can be obtained as a succession of values as

a function ofN, N’, andN”. The relation amongj, N’, and
N” was extensively studied in FSS in statistical mechanics
5], and it is known that the faster convergence is obtained
hen the difference among these numbers is as small as
possible. This condition meansN=1, except when there
are parity effects; then one has to takbl=2.
Then forN’=N+AN, N”"=N-AN, we can obtain from
u Egs.(16) and (18) successions of values fatN), o(N)| and
—=Ay(Ae;N,N). 13y ™. The problem of the extrapolation of these data to
v N—oo was also studied in detdill2], and in that study we
used the algorithm of Bulirsch and Stddr3] to obtain the
extrapolated values of all the magnitudes.

In order to obtain the critical exponents, we need two
independent equations for the same quotient of exponent,
These two equations can be obtained for the expomnent
which is associated with the enerfgee Eq(2)]. If we take
O="H, we obtain from Eq(11) with up=«a

From Eq.(2) we know that

JE, At this point, as an example, let us illustrate how to use
o A=\ L (149 this approach to calculate the critical parameters for the
A=Ay Yukawa potential (eqp-ot]/r). The scaled Hamiltonian for

the Yukawa potential in atomic units {or; H—H/o?)
and by using the Hellmann-Feynman theoirdrf]] we obtain  can be written as
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FIG. 4. v™) vs 1N for the ground state of the Yukawa potential.

FIG. 2. A\(N) ys 1N for the ground state of the Yukawa poten- _
The value of the extrapolatedis also shown by a dot.

tial. The value of the extrapolated, is also shown by a dot.

1_, e’ tonian matrix. Second, use Eq46), (17), and(18) in order
HN)=—5Vi=A—, (19 to obtain\™V, o™, and»™). Due to parity effects we have
to chooseAN=2.

where A=1/c. It is known that perturbation expansion For the ground state, the curves I6f(\;N,N—2) as a
around the Coulombic limir=0 is asymptotic with zero function 1N for even values oN are shown in Fig. 1 for
radius of convergenc&l4]. This Hamiltonian has bound 4<N=100. The curves ok(), o™, and»(") against 1M
states for large values af, and the exact value of the critical for 10s=N<100 are shown in Figs. 2, 3, and 4, respectively.
exponent isa=2 for states with zero angular momentum It seems that a reasonable, lafgeregime was obtained
anda=1 for states with nonzero angular moment{5]. when N>20. Finally, obtain the extrapolated values as

To carry out the calculations for the critical parametersN— ¢ by using the algorithm of Bulirsch and Stdés3]. The
one should proceed with the following scheme. First, choos@Xxtrapolated values calculated with the points corresponding
a convenient orthonormal basis set; for the Yukawa potentialc 20<N=<100 for =0 are given in Table | and are in
this is given by excellent agreement with the numerical value\ngf{17] and
the exact value for [15].

In summary, we have presented an FSS approach to study
directly the critical behavior of the different quantities in the
Schralinger equation. Results show that the method is very
accurate for estimating the critical parameters. As far as we
@)on ) know these results are the most accurate estimates reported
whereL"(r) is the Laguerre polynomial of degreeand  ;5ing an FSS approach for systems with no exact solutions.
order 2 andy, ,({2) are the spherical harmonic functions of The method can be used to obtain the critical parameters for
the solid angle(} [16]. In this basis set one has to calculate gxcited states. This can be achieved if the Hamiltonian com
the lowest eigenvalue and eigenvector of the finite Hamilyy, tes with a given operatot. Then, if we choose the basis

set{®d,} as eigenfunctions ofd, the Hamiltonian becomes

_ -r/2; (2)
D, (r,Q) (n+1)(n+2)e Ln—l(r)YI,m(Q)i

(20

2.2 — 71 - 1 r 1 r 1
Vs
/ . TABLE I. Comparison of the critical parameters for the Yukawa
/ potential forl=0 andl=1.
2.1 F o odd N e .
aeven N /
/" i EvenN OddN Ref.
OL(N) 2.0 ¢ m@wﬁ&o':ﬂ~~A _ =0
N e 0.8399039(1) 0.8399039(1) 0.839 908
A ] a 2.000 00(2) 1.999 995(5) @xact?)
19 - v 0.9999(2) 0.9999(5)
T =1
18 M B | ¢ 4.540 980(3) 4.540 979(1) 4,541
7000 002 004 006 008 0.10 0.9999(3) 0.9998(2) 1 (exact?)
1/N v 0.501(1) 0.501(1)

FIG. 3. ™ vs 1N for the ground state of the Yukawa poten- 2From Ref.[17].
tial. The exact value o is also shown by a dot.

bFrom Ref.[15].
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block-diagonal, and therefore the method will be useful forTable I. The method is general, simple to implement, and can
the lowest eigenvalue of each block. An important case ibe generalized in a straightforward manner to treat Hamilto-
when the Hamiltonian commutes with the total angular mo-nians with many paramete(s;}.

mentum. In this case we can study the critical behavior of

each lowest-energy eigenvalue corresponding to a given W& would like to acknowledge the financial support of
value of the angular momentum. Results for estimating thdhe Office of Naval ResearchGrant No. N00014-97-1-

critical parameters for Yukawa with=1 are also given in 0192.
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