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Finite-size scaling for Mott metal-insulator transition on a half filled nonpartite lattice
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We combine the finite-size scaling method with a multistage real-space renormalization-group procedure to
examine the Mott metal-insulator transition~MIT ! on a nonpartite lattice. Based on the Hubbard model, we
have found that there exists a critical pointU/t512.5 for the MIT with the correlation length exponentn
51. At the critical point, the charge gap scales with the system size asng;1/L0.91.
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Ever since the experimental observations of the meta
behavior in two-dimensional electron gas with high-mobil
Si metal-oxide-semiconductor field-effect transistor,1 there
has been an intensive interest in the investigations of e
tronic transport properties in such systems.2,3 The signifi-
cance of this discovery is that it has taken us to a differ
interaction regime where the electron correlations begin
play a very important role. For example, in disordered s
tems, when the electron-electron interactionsEee are much
stronger than the Fermi energyEf , namely,Eee/Ef lies in
the range 5–50, they can show metallic properties.3 These
contradict the conventional prevailing noninteractin
electron scaling theory, which states that for two-dimensio
~2D! systems, any disorder will localize all states and th
should be no metal-insulator transition~MIT !.4 Hence the
early experiments have stimulated a spate of new experim
tal results and MIT has been found in various 2D syste
such as p-type SiGe structures,5 p-type GaAs/AlGaAs
heterostructures,6 n-type AlAs heterostructures,7 n-type
GaAs/AlGaAs heterostructures,8 etc.; but there have been n
satisfactory theoretical explanations of these phenomena
the domain of disordered system with no or weak elect
interactions, where Anderson MIT dominates,9 the scaling
theory of Abraham holds well and has been studied in det4

When disorder effects are comparable to the influence of
electron interactions, the theory becomes very subtle and
nature of MIT is still an open question, which is actua
becoming a central problem in condensed-ma
physics.10,11 If we go a little further, one may ask the que
tion: what will happen in the strong-coupling regim
namely, the systems having very strong electron interact
with little or no disorder? Actually, this is the regime of th
famous Mott MIT.12 Although there has been much work
this direction,13 not much study is carried out for the corr
lation induced or fixed density MIT in 2D systems from th
viewpoint of the finite-size scaling~FSS! analysis.15 How-
ever, the FSS study for Anderson MIT has a notewor
history.16,17 Hence, the main motivation of this study is
develop the FSS for Mott MIT .

The model we use is the Hubbard model,18
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wheret is the nearest-neighbor hopping term,U is the local
repulsive interaction, andm is the chemical potential
cis

1 (cis) creates~annihilates! an electron with spins in a
Wannier orbital located at sitei; the corresponding numbe
operator isnis5cis

1 cis and ^& denotes the nearest-neighb
pairs. H.c. denotes the Hermitian conjugate.

For half filled system, Eq.~1! can be rewritten as

H52t (
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I i , ~2!

with K52U/4 and I i is the unit operator. For the lattic
structure, we use the nonpartite triangular lattice, the M
emerges at finiteU5Uc . It is well known that MIT on
square lattice can only take place atU50 due to the perfect
nesting of the Fermi surface. Our work has also replica
this result. If we do not study the exotic case withU,0,
which is possible in a strongly polarizable medium, t
square lattice is not an optimal option for our purpose. F
thermore, the physical quantity that will be examined here
the charge gapng , which is defined as

ng5E~Ne21!1E~Ne11!22E~Ne!, ~3!

whereE(Ne) denotes the lowest energy for theNe-electron
system. In our case,Ne is equal to the site numberNs of the
lattice. This quantity is the discretized second derivative
the ground-state energy with respect to the number of p
ticles, i.e., the inverse compressibility.

Conventionally, Monte Carlo and exact diagonalizati
methods are the two most used methods to carry out fin
size scaling analysis, but both methods involve too intens
calculations, especially for large-size systems. In this stu
we develop a multistage block renormalization-group~RG!
method to address this problem.

The essence of real-space RG method is to map the o
nal Hamiltonian to a new Hamiltonian with much fewer d
grees of freedom, which keeps the physical quantities we
interested in unchanged.19 The mapping can be iterated unt
the final Hamiltonian can be easily handled. The crucial s
in this method is how to relate the parameters between
old and the new Hamiltonians. This can be realized by div
©2002 The American Physical Society01-1
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ing the original lattice into blocks and then build a ne
Hamiltonian upon blocks, namely, regard each block to be
effective site.

Figure 1 shows schematically the hexagonal block str
ture that we use in our calculations and the coupling betw
blocks. For each block, we solve it numerically in the su
spaces of six electrons with three spin up and three s
down, seven electrons with four spin up and three spin do
seven electrons with three spin up and four spin down,
eight electrons with four spin up and four spin down. In
the subspaces, we keep the lowest-energy nondegen
state, which is also required to belong to the same irreduc
representations ofC6n symmetry group. It should be men
tioned here that if the degeneracy is involved, one poss
solution might be to average the renormailzed parame
over the degenerated states. The kept states will then
taken as the four states for an effective site. If we denote
energies corresponding to the first two states byE1 andE2 ,
after some intensive calculations, we can obtain the n
Hamiltonian for the effective lattice, which has the sam
structure as the original Hamiltonian,20

H852t8 (
^ i , j &,s

@cis8
1cj s8 1H.c.#1U8(
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2
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1K8(
i
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where the prime8 denotes the operator action upon the blo
states and

t85nl2t, ~5!

U852~E12E3!, ~6!

FIG. 1. Schematic diagram of the triangular lattice with hexa
nal blocks. Only two neighboring blocksp andp8 are drawn here.
The dotted lines represent the interblock interactions and solid
the intrablock ones.
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The above equations are the so-called RG flow equatio
Usually, they are iterated until we get the fixed point. T
charge gap for an infinite lattice can then be written as,20

Dg5 lim
n→`

U (n). ~8!

Because of the implicit functional in Eqs.~5!–~7!, it is very
difficult to obtain any other useful information except th
critical transition pointUc . However, instead of letting RG
flow to infinity for a fixed initial parameter (U,k,t), we can
stop the RG flow at some stage. Thus the energy gap
tained from Eq.~3! will correspond to a system of fixed size
For example, if we stop the RG flow at the first iteratio
then the obtainedt8 and U8 will be for hexagonal block
mapped from a system of 72 sites. Since we can solve th
hexagonal block Hamiltonian exactly, the energy gap fo
system of 49 sites can be obtained easily. Thus, we can s
the variations ofDg as a function of the system size o
71,72, . . . ,77. We call this procedure a multistage real-spa
RG method, which is well adapted to start the finite-s
scaling analysis.

In Fig. 2~a!, we present the size dependence of the sca
ng /t on U/t. But from this figure, it is not easy to decide th
location of the transition point forng . To explicitly display
the critical phenomenon, we present in Fig. 2~b! the scaling
of ng with respect toN at N5Ne5Ns . Now it is very easy
to obtain the critical value of (U/t)c512.5, which is the
crossing point of all the curves corresponding to differe
system sizes. The same value is obtained by letting RG e
tions flow to infinity.20 In Fig. 2~c!, we show that all the data
collapse to one curve once one carries out a second ste
scaling withU/t2(U/t)c by N. It is an obvious evidence fo
the occurrence of a quantum phase transition as the tu
parameterU varies. Hence we can write down the followin
equation:

ngN0.4055 f @qN0.5#, ~9!

wheref (x) is a universal function independent of the syste
size andq5U/t2(U/t)c . By usingN5L2 for 2D systems,
the above equation can be rewritten as

ng5L20.91f @qL#, ~10!

from which we can get two scaling relationships for t
charge gap. One is the finite-size scaling at the transi
point, i.e., whenq50, ng;1/L0.91. As shown in Ref. 14 in
the Anderson MIT, when the electron correlation ener
dominates the Fermi energy, the average inverse compr
ibility ( 5Dg) exhibits a scaling as 1/L with respect to the
system size. Here it shows a slower decay asL increases.
The other one is the bulk scaling around the transition po
for the infinite system,ng;q0.91. According to the scaling
analysis of the Gutzwiller solution for the Mott MIT for th
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Hubbard model,ng;q0.5.15 Since the Gutzwiller solution is
a mean-field approximation, the upper critical dimension
it to give a correct description of this critical phenomenon
dc53, it is understandable that our 2D results cannot
merged into the one obtained by mean-field theory.

FIG. 2. Variations of the charge gapDg against the on-site elec
tron iterationU for different system sizes, i.e. the number of sites
~cross1!, 72 ~cross3), 73 ~up triangle!, 74 ~down triangle!, 75

~diamond!, 76 ~circle!, 77 ~square!. More points are calculated
around the transition point. In~a!, no scaling is utilized. In~b!, the
charge gap is scaled by 1/N0.405 to display clearly the phase trans
tion. In ~c!, all the data are collapsed onto one curve by scaling b
axes with respect toN.
08110
r

e

By introducing a critical exponentyn for ng , the one-
parameter scaling theory gives

ng5qyn f S L

j D , ~11!

in which j5q2n is the correlation length withn being the
corresponding critical exponent andL denotes the system
size. By usingN5L2 for 2D systems, the above equation c
be rewritten as

ng5N2(yn/2n) f ~qN1/2n!. ~12!

Comparing Eqs.~9! and ~10!, we can obtain

yn50.91, n51. ~13!

By relatingyn to the dynamic exponentz, yn5zn, thus
z'0.91. Because of the approximate properties of
method, it is difficult to make a judgement purely fromn
51 whether it violates the Chayes limit criterion 2/d. More
detailed work is desired before a definite conclusion can
built.

For filling-control or density-driven MIT, there are tw
types of universality classes.13 One is characterized byz
51/n52,21 which is the case for all 1D systems as well
for several transitions at higher dimensions, such as the t
sitions between insulator with diagonal order of compone
and metal with diagonal order components and small Fe
volume. Another one is characterized byz51/n54.22 Nu-
merical calculations have shown that Hubbard model o
square lattice is an example of this class.22 For Anderson
MIT, analytical, numerical, and experimental studies ha
producedn.1, such asn51.35,23 1.54,24 and 1.62.25

Our work leads toz50.91 andn51, which implies the
possibility of an eventual new universality class for MI
This might be understandable since the MIT studied her
driven by a different mechanism, i. e., electron-electron c
relations with a fixed density. It is interesting to note that t
n andz we have obtained are quite near the critical values
the energy gap of the one-dimensional Ising model in a tra
verse field, which can be solved exactly withn5z51.26 A
modified real-space RG method27 is also tried on this mode
and similar results are obtained. As we know, the Ising mo
is a special case of the Heisenberg model, which is a limit
case of the Hubbard model whenU@t. This is exactly the
strong-coupling regime that has been examine in this stu

Recently, Leeet al.28 have investigated experimentall
the dynamic behavior of morphous niobium-silicon allo
near a zero-temperature 2D MIT critical point, where a d
ferent universality class withz52 andn51 is obtained. The
difference between this scaling and the conventional And
son scaling is attributed to the electron-electron correlatio
This conclusion is consistent with our finding with respect
the correlation length critical exponentn. The difference in
estimating the dynamical critical exponentsz might be due to
the negligence of the disorders in our study.

In summary, by using a multistage real-spa
renormalization-group method we show that the finite-s

h
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scaling can be applied to the Mott MIT. We have found th
at the transition point, the charge gap scaled with size
ng;1/L0.91 and the dynamic and correlation length critic
exponents are found to bez50.91 andn51, respectively.
The method presented here is very general and can be
to study many other properties of the system if they are pr
ov
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erly defined, for example, the magnitude of the local mom
tum. It can also be used to study the quasiparticle weigh
the metallic phase close to the MIT.
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