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Finite-size scaling for Mott metal-insulator transition on a half filled nonpartite lattice
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We combine the finite-size scaling method with a multistage real-space renormalization-group procedure to
examine the Mott metal-insulator transitiohIT) on a nonpartite lattice. Based on the Hubbard model, we
have found that there exists a critical poldft=12.5 for the MIT with the correlation length exponemnt
=1. At the critical point, the charge gap scales with the system sizegasllLO-gl.
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Ever since the experimental observations of the metalliavheret is the nearest-neighbor hopping terhjs the local
behavior in two-dimensional electron gas with high-mobility repulsive interaction, andu is the chemical potential.
Si metal-oxide-semiconductor field-effect transistahere ¢ (ci,) creates(annihilateg an electron with spinr in a
has been an intensive interest in the investigations of eleaa/annier orbital located at sitie the corresponding number
tronic transport properties in such systefisThe signifi-  operator isn;,=c;'.c;, and() denotes the nearest-neighbor
cance of this discovery is that it has taken us to a differenpairs. H.c. denotes the Hermitian conjugate.
interaction regime where the electron correlations begin t0 For half filled system, Eq(1) can be rewritten as
play a very important role. For example, in disordered sys-
tems, when the electron-electron interactids are much 1 1
stronger than the Fermi ener@, namely,E../E; lies in H=—t >, [CiCjot H.c]+Uu>, (——n”) (“”ii)
the range 5-50, they can show metallic propertidhese (Li)o T2 2
contradict the conventional prevailing noninteracting-
electron scaling theory, which states that for two-dimensional +K I, 2
(2D) systems, any disorder will localize all states and there i
should be no metal-insulator transitidfiT).* Hence the ) ) _ _
early experiments have stimulated a spate of new experimeftith K=—U/4 and|; is the unit operator. For the lattice
tal results and MIT has been found in various 2D systemsStructure, we use the nonpartite triangular lattice, the MIT
such as p_type SiGe Structure%’p_type GaAs/AlGaAs emerges at f|n|th:UC It is well known that MIT on
heterostructure®, n-type AlAs heterostructures, n-type  square lattice can only take placelat=0 due to the perfect
GaAs/AlGaAs heterostructuréstc.; but there have been no nesting of the Fermi surface. Our work has also replicated
satisfactory theoretical explanations of these phenomena. ffis result. If we do not study the exotic case with<0,
the domain of disordered system with no or weak electrovhich is possible in a strongly polarizable medium, the
interactions, where Anderson MIT dominafethe scaling square lattice is not an optimal option for our purpose. Fur-
theory of Abraham holds well and has been studied in détail.thermore, the physical quantity that will be examined here is
When disorder effects are comparable to the influence of théhe charge gag\ 4, which is defined as
electron interactions, the theory becomes very subtle and the
nature of MIT is still an open question, which is actually Ag=E(Ne—1)+E(Ng+1)—2E(N,), 3)
becoming a central problem in condensed-matter
physicsi® If we go a little further, one may ask the ques- where E(N,) denotes the lowest energy for the-electron
tion: what will happen in the strong-coupling regime, system. In our caséy, is equal to the site numbé\; of the
namely, the systems having very strong electron interactiongttice. This quantity is the discretized second derivative of
with little or no disorder? Actually, this is the regime of the the ground-state energy with respect to the number of par-
famous Mott MIT*? Although there has been much work in ticles, i.e., the inverse compressibility.
this direction; not much study is carried out for the corre-  Conventionally, Monte Carlo and exact diagonalization
lation induced or fixed density MIT in 2D systems from the methods are the two most used methods to carry out finite-
viewpoint of the finite-size scalingmS9 analysis.> How-  sjze scaling analysis, but both methods involve too intensive
ever, the FSS study for Anderson MIT has a noteworthycalculations, especially for large-size systems. In this study,
history!®” Hence, the main motivation of this study is to we develop a multistage block renormalization-grad&®s)

develop the FSS for Mott MIT . method to address this problem.
The model we use is the Hubbard modfl, The essence of real-space RG method is to map the origi-
nal Hamiltonian to a new Hamiltonian with much fewer de-
H=—t 2 [CfLCJUﬂL H.c]+ UE nin; grees of frgedom, which keeps the_physical qu_antities we are
(Do i interested in unchangédThe mapping can be iterated until

the final Hamiltonian can be easily handled. The crucial step
—ME (ni;+n;) (1) in this method is how to relate the parameters between the
o VT L old and the new Hamiltonians. This can be realized by divid-
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)
p' The above equations are the so-called RG flow equations.
Usually, they are iterated until we get the fixed point. The
6¢ ® 3 charge gap for an infinite lattice can then be writterf%as,
7
\ / Ag=lim U™, )
| —

n—oo

Because of the implicit functional in Eq&)—(7), it is very
difficult to obtain any other useful information except the

o— &
2 critical transition pointU.. However, instead of letting RG
p flow to infinity for a fixed initial parametery,k,t), we can
stop the RG flow at some stage. Thus the energy gap ob-
6 °\ 2 /' 3 tained from Eq(3) will correspond to a system of fixed size.
5— 94

For example, if we stop the RG flow at the first iteration,
then the obtained’ and U’ will be for hexagonal block
mapped from a system of?Zites. Since we can solve the
hexagonal block Hamiltonian exactly, the energy gap for a
FIG. 1. Schematic diagram of the triangular lattice with hexago-system of 49 sites can be obtained easily. Thus, we can study
nal blocks. Only two neighboring blocksandp’ are drawn here.  the variations ofA, as a function of the system size of
The_dotted lines represent the interblock interactions and solid Iine,1’72’ ... 7. We call this procedure a multistage real-space
the intrablock ones. RG method, which is well adapted to start the finite-size
, . o . scaling analysis.
ing the original lattice into blocks and then build a new |, Fig. 2(a), we present the size dependence of the scaled
Hamiltonian upon blocks, namely, regard each block to be a\, /t onU/t. But from this figure, it is not easy to decide the
effective site. location of the transition point fot\ 4. To explicitly display

Figure 1 shows schematically the hexagonal block StrUCihe critical phenomenon, we present in Figo)2the scaling
ture that we use in our calculations and the coupling betweegs A \ith respect toN at N=N,=N,. Now it is very easy
g e S

seven electrons with three spin up and four spin down, angs s fiow to infinity2° In Fig. 2(c), we show that all the data

eight electrons with four spin up and four spin down. In all ., 13n56 to one curve once one carries out a second step of
the subs_pac_es, we ke(_ap the lowest-energy nondegengr%@a"ng withU/t— (U/t). by N. It is an obvious evidence for
state, which is also required to belong to the same irreducibl e occurrence of a quantum phase transition as the tuning

representations oCg, symmetry group. It should be men- o5 eter) varies. Hence we can write down the following
tioned here that if the degeneracy is involved, one possibl quation:

solution might be to average the renormailzed parameters

over the degenerated states. The kept states will then be

taken as the four states for an effective site. If we denote the A GNO4=f[gNO7], 9)
energies corresponding to the first two stateEhyandE,,

after some intensive calculations, we can obtain the newheref(x) is a universal function independent of the system
Hamiltonian for the effective lattice, which has the samesize andg=U/t— (U/t).. By usingN=L?2 for 2D systems,
structure as the original Hamiltoni&h, the above equation can be rewritten as

H’=—t’<_2> [ci’;cj’U+H.c.]+U’2 (;_ni,T)(%_nili) Ag=L""%f[qL], (10
L)), I
from which we can get two scaling relationships for the
+K’E I, (4) charge gap. One is the finite-size scaling at the transition
i point, i.e., whemg=0, Ay~1/L%%% As shown in Ref. 14 in

the Anderson MIT, when the electron correlation energy
dominates the Fermi energy, the average inverse compress-
ibility (=A,) exhibits a scaling as L/ with respect to the
system size. Here it shows a slower decaylaisicreases.

where the primé denotes the operator action upon the block
states and

t'=wA%t, (5) The other one is the bulk scaling around the transition point
for the infinite systemA j~q®9% According to the scaling
U'=2(E;—Ejy), (6)  analysis of the Gutzwiller solution for the Mott MIT for the
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15 T T T T T T T By introducing a critical exponent, for Ay, the one-
(a) parameter scaling theory gives
/+

A =quf<E) (12
g Ak

in which é=q~ " is the correlation length withv being the
corresponding critical exponent arid denotes the system
size. By usingN=L? for 2D systems, the above equation can
be rewritten as

Agz N*(yA/ZV)f(qN]./ZV). (12)
U/t Comparing Egs(9) and(10), we can obtain
10* . ' , ; . . . y,=0.91, v»=1. (13
3] (b) - . .

1071 et 1 By relatingy , to the dynamic exponert y,=zv, thus
mt 1021 oy ITAA—As z~0.91. Because of the approximate properties of our
= 10" =T ] method, it is difficult to make a judgement purely from
OZ 0 — - =1 whether it violates the Chayes limit criteriord2More

<]c, 1071 N=7,7 ,73,7 ,75,76,7 3 detailed work is desired before a definite conclusion can be
-1 built.

10_21 . /::- | For filling-control or density-driven MIT, there are two

107] " I(U/‘)C=12-5 1 types of universality classéd.One is characterized by

10-3 =1/v=2 2 which is the case for all 1D systems as well as

6 8 10 12 14 16 18 20 22 for several transitions at higher dimensions, such as the tran-
Ut sitions between insulator with diagonal order of components

and metal with diagonal order components and small Fermi

. , volume. Another one is characterized by 1/v=42? Nu-

3 (C) —a merical calculations have shown that Hubbard model on a

L square lattice is an example of this cld$-or Anderson

— ] , MIT, analytical, numerical, and experimental studies have

8\ producedr>1, such aw=1.35%% 1.54?* and 1.62°

;r, 101 1 Our work leads taz=0.91 andv=1, which implies the

Z

possibility of an eventual new universality class for MIT.
o This might be understandable since the MIT studied here is
<] 10 1 1 driven by a different mechanism, i. e., electron-electron cor-
relations with a fixed density. It is interesting to note that the
= v andz we have obtained are quite near the critical values for
1 0‘3 T T the energy gap of the one-dimensional Ising model in a trans-
-6000 0 6000 verse field, which can be solved exactly wit=z=1.25 A
(U-U )N0-5/t modified real-space RG methdds also tried on this model
c and similar results are obtained. As we know, the Ising model
o _ ) is a special case of the Heisenberg model, which is a limiting
FIG. 2. Variations of the charge gdy, against the on-site elec- 556 of the Hubbard model whéfs>t. This is exactly the
tron |terat|0r;U for dlﬁerentssystem sizes, |.$. the num.ber of S|t5es: 7 strong-coupling regime that has been examine in this study.
(ZTOSS“’ 775(‘:”?STX)'777 (up trlanlglle), ! (<_jotwn tnanglle, I7t 4 . Recently, Leeet al?® have investigated experimentally
(diamond, (C!r.c ©). . (square. ore points areé caiculated o dynamic behavior of morphous niobium-silicon alloys
around the transition point. Ita), no scaling is utilized. Ir(b), the . . -
. 05 g . near a zero-temperature 2D MIT critical point, where a dif-
charge gap is scaled byN94%to display clearly the phase transi- t uni litv cl ith=2 andv=1 is obtained. Th
tion. In (c), all the data are collapsed onto one curve by scaling botﬂefren universaiity a§s wita= andv=211S0 ame - 1nhe
axes with res difference between this scaling and the conventional Ander-
pect tol. T . .
son scaling is attributed to the electron-electron correlations.
0515 o . ~_ This conclusion is consistent with our finding with respect to
Hubbard modelA ~q~*.™ Since the Gutzwiller solution is * the correlation length critical exponent The difference in
a mean-field approximation, the upper critical dimension forestimating the dynamical critical exponeatight be due to
it to give a correct description of this critical phenomenon isthe negligence of the disorders in our study.
d.=3, it is understandable that our 2D results cannot be In summary, by using a multistage real-space
merged into the one obtained by mean-field theory. renormalization-group method we show that the finite-size
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scaling can be applied to the Mott MIT. We have found thaterly defined, for example, the magnitude of the local momen-
at the transition point, the charge gap scaled with size atim. It can also be used to study the quasiparticle weight in
Ag~1/L%%" and the dynamic and correlation length critical the metallic phase close to the MIT.

exponents are found to be=0.91 andv=1, respectively.

The method presented here is very general and can be used\We would like to acknowledge the financial support of the
to study many other properties of the system if they are propOffice of Naval ResearctN00014-97-1-0192
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