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Pivot method for global optimization

Pablo Serra,* Aaron F. Stanton, and Sabre Kais
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907

~Received 26 September 1996!

A pivot algorithm for the location of a global minimum of a multiple-minimum problem is presented. The
pivot method uses a series of randomly placed probes in phase space, moving the worst probes to be near better
probes iteratively until the system converges. The approach chooses nearest-neighbor pivot probes to search
the entire phase space by using a nonlocal distribution for the placement of the relocated probes. To test the
algorithm, a standard suite of functions is given, as well as the energies and geometric structures of Lennard-
Jones clusters, demonstrating the extreme efficiency of the method. Significant improvement over previous
methods for high-dimensional systems is shown.@S1063-651X~97!08801-6#

PACS number~s!: 02.70.2c, 02.60.Pn
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Rational drug design, molecular modeling, quantu
mechanical calculations, and mathematical biological ca
lations are but a few examples of fields that rely heav
upon the location of a global minimum in a multiple
minimum problem @1–8#. An algorithm that is versatile
enough to be utilized in any given problem, easy enough
gradients of the phase space need not be calculated, an
bust enough to avoid entrapment in local minima would fi
many applications. In this paper we present such a met
along with a set of test functions as well as solutions
structure of Lennard-Jones systems of up to 20 particles
demonstration of its versatility.

The task is to locate a global minimum of a given fun
tion f (xW ) within a predetermined phase spaceV defined by
the maximum and minimum values of all parametersx( i ) of
the function. A globally minimum value for this function i
assumed to exist within the defined phase space at the
responding phase space point

f 05 f ~xW0!5min
xWPV

f ~xW !, ~1!

wherex0 is a phase-space point with the global minimu
value f 0 for the functionf (xW ).

The pivot method begins with a given number of prob
placed initially within the phase spaceV. If nothing is
known of the problem, the probes are placed completel
random. However, if something is known of the problem
is most convenient to use this information in the initial d
termination of probe location, which will be demonstrated
the Lennard-Jones example to follow. Each probe is simp
set of values for the parameters of the problemx( i ) within
the boundaries of the phase space and therefore with a g
functional value equal to the value of the functionf (xW ) at the
probe point. In the current method, we start withN52m
initial probes of whichm probes will act as the pivot probes
and the remainingm probes will be relocated.
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A local selection of them pivot probes begins with a
search at each probe for its nearest neighbor, based on
distance of the probes. Once we have paired the probes
probe with the lower value for the functionf (xW ) is defined as
the pivot probe, the other probe being the probe that will
relocated. There are several methods possible to do this
ing, but in our particular case we began with finding t
nearest neighbor for probe 1 and removed those two pro
from further consideration. This was repeated until all poi
had been paired.

For each pivot probe with parameter valuesxWB,i , we ex-
plore phase space by placing the probe to be relocated
the pivot probe by changing its parametersxWR,i as

xWR,i5xWB,i1DxW i , ~2!

whereDxW i is a randomly generated vector according to
exploring distributionge(DxW ). We have tested several distr
butions, such as the standard Gaussian distribution use
the pivot method@9# and in simulated annealing@10#, as well
as the Cauchy-Lorentz distribution proposed by Zsu a
Hartley for fast simulated annealing method@11#. Finally, we
have tested a generalizedq distribution based on the Tsalli
entropy@12# and recently used with good results in the ge
eralized simulated annealing method@13–16#. We chose to
use the generalq distribution for the placement of the probe
near the pivot probes. This distribution is defined to be@14#

gq~x!5Aq21

p

GS 1

q21D
GS 1

q21
2
1

2D
3

@b~ t !#1/~32q!

„11~q21!$@b~ t !#1/~32q!x%2…1/~q21! , ~3!

whereb is defined to be 1/T andT is an artificial tempera-
ture given by@14#

T~ t !5
2q2121

~11t !q2121
T~1!, t51,2,3,. . . , ~4!
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55 1163PIVOT METHOD FOR GLOBAL OPTIMIZATION
whereT(1) is the initial temperature andt is the discrete
time corresponding to the computer iterations@17#.

The most relevant fact about this distribution is the int
duction of a new parameterq. Special cases that should b
noted are the limitq→1, where the generalq distribution
approaches the Gaussian distribution, andq52, where the
q distribution is equal to the Cauchy-Lorentz distributio
The second moment of this distribution diverges forq>5/3
and the distribution becomes unnormalizable forq>3. As in
generalized simulated annealing@14#, we have found
q52.5 to be a good value for our global optimizatio
method. A detailed comparison with other values ofq and
other distributions will be given elsewhere@18#.

In our standard test suite of functions we include seve
well-known functions for comparison with established me
ods of optimization. These are the Goldstein-Price~GP!,
Branin, Hartman three- and six-dimensional variants~H3 and
H6!, and Shubert functions. The full details of these fun
tions can be found elsewhere@19,20#. Note that all of the
two-dimensional functions have similar results. The stopp
criterion chosen was for the best probe to have a value
farther from the known global minimum than 3% or to st
if the number of iterations exceeded a certain value. T
stopping criterion is the same as that in Ref.@17# and there-
fore allows an objective standard for comparison. The la
criterion was set sufficiently high to establish that the syst
was trapped in a local minimum if this criterion was tri
gered. A different number of probes was found to be optim
for each of the varying test functions. We have included
Table I our results to illustrate the improvements over pre
ous methods. This represents an average of function c
over the successful runs. One thousand runs were don
each function. The improvement for two-dimensional me
ods is a factor 3.2–7.2, whereas the H3 and H6 functi
show improvements of 9.8 and 12, respectively. Figure
illustrates the efficiency of using a value ofq52.5 graphi-
cally by plotting the number of times the Branin functio
was called upon in the minimization against values ofq
ranging from 1 to 3. Note that this represents a succes
convergence rate in excess of 95%. A similar behavior w
observed for the remainder of the functions in the test su
but we have only included the one graph for reasons
space.

We apply the method to Lennard-Jones clusters of s
6–20 ~phase-space dimension 12–54!. Lennard-Jones clus
ters are excellent for testing the efficiency of global optim
zation algorithms. Regular Lennard-Jones clusters have w

TABLE I. Average number of function evaluations in the glob
optimization of five test functions. The methods are the pure r
dom search~PRS!, simulated annealing types 1 and 2~SA1 and
SA2, respectively!, and tabu search~TS!. The references for thes
methods and results can be found in Ref.@17#.

Method GP Branin H3 H6 Shubert

PRS 5125 4850 5280 18 090 6700
SA1 5439 2700 3416 3975 241 215
SA2 563 505 1459 4648 780
TS 486 492 508 2845 727
Present 153 68 52 237 159
-
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established minima and minimum-energy structures for v
large clusters@21#. However, the number of local minim
apparently grows as exp(N2) @22#. Wille and Vennik have
shown that to find the global minimum in Lennard-Jon
clusters is a NP hard problem@23#. Several global optimiza-
tion methods have been applied to the energy function
Lennard-Jones clusters. These include simulated annea
@24#, genetic algorithm@25#, diffusion equation methods
@26#, quantum annealing@27#, and others@28#. The total en-
ergy for a Lennard-Jones cluster ofN particles is

EN5 (
i51

N21

(
j5 i11

N

VLJ~r i j !, ~5!

wherer i j is the distance between thei th and thej th particles
andVLJ(r ) is the Lennard-Jones two-body potential

VLJ~r !5
1

r 12
2

2

r 6
. ~6!

For small numbers of Lennard-Jones clusters (N<6), the
global energy minimum was located very quickly~less than
1 CPU second on an IBM RS/6000!. For larger clusters, we
incorporated the partial knowledge that we had by start
with the structure of the smallerN2k clusters and adding
k additional particle at random. In any ‘‘growing’’ problem
such as minimum-energy configuration of clusters, se
avoiding walks, and protein folding@21#, this systematic ap-
proach to solving the structure of large clusters can be inc
porated. One of the powerful features of this algorithm is t
information such as this can be built into the initialization
the probes.

For anN cluster, we begin withm3k initial pivot probes
chosen as follows:m, N21 clusters1 one random atom,
m, N22 clusters1 2 random atoms,. . . ,m, N2k11 clus-
ters1 k21 random atoms, and finallym completely random
pivot probes~in our calculations we setk5N/2). With this
set of the initial pivot probes, if theN cluster has a similar
structure with a smaller cluster, the algorithm converg
faster than purely random initial points. If theN cluster has a

-

FIG. 1. Average number of function calls^NFC& vs q for the
Branin function. This represents the average over the succe
runs with a minimum convergence of 95%. One hundred runs w
done for each value ofq plotted.
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1164 55PABLO SERRA, AARON F. STANTON, AND SABRE KAIS
much different structure than theN2k structure or has one
or more local minima near the global minimum, as in t
N518 Lennard-Jones cluster, then the method works no
efficiently than it would with initial pivot probe location
chosen completely at random.

Figure 2 illustrates how our method scales with the nu
ber of Lennard-Jones particles to be minimized. Using a l
log scale we show that our method scales approximatel
N2.9, compared to the recently reported modified genetic
gorithm, which scales asN4.7 @25#. One should note that th
probability of finding that the global energy minimum wa
strongly correlated with the size of the cluster. It was re
tively difficult to obtain the global minimum for ‘‘magic
number’’ clusters such asN56 andN518. This implies that
the difficulty ~CPU time! does not scale in a simple way wit
N but depends on the characteristics of the potential-ene
hypersurface@29#. In order to reach the exact minimum fo
the Lennard-Jones clusters, a gradient descent minimiza

FIG. 2. log-log graph of CPU time in seconds vs number
Lennard-Jones particles. The dashed line represents the scali
the genetic algorithm of Ref.@23#, N4.7. The points represent ex
perimentally determined times for each of the clusters and the s
line represents the scaling of this method,N2.9.
M.

.

m

ss

-
-
as
l-

-

gy

on

was used once our method met its convergence criteria.
CPU time given includes this gradient minimization. In th
case, we found that a value ofq52.7 worked better than
q52.5 for these criteria. The CPU time on this chart h
been experimentally determined on an IBM RS/6000-580
our method, the genetic algorithm@25# was included for
comparison of scaling, and the exact CPU time was not
termined. A comparison such as this shows that for
tremely large systems it would allow considerable savings
time to use the present method.

We have presented a general method of optimization
arbitrary functions that has shown itself to be easy to imp
ment, does not get easily trapped in local minima, and
extremely fast. Any initial knowledge of the behavior of th
function in question is easy to incorporate in the initial co
ditions of the search, thus lending additional versatility.
12-fold improvement over previous methods has been d
onstrated for the six-dimensional Hartman function. CP
time has been shown to scale approximately asN2.9 as com-
pared to the modified genetic algorithm@25#, which scales as
N4.7 for Lennard-Jones clusters. This method was emp
cally found to be extremely useful, and as of yet there d
not exist a rigorous mathematical proof for convergence
the global minimum or for the rate of change of the tempe
ture. Such a proof needs to be established, and various ro
to do so are currently under investigation. We are using
cooling rate from generalized simulated annealing with
analytical proof that this is the best cooling rate for o
method; however, through empirical testing it has be
shown to yield very good results. Applications of th
method for atomic and molecular clusters with complex p
tentials such as water, oxides, and halides of alkali me
will be given elsewhere@18#.

The authors would like to thank Richard E. Bleil fo
many useful discussions and critically reading the ma
script. P.S. would like to acknowledge C. Tsallis for stim
lating discussions about applications of generalized stat
cal mechanics to global optimization and D. Stariolo, w
was kind enough to send us Ref.@14# prior to publication.
This work was supported in part by a grant from the Ame
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