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Pivot method for global optimization
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A pivot algorithm for the location of a global minimum of a multiple-minimum problem is presented. The
pivot method uses a series of randomly placed probes in phase space, moving the worst probes to be near better
probes iteratively until the system converges. The approach chooses nearest-neighbor pivot probes to search
the entire phase space by using a nonlocal distribution for the placement of the relocated probes. To test the
algorithm, a standard suite of functions is given, as well as the energies and geometric structures of Lennard-
Jones clusters, demonstrating the extreme efficiency of the method. Significant improvement over previous
methods for high-dimensional systems is sho{81063-651X97)08801-4

PACS numbds): 02.70—c, 02.60.Pn

Rational drug design, molecular modeling, quantum- A local selection of them pivot probes begins with a
mechanical calculations, and mathematical biological calcusearch at each probe for its nearest neighbor, based on the
lations are but a few examples of fields that rely heavilydistance of the probes. Once we have paired the probes, the

upon the location of a global minimum in a multiple- probe with the lower value for the functidifx) is defined as
minimum  problem[1-8|. An algorithm that is versatile the pivot probe, the other probe being the probe that will be
enough to be utilized in any given problem, easy enough thaf|ocated. There are several methods possible to do this pair-
gradients of the phase space need not be calculated, and iy, but in our particular case we began with finding the
bust enough to avoid entrapment in local minima would findnearest neighbor for probe 1 and removed those two probes

many applications. In this paper we present such a methoflom further consideration. This was repeated until all points
along with a set of test functions as well as solutions tohad peen paired.

structure of Lennard-Jones systems of up to 20 particles as a
demonstration of its versatility.
The task is to locate a global minimum of a given func-

tion f(x) within a predetermined phase spdeedefined by
the maximum and minimum values of all paramete(iy of
the function. A globally minimum value for this function is
assumed to exist within the defined phase space at the cor- - )
responding phase space point where Ax; is a randomly generated vector according to an
exploring distributiong,(AX). We have tested several distri-
butions, such as the standard Gaussian distribution used in
the pivot method9] and in simulated annealifd0], as well
as the Cauchy-Lorentz distribution proposed by Zsu and
Hartley for fast simulated annealing metHdd]. Finally, we
. - have tested a generalizeddistribution based on the Tsallis
valuef, for the functionf(x). _ entropy[12] and recently used with good results in the gen-
The pivot method begins with a given number of probesgrgjized simulated annealing methfB—16. We chose to
placed initially within the phase spac@. If nothing is e the general distribution for the placement of the probes

known of the problem, the probes are placed completely gfeay the pivot probes. This distribution is defined to bé]
random. However, if something is known of the problem, it

For each pivot probe with parameter valué,% , We ex-
plore phase space by placing the probe to be relocated near
the pivot probe by changing its parametépg as

)ZR,i:)ZB,i+A)Zi y (2)

fo=1(xo) =min f(x), D)
xe )

wherex, is a phase-space point with the global minimum

is most convenient to use this information in the initial de- 1
termination of probe location, which will be demonstrated in ) F<T1)
the Lennard-Jones example to follow. Each probe is simply a Jqy(X) = q q

set of values for the parameters of the probbefi) within 4 m= (1 1
the boundaries of the phase space and therefore with a given g-1 2

functional value equal to the value of the funct'rt(ri) at the [B(H)]UE-
probe point. In the current method, we start with=2m

initial probes of whichm probes will act as the pivot probes, (1+(g=D{[B(1) V3~ Ixp5tla b
and the remainingn probes will be relocated.

()

where g is defined to be IV andT is an artificial tempera-
ture given by[14]

*Permanent address: Facultad de Matéraa Astronoma y Fr
sica, Universidad Nacional de”@iwba, Ciudad Universitaria, 5000 T(t)=
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TABLE I. Average number of function evaluations in the global y T T T T T T
optimization of five test functions. The methods are the pure ran- -
dom searchPRS, simulated annealing types 1 and(8A1 and 600 -
SA2, respectively and tabu searcfTS). The references for these - T
methods and results can be found in Héf7]. RS T

Method GP Branin H3 H6 Shubert A, 400 - 1
PRS 5125 4850 5280 18090 6700 7 - S .
SA1 5439 2700 3416 3975 241215 - \'\ '
SA2 563 505 1459 4648 780 200 - \\ 7
TS 486 492 508 2845 727 i ~ ]
Present 153 68 52 237 159 [ T
1 1 1 N | 1
1.0 15 2.0 2.5 3.0
where T(1) is the initial temperature andis the discrete q

time corresponding to the computer iteratidad].

The most relevant fact about this distribution is the intro- FIG. 1. Average number of function califNrc) vs q for the
duction of a new parametey. Special cases that should be Branin function. This represents the average over the successful
noted are the limitg—1, where the generaj distribution  runs with a minimum convergence of 95%. One hundred runs were
approaches the Gaussian distribution, apd2, where the done for each value af plotted.

g distribution is equal to the Cauchy-Lorentz distribution. i . o

The second moment of this distribution diverges der5/3 established minima and minimum-energy structures folr very
and the distribution becomes unnormalizableder3. Asin  large clusterd21]. However, the number of local minima
generalized simulated annealinfl4], we have found @pparently grows as exig) [22]. Wille and Vennik have
g=2.5 to be a good value for our global optimization shown that to find the global minimum in Lennar.d—\.Jones
method. A detailed comparison with other valuesgoand ~ clusters is a NP hard problefi3]. Several global optimiza-
other distributions will be given elsewhef28]. tion methods have been applleq to the energy function of

In our standard test suite of functions we include several-€nnard-Jones clusters. These include simulated annealing
well-known functions for comparison with established meth-[24], genetic algorithm[25], diffusion equation methods
ods of optimization. These are the Goldstein-Pri@P), [26}, quantum annealinfP7], and other428]. The total en-
Branin, Hartman three- and six-dimensional varidi8 and ~ €rgy for a Lennard-Jones cluster Nfparticles is
H6), and Shubert functions. The full details of these func- N-1 N
tions can be found elsewhef&9,20. Note that all of the Ev=S S v )
two-dimensional functions have similar results. The stopping NS TR
criterion chosen was for the best probe to have a value no
farther from the known global minimum than 3% or to stop wherer;; is the distance between thh and thejth particles
if the number of iterations exceeded a certain value. ThindV,4(r) is the Lennard-Jones two-body potential
stopping criterion is the same as that in Réf7] and there-
fore allows an objective standard for comparison. The latter 1
criterion was set sufficiently high to establish that the system V(= -
was trapped in a local minimum if this criterion was trig-
gered. A different number of probes was found to be optimal For small numbers of Lennard-Jones clustéis<©), the
for each of the varying test functions. We have included inglobal energy minimum was located very quicKlgss than
Table | our results to illustrate the improvements over previ-1 CPU second on an IBM RS/6000or larger clusters, we
ous methods. This represents an average of function caliscorporated the partial knowledge that we had by starting
over the successful runs. One thousand runs were done farith the structure of the smalléd—k clusters and adding
each function. The improvement for two-dimensional meth-k additional particle at random. In any “growing” problem,
ods is a factor 3.2-7.2, whereas the H3 and H6 functionsuch as minimum-energy configuration of clusters, self-
show improvements of 9.8 and 12, respectively. Figure Javoiding walks, and protein foldin®1], this systematic ap-
illustrates the efficiency of using a value f2.5 graphi- proach to solving the structure of large clusters can be incor-
cally by plotting the number of times the Branin function porated. One of the powerful features of this algorithm is that
was called upon in the minimization against valuesgof information such as this can be built into the initialization of
ranging from 1 to 3. Note that this represents a successfihe probes.
convergence rate in excess of 95%. A similar behavior was For anN cluster, we begin wittmXk initial pivot probes
observed for the remainder of the functions in the test suiteghosen as followsm, N—1 clusters+ one random atom,
but we have only included the one graph for reasons ofn, N—2 clusters+ 2 random atoms, .. ,m, N—k+1 clus-
space. ters+ k—1 random atoms, and finallm completely random

We apply the method to Lennard-Jones clusters of siz@ivot probes(in our calculations we sé&k=N/2). With this
6—20 (phase-space dimension 12)58ennard-Jones clus- set of the initial pivot probes, if th&l cluster has a similar
ters are excellent for testing the efficiency of global optimi-structure with a smaller cluster, the algorithm converges
zation algorithms. Regular Lennard-Jones clusters have welfaster than purely random initial points. If tiecluster has a

. (6)
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was used once our method met its convergence criteria. Our
E CPU time given includes this gradient minimization. In this

] case, we found that a value gf=2.7 worked better than

] g=2.5 for these criteria. The CPU time on this chart has
. been experimentally determined on an IBM RS/6000-580 for
. our method, the genetic algorithfi25] was included for
comparison of scaling, and the exact CPU time was not de-
termined. A comparison such as this shows that for ex-
tremely large systems it would allow considerable savings in
time to use the present method.

We have presented a general method of optimization of
arbitrary functions that has shown itself to be easy to imple-
ment, does not get easily trapped in local minima, and is
3 extremely fast. Any initial knowledge of the behavior of the

function in question is easy to incorporate in the initial con-
ditions of the search, thus lending additional versatility. A
12-fold improvement over previous methods has been dem-

FIG. 2. log-log graph of CPU time in seconds vs number ofgnstrated for the six-dimensional Hartman function. CPU
Lennard-Jones particles. The dashed line represents the scaling ®fhe has been shown to scale approximatelwczi'g as com-
the genetic algorithm of Ref23], N*’. The points represent ex- pared to the modified genetic algoriti@6], which scales as
perimentally determined times for each of the clusters and the soli|47 tor Lennard-Jones clusters. This method was empiri-
line represents the scaling of this metho?. cally found to be extremely useful, and as of yet there does
not exist a rigorous mathematical proof for convergence to

much different structure than tHé—k structure or has one the global minimum or for the rate of change of the tempera-
or more local minima near the global minimum, as in theturé. Such a proof needs to be established, and various routes

N =18 Lennard-Jones cluster, then the method works no led9 do so are currently under investigation. We are using the
efficiently than it would with initial pivot probe locations c°°ling rate from generalized simulated annealing with no

chosen completely at random analytical proof that this is the best cooling rate for our
Figure 2 illustrates how our method scales with the num—mhethc’d;t howek\j/er, througr(lj empllrtlcaIAteslt_lngt_ It hasf ?ﬁ_en
ber of Lennard-Jones particles to be minimized. Usingalog—S own o yield very good resulls. Applications of this

ethod for atomic and molecular clusters with complex po-

log scale we show that our method scales approximately . . . :
N2 compared to the recently reported modified genetic glientials such as water, oxides, and halides of alkali metals

gorithm, which scales ad*’[25]. One should note that the will be given elsewher¢18].

probability of finding that the global energy minimum was The authors would like to thank Richard E. Bleil for
strongly correlated with the size of the cluster. It was rela-many useful discussions and critically reading the manu-
tively difficult to obtain the global minimum for “magic script. P.S. would like to acknowledge C. Tsallis for stimu-
number” clusters such @8=6 andN=18. This implies that lating discussions about applications of generalized statisti-
the difficulty (CPU time does not scale in a simple way with cal mechanics to global optimization and D. Stariolo, who
N but depends on the characteristics of the potential-energwas kind enough to send us R¢L4] prior to publication.
hypersurfacd29]. In order to reach the exact minimum for This work was supported in part by a grant from the Ameri-
the Lennard-Jones clusters, a gradient descent minimizatiacan Chemical Society’s Petroleum Research Fund.
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